コード例 #1
0
    def _redraw( self ):
        s = SPIRRID( rf = rf,
    #                 min_eps = 0.00, max_eps = 20.00, n_eps = 80,
                min_eps = 0.00, max_eps = 0.3, n_eps = 100,
                cached_qg = True,
                compiled_qg_loop = False,
                compiled_eps_loop = False
                )
        # construct the random variables

        n_int = 30

        #s.add_rv( 'tau1', distribution='uniform', loc=2. / 1000, scale=10.0 / 1000, n_int=n_int )
        #s.add_rv( 'l', distribution='uniform', loc=0.01, scale=.01, n_int=n_int )
        #s.add_rv( 'xi', distribution='weibull_min', shape=8.64, scale=0.0287, n_int=n_int )

        s.rv_dict['theta'] = RV( pd = self.pdf_theta, name = 'theta', n_int = n_int )

        s.rv_dict['l'] = RV( pd = self.pdf_l, name = 'l', n_int = n_int )

        s.rv_dict['phi'] = RV( pd = self.pdf_phi, name = 'phi', n_int = n_int )

        s.mean_curve.plot( self.figure, linewidth = 2, label = 'mean CB per filament response' )

        plt.xlabel( 'crack opening w[mm]' )
        plt.ylabel( 'force P[N]' )
        plt.legend( loc = 'best' )

        plt.figure( 10 )

        plt.show()
コード例 #2
0
def run():
    # Quantities for the response function
    # and randomization

    # construct a default response function for a single filament

    rf = ConstantFrictionFreeLengthFiniteFiber( tau = 0.5e6,
                                               l = 0.01,
                                               E = 70e9,
                                               A = 0.89e-6,
                                               slack = 0.0,
                                               L = 0.3,
                                               sigma_fu = 200e6 )

    # construct the integrator and provide
    # it with the response function.

    max_u = 1.8

    s = SPIRRID( rf = rf,
                 min_eps = 0.00, max_eps = max_u, n_eps = 80,
                 cached_dG = True, compiled_QdG_loop = False,
                compiled_eps_loop = False )

    # construct the correlated integrator and
    # provide it with the response function.

    sc = CorSPIRRID( rf = rf, rho = -0.99,
                 min_eps = 0.00, max_eps = max_u, n_eps = 80,
                 cached_dG = True, compiled_QdG_loop = False,
                compiled_eps_loop = False )

    n_int = 100

    s.add_rv( 'tau', distribution = 'norm', loc = 0.3e6, scale = 0.1e6, n_int = n_int )
    s.add_rv( 'l', distribution = 'norm', loc = 0.03, scale = 0.01, n_int = n_int )

    sc.add_rv( 'tau', distribution = 'norm', loc = 0.3e6, scale = 0.1e6, n_int = n_int )
    sc.add_rv( 'l', distribution = 'norm', loc = 0.03, scale = 0.01, n_int = n_int )

    # define a tables with the run configurations to start in a batch
    print 'sum', sum( sc.dG_grid )
    print 'sum', sum( s.dG_grid )

#    z = sc.pdf_theta_grid
#    x, y = mgrid[-4:4:50j, -4:4:50j]
#
#    mlab.surf(x, y, z)
#    mlab.show()

    s.mean_curve.plot( plt, color = 'red', linewidth = 2, label = 'spirrid' )
    sc.mean_curve.plot( plt, color = 'blue', linewidth = 2, label = 'cor spirrid' )

    plt.xlabel( 'strain [-]' )
    plt.ylabel( 'stress' )
    plt.legend( loc = 'lower right' )

    plt.title( s.rf.title )
    plt.show()
コード例 #3
0
ファイル: test_nose.py プロジェクト: annasteer/simvisage
    def test_e_arr(self):
        '''Check the convenience constructor for evars
        '''
        #===========================================================================
        # Control variable
        #===========================================================================
        e_arr = np.linspace(0, 0.012, 2)

        m_la, std_la = 10., 1.0
        m_xi, std_xi = 1.0, 0.1

        #===========================================================================
        # Randomization
        #===========================================================================

        s = SPIRRID(
            q=fiber_tt_2p(),
            e_arr=e_arr,
            codegen_type='numpy',
            n_int=10,
            tvars=dict(la=m_la, xi=m_xi),
        )

        max_mu_q = np.max(s.mu_q_arr)
        self.assertAlmostEqual(max_mu_q, 0.12000000000000001, 10)
コード例 #4
0
    def _get_s_inner( self ):

        s = SPIRRID( rf = self.rf,
                     cached_dG = True,
                     compiled_QdG_loop = False,
                     compiled_eps_loop = False )

