# Copyright (c) 2016 Johan Dahlin [ johan.dahlin (at) liu.se ]
# Distributed under the MIT license.
#
##############################################################################
##############################################################################

import numpy   as np
from   state   import smc
from   para    import pmh_correlatedRVs
from   models  import normalIID_2parameters


##############################################################################
# Arrange the data structures
##############################################################################
sm               = smc.smcSampler();
pmh              = pmh_correlatedRVs.stcPMH();

##############################################################################
# Setup the system
##############################################################################
sys               = normalIID_2parameters.ssm()
sys.par           = np.zeros((sys.nPar,1))
sys.par[0]        = 0.50;
sys.par[1]        = 0.30;
sys.par[2]        = 0.10;
sys.T             = 10;
sys.xo            = 0.0;


##############################################################################
コード例 #2
0
ファイル: gpo-sv.py プロジェクト: roarkemc/gpo-smc-abc
#
# (c) 2016 Johan Dahlin
# liu (at) johandahlin.com
#
##############################################################################
##############################################################################

import numpy as np
from state import smc
from para import gpo_gpy
from models import hwsv_4parameters

##############################################################################
# Arrange the data structures
##############################################################################
sm = smc.smcSampler()
gpo = gpo_gpy.stGPO()

##############################################################################
# Setup the system
##############################################################################
sys = hwsv_4parameters.ssm()
sys.par = np.zeros((sys.nPar, 1))
sys.par[0] = 0.20
sys.par[1] = 0.90
sys.par[2] = 0.15
sys.par[3] = -0.70
sys.T = 1000
sys.xo = 0.0
sys.version = "standard"
コード例 #3
0
ファイル: portfolio.py プロジェクト: compops/gpo-abc2015
def estVol(version, data, theta, settings):

    # Arrange the data structures
    sm = smc.smcSampler()

    #=========================================================================
    # Setup the system model and load data
    #=========================================================================
    if (version == 'GSV'):
        sys = hwsv_4parameters.ssm()
    else:
        sys = hwsvalpha_4parameters.ssm()

    sys.par = np.zeros((sys.nPar, 1))
    sys.xo = 0.0
    sys.T = len(data)
    sys.version = "standard"
    sys.transformY = "none"

    # Load data
    if (version == 'GSV'):
        sys.generateData()
    else:
        sys.par[3] = 2.0
        sys.generateData()
        sys.ynoiseless = np.array(data).reshape((sys.T, 1))

    sys.y = np.array(data).reshape((sys.T, 1))

    #=========================================================================
    # Setup the model for inference
    #=========================================================================
    if (version == 'GSV'):
        th = hwsv_4parameters.ssm()
        th.nParInference = 3
        th.transformY = "none"
    else:
        th = hwsvalpha_4parameters.ssm()
        th.nParInference = 4
        th.transformY = "arctan"

    th.version = "standard"
    th.copyData(sys)

    #=========================================================================
    # Setup the SMC algorithm
    #=========================================================================

    if (version == 'GSV'):
        sm.filter = sm.bPF
    else:
        sm.filter = sm.bPFabc
        sm.weightdist = settings['smc_weightdist']
        sm.tolLevel = settings['smc_tolLevel']

        # Add noise to data for noisy ABC
        th.makeNoisy(sm)

    sm.nPart = settings['smc_nPart']
    sm.genInitialState = True

    # Estimate the log-volatility
    th.storeParameters(theta, sys)
    sm.filter(th)

    # Return the log-volatility estimate
    return sm.xhatf[:, 0]
コード例 #4
0
ファイル: portfolio.py プロジェクト: compops/gpo-abc2015
def estModel(version, data, settings):

    # Arrange the data structures
    gpo = gpo_gpy.stGPO()
    sm = smc.smcSampler()

    #=========================================================================
    # Setup the system model and load data
    #=========================================================================
    if (version == 'GSV'):
        sys = hwsv_4parameters.ssm()
    else:
        sys = hwsvalpha_4parameters.ssm()

    sys.par = np.zeros((sys.nPar, 1))
    sys.xo = 0.0
    sys.T = len(data)

    sys.version = "standard"
    sys.transformY = "none"

    # Load data
    if (version == 'GSV'):
        sys.generateData()
    else:
        sys.par[3] = 2.0
        sys.generateData()
        sys.ynoiseless = np.array(data).reshape((sys.T, 1))

    sys.y = np.array(data).reshape((sys.T, 1))

    #=========================================================================
    # Setup the model for inference
    #=========================================================================
    if (version == 'GSV'):
        th = hwsv_4parameters.ssm()
        th.transformY = "none"
        th.nParInference = 3
    else:
        th = hwsvalpha_4parameters.ssm()
        th.transformY = "arctan"
        th.nParInference = 4

    th.version = "standard"
    th.copyData(sys)

    #=========================================================================
    # Setup the SMC algorithm
    #=========================================================================

    if (version == 'GSV'):
        sm.filter = sm.bPF
    else:
        sm.filter = sm.bPFabc
        sm.weightdist = settings['smc_weightdist']
        sm.tolLevel = settings['smc_tolLevel']

        # Add noise to data for noisy ABC
        th.makeNoisy(sm)

    sm.nPart = settings['smc_nPart']
    sm.genInitialState = True

    #=========================================================================
    # Setup the GPO algorithm
    #=========================================================================
    gpo.verbose = True

    gpo.initPar = settings['gpo_initPar'][0:th.nParInference]
    gpo.upperBounds = settings['gpo_upperBounds'][0:th.nParInference]
    gpo.lowerBounds = settings['gpo_lowerBounds'][0:th.nParInference]

    gpo.preIter = settings['gpo_preIter']
    gpo.maxIter = settings['gpo_maxIter']

    gpo.jitteringCovariance = 0.01 * np.diag(np.ones(th.nParInference))
    gpo.preSamplingMethod = "latinHyperCube"

    gpo.EstimateHyperparametersInterval = settings['gpo_estHypParInterval']
    gpo.EstimateThHatEveryIteration = False
    gpo.EstimateHessianEveryIteration = False