        # construct the random variables
        n_int = 10

        s.add_rv( 'xi', distribution = 'weibull_min', scale = 0.02,
                  shape = 10., n_int = n_int )
        s.add_rv( 'theta', distribution = 'uniform', loc = self.loc_theta,
                  scale = 0.01, n_int = n_int )
        #.add_rv('lambd', distribution = 'uniform', loc = 0.0, scale = 0.01, n_int = n_int)

        return s
コード例 #5
0
ファイル: fiber_po_8p.py プロジェクト: simvisage/bmcs
def create_demo_object():

    #===========================================================================
    # Control variable
    #===========================================================================
    e_arr = np.linspace(0, 0.012, 80)

    powers = np.linspace(1, math.log(20, 10), 6)
    n_int_range = np.array(np.power(10, powers), dtype=int)

    #===========================================================================
    # Randomization
    #===========================================================================
    tvars = dict(
        fu=RV('weibull_min', 1200.0e6, 200.),
        qf=1500.0,
        # qf = RV('uniform', 1500., 100.),
        L=0.02,  # 
        # L = RV('uniform', 0.02, 0.02 / 2.),
        A=RV('norm', 5.30929158457e-10, .03 * 5.30929158457e-10),
        E_mod=RV('uniform', 70.e9, 250.e9),
        z=RV('uniform', 0.0, 0.03),
        phi=0.0,  # 
        # phi = RV('cos_distr', 0.0, 1.0),
        # phi = RV('uniform', 0.0, 1.0),
        f=RV('uniform', 0.0, 0.03))

    #===========================================================================
    # Integrator object
    #===========================================================================
    s = SPIRRID(
        q=ConstantFrictionFiniteFiber(),
        e_arr=e_arr,
        n_int=10,
        tvars=tvars,
    )

    #===========================================================================
    # Lab
    #===========================================================================
    slab = SPIRRIDLAB(s=s,
                      save_output=False,
                      show_output=True,
                      dpi=300,
                      qname='fiber_po_8p',
                      plot_mode='subplots',
                      n_int_range=n_int_range,
                      extra_compiler_args=True,
                      le_sampling_lst=['LHS', 'PGrid'],
                      le_n_int_lst=[10, 10],
                      plot_sampling_idx=[
                          0,
                          3,
                      ])

    return slab
コード例 #6
0
def create_demo_object():

    m_la, std_la = 10., 1.0
    m_xi, std_xi = 1.0, 0.1

    # discretize the control variable (x-axis)
    e_arr = np.linspace(0, 2.0, 80)

    # n_int range for sampling efficiency test
    powers = np.linspace(1, math.log(500, 10), 50)
    n_int_range = np.array(np.power(10, powers), dtype=int)

    #===========================================================================
    # Randomization
    #===========================================================================
    s = SPIRRID(
        q=fiber_tt_2p(),
        e_arr=e_arr,
        n_int=10,
        tvars=dict(la=RV('norm', m_la, std_la), xi=RV('norm', m_xi, std_xi)),
    )

    #===========================================================================
    # Exact solution
    #===========================================================================
    def mu_q_ex(e, m_xi, std_xi, m_la):
        return e * (0.5 - 0.5 * erf(0.5 * math.sqrt(2) *
                                    (e - m_xi) / std_xi)) * m_la

    #===========================================================================
    # Lab
    #===========================================================================
    slab = SPIRRIDLAB(s=s,
                      save_output=False,
                      show_output=True,
                      dpi=300,
                      exact_arr=mu_q_ex(e_arr, m_xi, std_xi, m_la),
                      plot_mode='subplots',
                      n_int_range=n_int_range,
                      extra_compiler_args=True,
                      le_sampling_lst=['LHS', 'PGrid'],
                      le_n_int_lst=[440, 5000])

    return slab
コード例 #7
0
ファイル: test_nose.py プロジェクト: annasteer/simvisage
    def setup_class(cls):

        np.random.seed(2356)

        #===========================================================================
        # Control variable
        #===========================================================================
        e_arr = np.linspace(0, 0.012, 80)

        cls.m_la, cls.std_la = 10., 1.0
        cls.m_xi, cls.std_xi = 1.0, 0.1

        #===========================================================================
        # Randomization
        #===========================================================================

        cls.s = SPIRRID(
            q=fiber_tt_2p(),
            evars={'e': e_arr},
            codegen_type='numpy',
            n_int=10,
            tvars=dict(la=RV('norm', cls.m_la, cls.std_la),
                       xi=RV('norm', cls.m_xi, cls.std_xi)),
        )
コード例 #8
0
ファイル: sampling.py プロジェクト: sarosh-quraishi/simvisage
if __name__ == '__main__':

    from stats.spirrid import SPIRRID, Heaviside

    class fiber_tt_2p:

        la = Float(0.1)

        def __call__(self, e, la, xi = 0.017):
            ''' Response function of a single fiber '''
            return la * e * Heaviside(xi - e)

    s = SPIRRID(q = fiber_tt_2p(),
                sampling_type = 'LHS',
                evars = {'e':[0, 1]},
                tvars = {'la':1.0, # RV( 'norm', 10.0, 1.0 ),
                          'xi': RV('norm', 1.0, 0.1)}
                )

    print 'tvar_names', s.tvar_names
    print 'tvars', s.tvar_lst
    print 'evar_names', s.evar_names
    print 'evars', s.evar_lst
    print 'var_defaults', s.var_defaults

    #print 'mu_q', s.mu_q_arr

    s = SPIRRID(q = fiber_tt_2p(),
                 sampling_type = 'LHS',
                 evars = {'e' : [0, 1], 'la' : [0, 1]},
                 tvars = {'xi': RV('norm', 1.0, 0.1),
コード例 #9
0
ファイル: compound_maple.py プロジェクト: kelidas/scratch
def run():

    m_mu, std_mu = 3., 0.68
    m_cov, std_cov = 0.18, 0.067

    # discretize the control variable (x-axis)
    x_arr = np.linspace(0, 6.0, 1000)[1:]

    #===========================================================================
    # Randomization
    #===========================================================================
    s = SPIRRID(q = BasicPDF(),
                e_arr = x_arr,
                n_int = 100,
                tvars = dict(mu = RV('norm', m_mu, std_mu), #RV('beta', m_cov, std_cov),#BETA('beta', mu = m_mu, sig = std_mu, a = a, b = b),
                             cov = RV('norm', m_cov, std_cov)
                             ),
                sampling_type = 'TGrid',
                codegen_type = 'numpy',
                )

    #===========================================================================
    # Calculate
    #===========================================================================
    # calculate compounded distribution values
    cpd_pdf = s.mu_q_arr
    cpd_cdf = np.cumsum(cpd_pdf) * np.diff(x_arr)[0]

    # calculate first raw moment
    raw_1 = np.trapz(cpd_pdf * x_arr, x_arr)

    # calculate second raw moment
    raw_2 = np.trapz(cpd_pdf * x_arr ** 2, x_arr)
    std = np.sqrt(raw_2 - raw_1 ** 2)

    # calculate values of lognormal distrib
    lognorm_pdf = lognormal_pdf(x_arr, raw_1, std)
    lognorm_cdf = lognormal_cdf(x_arr, raw_1, std)

    # calculate error
    rms_err = rms_error(lognorm_pdf, cpd_pdf)
    max_err = max_error(lognorm_pdf, cpd_pdf)
    chi_err = chi_error(lognorm_pdf, cpd_pdf)

    # generate samples
    samples = s.sampling.get_samples(20)
    sample_args = [ sam[:, np.newaxis] for sam in samples]
    q_arr = s.q(x_arr[None, :], *sample_args)

    #===========================================================================
    # Print
    #===========================================================================

    print 'check unity\t', np.trapz(cpd_pdf, x_arr)
    print 'mean\t\t', raw_1
    print 'std\t\t', std
    print 'rms error\t', rms_err
    print 'max error\t', max_err
    print 'chi error\t', chi_err