    # Estimate parameters
    gpo.bayes(sm, sys, th)
    gpo.estimateHessian()

    # Estimate the log-volatility
    th.storeParameters(gpo.thhat, sys)
    sm.filter(th)

    return sm.xhatf[:, 0], gpo.thhat, np.diag(-gpo.invHessianEstimate)
コード例 #5
0
ファイル: portfolio.py プロジェクト: roarkemc/gpo-smc-abc
def estVol(version, data, theta, settings):

    # Arrange the data structures
    sm = smc.smcSampler()

    #=========================================================================
    # Setup the system model and load data
    #=========================================================================
    if (version == 'GSV'):
        sys = hwsv_4parameters.ssm()
    else:
        sys = hwsvalpha_4parameters.ssm()

    sys.par = np.zeros((sys.nPar, 1))
    sys.xo = 0.0
    sys.T = len(data)
    sys.version = "standard"
    sys.transformY = "none"

    # Load data
    if (version == 'GSV'):
        sys.generateData()
    else:
        sys.par[3] = 2.0
        sys.generateData()
        sys.ynoiseless = np.array(data).reshape((sys.T, 1))

    sys.y = np.array(data).reshape((sys.T, 1))

    #=========================================================================
    # Setup the model for inference
    #=========================================================================
    if (version == 'GSV'):
        th = hwsv_4parameters.ssm()
        th.nParInference = 3
        th.transformY = "none"
    else:
        th = hwsvalpha_4parameters.ssm()
        th.nParInference = 4
        th.transformY = "arctan"

    th.version = "standard"
    th.copyData(sys)

    #=========================================================================
    # Setup the SMC algorithm
    #=========================================================================

    if (version == 'GSV'):
        sm.filter = sm.bPF
    else:
        sm.filter = sm.bPFabc
        sm.weightdist = settings['smc_weightdist']
        sm.tolLevel = settings['smc_tolLevel']

        # Add noise to data for noisy ABC
        th.makeNoisy(sm)

    sm.nPart = settings['smc_nPart']
    sm.genInitialState = True

    # Estimate the log-volatility
    th.storeParameters(theta, sys)
    sm.filter(th)

    # Return the log-volatility estimate
    return sm.xhatf[:, 0]
コード例 #6
0
ファイル: portfolio.py プロジェクト: roarkemc/gpo-smc-abc
def estModel(version, data, settings):

    # Arrange the data structures
    gpo = gpo_gpy.stGPO()
    sm = smc.smcSampler()

    #=========================================================================
    # Setup the system model and load data
    #=========================================================================
    if (version == 'GSV'):
        sys = hwsv_4parameters.ssm()
    else:
        sys = hwsvalpha_4parameters.ssm()

    sys.par = np.zeros((sys.nPar, 1))
    sys.xo = 0.0
    sys.T = len(data)

    sys.version = "standard"
    sys.transformY = "none"

    # Load data
    if (version == 'GSV'):
        sys.generateData()
    else:
        sys.par[3] = 2.0
        sys.generateData()
        sys.ynoiseless = np.array(data).reshape((sys.T, 1))

    sys.y = np.array(data).reshape((sys.T, 1))

    #=========================================================================
    # Setup the model for inference
    #=========================================================================
    if (version == 'GSV'):
        th = hwsv_4parameters.ssm()
        th.transformY = "none"
        th.nParInference = 3
    else:
        th = hwsvalpha_4parameters.ssm()
        th.transformY = "arctan"
        th.nParInference = 4

    th.version = "standard"
    th.copyData(sys)

    #=========================================================================
    # Setup the SMC algorithm
    #=========================================================================

    if (version == 'GSV'):
        sm.filter = sm.bPF
    else:
        sm.filter = sm.bPFabc
        sm.weightdist = settings['smc_weightdist']
        sm.tolLevel = settings['smc_tolLevel']

        # Add noise to data for noisy ABC
        th.makeNoisy(sm)

    sm.nPart = settings['smc_nPart']
    sm.genInitialState = True

    #=========================================================================
    # Setup the GPO algorithm
    #=========================================================================
    gpo.verbose = True

    gpo.initPar = settings['gpo_initPar'][0:th.nParInference]
    gpo.upperBounds = settings['gpo_upperBounds'][0:th.nParInference]
    gpo.lowerBounds = settings['gpo_lowerBounds'][0:th.nParInference]

    gpo.preIter = settings['gpo_preIter']
    gpo.maxIter = settings['gpo_maxIter']

    gpo.jitteringCovariance = 0.01 * np.diag(np.ones(th.nParInference))
    gpo.preSamplingMethod = "latinHyperCube"

    gpo.EstimateHyperparametersInterval = settings['gpo_estHypParInterval']
    gpo.EstimateThHatEveryIteration = False
    gpo.EstimateHessianEveryIteration = False

    # Estimate parameters
    gpo.bayes(sm, sys, th)
    gpo.estimateHessian()

    # Estimate the log-volatility
    th.storeParameters(gpo.thhat, sys)
    sm.filter(th)

    return sm.xhatf[:, 0], gpo.thhat, np.diag(-gpo.invHessianEstimate)