    #===========================================================================
    # Plot
    #===========================================================================
    p.figure()
    # plot samples
    #p.plot(x_arr, q_arr.T, color = 'gray')
    # plot compounded distribution
    p.plot(x_arr, cpd_pdf, 'b-')
    # plot lognormal distribution, method of moments
    p.plot(x_arr, lognorm_pdf, color = 'red', linewidth = 2)
    data = np.loadtxt('maple_cpd.txt', delimiter = ',')
    p.plot(data[:, 0], data[:, 1], color = 'violet')

    p.figure()
    p.plot(x_arr, cpd_cdf, 'b-')
    # plot lognormal CDF, method of moments
    p.plot(x_arr, lognorm_cdf, color = 'red', linewidth = 2)

    p.show()
コード例 #10
0
                    q = 0.0;
                }else{
                      q = la * eps;
                }
                '''

    m_la, std_la = 10., 1.0
    m_xi, std_xi = 1.0, 0.1

    #===========================================================================
    # Randomization
    #===========================================================================
    s = SPIRRID(q = fiber_tt_2p(),
                e_arr = e_arr,
                n_int = 10,
                tvars = dict(la = RV('norm', m_la, std_la),
                             xi = RV('norm', m_xi, std_xi)
                             ),
                )

    #===========================================================================
    # Exact solution
    #===========================================================================
    def mu_q_ex(e, m_xi, std_xi, m_la):
        return e * (0.5 - 0.5 *
                    erf(0.5 * math.sqrt(2) * (e - m_xi) / std_xi)) * m_la

    #===========================================================================
    # Lab
    #===========================================================================
    slab = SPIRRIDLAB(s = s, save_output = True, show_output = True,
コード例 #11
0
ファイル: sampling.py プロジェクト: axelvonderheide/scratch
if __name__ == "__main__":

    from stats.spirrid import SPIRRID, Heaviside

    class fiber_tt_2p:

        la = Float(0.1)

        def __call__(self, e, la, xi=0.017):
            """ Response function of a single fiber """
            return la * e * Heaviside(xi - e)

    s = SPIRRID(
        q=fiber_tt_2p(),
        sampling_type="LHS",
        evars={"e": [0, 1]},
        tvars={"la": 1.0, "xi": RV("norm", 1.0, 0.1)},  # RV( 'norm', 10.0, 1.0 ),
    )

    print "tvar_names", s.tvar_names
    print "tvars", s.tvar_list
    print "evar_names", s.evar_names
    print "evars", s.evar_list
    print "var_defaults", s.var_defaults

    # print 'mu_q', s.mu_q_arr

    s = SPIRRID(
        q=fiber_tt_2p(),
        sampling_type="LHS",
        evars={"e": [0, 1], "la": [0, 1]},
コード例 #12
0
ファイル: compound.py プロジェクト: kelidas/scratch
def run(mu, cov, plot = True):

    # discretize the control variable (x-axis)
    x_arr = np.linspace(0, 10.0, 1000)[1:]

    #===========================================================================
    # Randomization
    #===========================================================================
    s = SPIRRID(q = BasicPDF(),
                e_arr = x_arr,
                n_int = 100,
                tvars = dict(mu = mu,
                             cov = cov
                             ),
                sampling_type = 'TGrid',
                codegen_type = 'numpy',
                )
    #s.codegen.cached_dG = False
    #s.codegen.compiled_eps_loop = False

    #===========================================================================
    # Calculate
    #===========================================================================
    # calculate compounded distribution values
    cpd_pdf = s.mu_q_arr
    cpd_cdf = np.cumsum(cpd_pdf) * np.diff(x_arr)[0]

    # calculate first raw moment
    raw_1 = np.trapz(cpd_pdf * x_arr, x_arr)

    # calculate second raw moment
    raw_2 = np.trapz(cpd_pdf * x_arr ** 2, x_arr)
    std = np.sqrt(raw_2 - raw_1 ** 2)

    # calculate values of lognormal distrib
    lognorm_pdf = lognormal_pdf(x_arr, raw_1, std)
    lognorm_cdf = lognormal_cdf(x_arr, raw_1, std)

    # calculate error
    rms_err = rms_error(lognorm_pdf, cpd_pdf)
    max_err = max_error(lognorm_pdf, cpd_pdf)
    chi_err = chi_error(lognorm_pdf, cpd_pdf)
    ks_err = ks_error(lognorm_cdf, cpd_cdf)

    # generate samples
    samples = s.sampling.get_samples(50)
    sample_args = [ sam[:, np.newaxis] for sam in samples]
    q_arr = s.q(x_arr[None, :], *sample_args)

    emp_data = np.loadtxt('data_emp.txt', delimiter = '\t')

    #===========================================================================
    # Print
    #===========================================================================

    print 'check unity\t', np.trapz(cpd_pdf, x_arr)
    print 'mean\t\t', raw_1
    print 'std\t\t', std
    print 'rms error\t', rms_err
    print 'max error\t', max_err
    print 'chi error\t', chi_err
    print 'ks error\t', ks_err

    #===========================================================================
    # Plot
    #===========================================================================
    if plot:
        p.figure()
        p.title(mu.type)
        # plot samples
        #p.plot(x_arr, q_arr.T, color = 'gray')
        for s in q_arr:
            p.plot(x_arr, s, color = 'gray', linewidth = mu.pdf((s * x_arr).sum() / 100.) * 5)
        # plot compounded distribution
        p.plot(x_arr, cpd_pdf, 'b-', label = 'cpd')
        # plot lognormal distribution, method of moments
        p.plot(x_arr, lognorm_pdf, color = 'red', linewidth = 2, label = 'lognorm')
        p.plot(x_arr, lognormal_pdf(x_arr, np.mean(emp_data[:, 0]), np.std(emp_data[:, 0])), color = 'cyan', linewidth = 2, label = 'lognorm_data')
        p.plot(x_arr, mu.pdf(x_arr), color = 'green', label = 'mu_dist')
        p.legend(loc = 0)

        p.figure()
        p.title(mu.type)
        p.plot(emp_data[:, 0], emp_data[:, 1], 'k-', linewidth = 3, label = 'emp')
        p.plot(x_arr, cpd_cdf, 'b-', label = 'cpd')
        # plot lognormal CDF, method of moments
        p.plot(x_arr, lognorm_cdf, color = 'red', linewidth = 2, label = 'lognorm')
        p.plot(x_arr, lognormal_cdf(x_arr, np.mean(emp_data[:, 0]), np.std(emp_data[:, 0])), color = 'cyan', linewidth = 2, label = 'lognorm_data')
        p.legend(loc = 0)

        p.figure()
        p.title(mu.type)
        p.loglog(emp_data[:, 0], emp_data[:, 1], 'k-', linewidth = 3, label = 'emp')
        p.loglog(x_arr, cpd_cdf, 'b-', label = 'cpd')
        p.loglog(x_arr, lognorm_cdf, color = 'red', linewidth = 2, label = 'lognorm')
        p.loglog(x_arr, lognormal_cdf(x_arr, np.mean(emp_data[:, 0]), np.std(emp_data[:, 0])), color = 'cyan', linewidth = 2, label = 'lognorm_data')
        p.ylim(1e-4, 1)
        p.xlim(1, 10)
        p.legend(loc = 0)

    #p.show()
    return rms_err
コード例 #13
0
def run():
    # Quantities for the response function
    # and randomization
    # 
    xx = 10 # Pa
    yy = 20 # Pa
    zz = 30
    aa = 40


    # construct a default response function for a single filament

    rf = Filament( x=xx, y=yy, z=zz, a=aa )

    # construct the integrator and provide it with the response function.

    s = SPIRRID( rf=rf,
                 min_eps=0.00, max_eps=0.05, n_eps=1 )

    # construct the random variables

    n_int = 80

    s.add_rv( 'x', distribution='norm', scale=10., shape=2., n_int=n_int )
    s.add_rv( 'y', distribution='norm', loc=10., scale=2., n_int=n_int )
    s.add_rv( 'z', distribution='norm', loc=10., scale=2., n_int=n_int )
    s.add_rv( 'a', distribution='norm', loc=10., scale=2., n_int=n_int )

    
    # define a tables with the run configurations to start in a batch

    run_list = [
                ( 
                 {'cached_qg'         : False,
                  'compiled_qg_loop'  : True,
                  'compiled_eps_loop' : True },
                  'bx-',
                  '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec'
                 ),
                ( 
                 {'cached_qg'         : False,
                  'compiled_qg_loop'  : True,
                  'compiled_eps_loop' : False },
                 'r-2',
                 '$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec',
                 ),
                ( 
                 {'cached_qg'         : True,
                  'compiled_qg_loop'  : True,
                  'compiled_eps_loop' : True },
                  'go-',
                  '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec',
                  ),
                ( 
                 {'cached_qg'         : True,
                  'compiled_qg_loop'  : False,
                  'compiled_eps_loop' : False },
                 'y--',
                 '$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec'
                 ),
                ]

    legend = []

    for idx, run in enumerate( run_list ):
        run_options, plot_options, legend_string = run
        print 'run', idx,
        s.set( **run_options )
        s.mean_curve.plot( plt, plot_options )
        print 'execution time', s.exec_time
        legend.append( legend_string % s.exec_time )

    plt.xlabel( 'strain [-]' )
    plt.ylabel( 'stress' )
    plt.legend( legend )

    plt.title( s.rf.title )
    plt.show()
コード例 #14
0
def run():
    # Quantities for the response function
    # and randomization

    # construct a default response function for a single filament

    rf = ConstantFrictionFiniteFiber( fu=1200e15, qf=1200,
                           L=0.02, A=0.00000002,
                           E_mod=210.e9, z=0.004,
                           phi=0.5, f=0.01 )

    # construct the integrator and provide it with the response function.

    s = SPIRRID( rf=rf,
                 min_eps=0.00, max_eps=0.0008, n_eps=80 )

    # construct the random variables

    n_int = 15

    s.add_rv( 'E_mod', distribution='uniform', loc=170.e9, scale=250.e9, n_int=n_int )
    s.add_rv( 'L', distribution='uniform', loc=0.02, scale=0.03, n_int=n_int )
    s.add_rv( 'phi', distribution='cos_distr', loc=0., scale=1., n_int=n_int )
    s.add_rv( 'z', distribution='uniform', loc=0, scale=rf.L / 2., n_int=n_int )

    # define a tables with the run configurations to start in a batch

    run_list = [
                ( 
                 {'cached_qg'         : False,
                  'compiled_qg_loop'  : True,
                  'compiled_eps_loop' : True },
                  'bx-',
                  '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec'
                 ),
                ( 
                 {'cached_qg'         : False,
                  'compiled_qg_loop'  : True,
                  'compiled_eps_loop' : False },
                 'r-2',
                 '$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec',
                 ),
                ( 
                 {'cached_qg'         : True,
                  'compiled_qg_loop'  : True,
                  'compiled_eps_loop' : True },
                  'go-',
                  '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec',
                  ),
                ( 
                 {'cached_qg'         : True,
                  'compiled_qg_loop'  : False,
                  'compiled_eps_loop' : False },
                 'b--',
                 '$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec'
                 ),
                ]

    for idx, run in enumerate( run_list ):
        run_options, plot_options, legend_string = run
        print 'run', idx,
        s.set( **run_options )
        s.mean_curve.plot( plt, plot_options, linewidth=2, label=legend_string % s.exec_time )
        print 'execution time', s.exec_time, s.mu_q_peak

    plt.xlabel( 'strain [-]' )
    plt.ylabel( 'stress' )
    plt.legend( loc='lower right' )

    plt.title( s.rf.title )
    plt.show()
コード例 #15
0
ファイル: spirrid_lab.py プロジェクト: rosoba/simvisage
    # discretize the control variable (x-axis)
    e_arr = np.linspace(0, 1.2, 40)

    # Exact solution
    def mu_q_ex(e, m_xi, std_xi, m_la):
        return e * (0.5 - 0.5 * erf(0.5 * math.sqrt(2) *
                                    (e - m_xi) / std_xi)) * m_la

    mu_q_ex_arr = mu_q_ex(e_arr, m_xi, std_xi, m_la)

    g_la = RV('norm', m_la, std_la)
    g_xi = RV('norm', m_xi, std_xi)

    s = SPIRRID(
        q=fiber_tt_2p,
        e_arr=e_arr,
        n_int=10,
        tvars=dict(la=g_la, xi=g_xi),
    )

    mu_q_ex_arr = mu_q_ex(e_arr, m_xi, std_xi, m_la)

    slab = SPIRRIDLAB(s=s,
                      save_output=False,
                      show_output=True,
                      exact_arr=mu_q_ex(e_arr, m_xi, std_xi, m_la))

    slab.configure_traits(kind='live')

#    powers = np.linspace(1, math.log(200, 10), 50)
#    n_int_range = np.array(np.power(10, powers), dtype = int)
#
コード例 #16
0
from stats.spirrid.sampling import PGrid, TGrid, FunctionRandomization
from stats.spirrid import SPIRRID

class C(FunctionRandomization):

    sampling_type = Trait('T-grid', {'T-grid' : TGrid,
                            'P-grid' : PGrid}, input_change = True)

    sampling = Property(depends_on = '+input_change')
    @cached_property
    def _get_sampling(self):
        print '... recalculating result ...',
        return self.sampling_type_(randomization = self)

c = C()
print 'got', c.sampling
c.sampling_type = 'P-grid'
print 'got', c.sampling
c.sampling_type = 'T-grid'
print 'got', c.sampling
print 'got', c.sampling

print '====='
s = SPIRRID()
print 'got', s.sampling
s.sampling_type = 'P-grid'
print 'got', s.sampling
s.sampling_type = 'T-grid'
print 'got', s.sampling
print 'got', s.sampling
コード例 #17
0
        print 'input', s.cv, 'output', r

        return r

if __name__ == '__main__':

    rf = Yarn()

    # control variable - strains
    # can be a float number or array
    cv = linspace( 0.0, 0.06, 10 )

    # construct the outer integrator and provide it with the response function.
    s_outer = SPIRRID( rf = rf,
                 cv = cv,
                 cached_dG = True,
                 compiled_QdG_loop = False,
                 compiled_eps_loop = False )

    # construct the random variables

    n_int = 3

    s_outer.add_rv( 'loc_theta', distribution = 'uniform', loc = 0.00,
                    scale = 0.01, n_int = n_int )

    # plot the mean filament and mean yarn response
    plt.plot( cv, rf( cv, 0.01 ), linewidth = 2,
              label = 'random filament properties' )
    plt.plot( cv, s_outer.results[0], linewidth = 2,
              label = 'random bundle properties' )
コード例 #18
0
        g_E = RV('norm', E_mean, E_stdev)
        g_th = RV('norm', th_mean, th_stdev)
        g_A = RV('norm', A_mean, A_stdev)

        mu_ex_file = 'fiber_tt_5p_40_norm.txt'
        delimiter = ' '

    # discretize the control variable (x-axis)
    e_arr = np.linspace(0, 0.04, 1000)

    #===========================================================================
    # Randomization
    #===========================================================================
    s = SPIRRID(q = fiber_tt_5p(),
                e_arr = e_arr,
                n_int = 30,
                tvars = dict(lambd = g_la, xi = g_xi, E_mod = g_E, theta = g_th, A = g_A),
                )

    # Exact solution
    def mu_q_ex(e):
        data = np.loadtxt(mu_ex_file, delimiter = delimiter)
        x, y = data[:, 0], data[:, 1]
        f = interp1d(x, y, kind = 'linear')
        return f(e)

    #===========================================================================
    # Lab
    #===========================================================================
    slab = SPIRRIDLAB(s = s, save_output = True, show_output = True,
                      exact_arr = mu_q_ex(e_arr))
コード例 #19
0
ファイル: demo_filament_comb.py プロジェクト: kelidas/scratch
def run():
    # Quantities for the response function
    # and randomization
    # 
    E_mod = 70 * 1e+9 # Pa
    sig_u = 1.25 * 1e+9 # Pa
    D = 26 * 1.0e-6 # m
    A = ( D / 2.0 ) ** 2 * pi
    xi_u = sig_u / E_mod
    
    dict_var = {'E_mod':70.e9,
                'xi':0.02,
                'A':A,
                'theta':0,
                'lambd':0}
        
    outfile = open( 'filament_comb_stat.dat', 'w' )
    
    comb = 0
    while_cond = 1
    while while_cond == 1: #for comb in range( 1, n_com + 1 ):
        comb += 1
        for i in range( 0, 2 ):
            # construct a default response function for a single filament
            rf = Filament()
            rf.set( **dict_var )

            # construct the integrator and provide it with the response function.
        
            s = SPIRRID( rf=rf,
                         min_eps=0.00, max_eps=0.05, n_eps=80 )
            
            # construct the random variables
        
            n_int = 32
        
            dict_rv = {
                       'xi':{'variable':'xi', 'distribution':'weibull_min', 'scale':0.02, 'shape':10., 'n_int':n_int},
                       'E_mod':{'variable':'E_mod', 'distribution':'uniform', 'loc':70e+9, 'scale':15e+9, 'n_int':n_int},
                       'theta':{'variable':'theta', 'distribution':'uniform', 'loc':0.0, 'scale':0.01, 'n_int':n_int},
                       'lambd':{'variable':'lambd', 'distribution':'uniform', 'loc':0.0, 'scale':.2, 'n_int':n_int},
                       'A':{'variable':'A', 'distribution':'uniform', 'loc':A * 0.3, 'scale':0.7 * A, 'n_int':n_int},
                       }
            
            n_var = len( dict_rv )
            n_com = 0
            for k in range( 0, n_var ):
                n_com += choose( n_var, k )
            print 'The only last combination'
            comb = n_com
            # end of the while loop
            if comb == n_com:
                while_cond = 0
                        
            list_rv_comb = list( powerset( dict_rv ) )
            for rv in list_rv_comb[comb]:
                s.add_rv( **dict_rv[rv] )
                
            # define a tables with the run configurations to start in a batch
        
            run_list = [
                        ( 
                         {'cached_dG'         : False,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : True },
                          'bx-',
                          '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec'
                         ),
                        ( 
                         {'cached_dG'         : False,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : False },
                         'r-2',
                         '$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec',
                         ),
                         ( 
                         {'cached_dG'         : True,
                          'compiled_QdG_loop'  : False,
                          'compiled_eps_loop' : False },
                         'y--',
                         '$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec'
                         ),
                        ( 
                         {'cached_dG'         : True,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : True },
                          'go-',
                          '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec',
                          ),
                        ]
        
            legend = []
        
            print 'Combination', list_rv_comb[comb], ' -- ', i
            outfile.write( "Combination %s -- %i\n" % ( list_rv_comb[comb], i ) )
            outfile.write( "%s \t %s\n" % ( "Run", "Time" ) )   
            
            for idx, run in enumerate( run_list ):
                run_options, plot_options, legend_string = run
                print 'run', idx,
                s.set( **run_options )
                plt.figure( comb )
                s.mean_curve.plot( plt, plot_options )
                print 'execution time', s.exec_time
                outfile.write( "%s \t %s\n" % ( idx, s.exec_time ) )
                legend.append( legend_string % s.exec_time )
                
            outfile.write( "=================\n" )
        
            plt.xlabel( 'strain [-]' )
            plt.ylabel( 'stress' )
            plt.legend( legend )
        
            plt.title( s.rf.title )
            
            del s
    plt.show()
コード例 #20
0
def run():

    sv = SPIRRIDModelView(model = SPIRRID(),
                           rf_values = [ Filament() ])
    sv.configure_traits(view = 'traits_view_tabbed')
コード例 #21
0
ファイル: demo_pullout_comb.py プロジェクト: kelidas/scratch
def run():
    # Quantities for the response function
    # and randomization

    # construct a default response function for a single filament
    dict_var = {'fu':1200.0e6,
                'qf':1500.,
                'L':0.02,
                'A':5.30929158457e-10,
                'E_mod':70.0e9,
                'z':0.0,
                'phi':0.,
                'f':0.0}
        
    outfile = open( 'pullout_comb_stat.dat', 'w' )
    
    comb = 0
    while_cond = 1
    while while_cond == 1: #for comb in range( 1, n_com + 1 ):
        comb += 1
        for i in range( 0, 2 ):
            # construct a default response function for a single filament
            rf = ConstantFrictionFiniteFiber()
            rf.set( **dict_var ) 

            # construct the integrator and provide it with the response function.
        
            s = SPIRRID( rf=rf,
                         min_eps=0.00, max_eps=0.05, n_eps=80 )
        
            # construct the random variables
        
            n_int = 10
        
            dict_rv = {
                       'fu':{'variable':'fu', 'distribution':'weibull_min', 'loc':1200.0e6, 'scale':200., 'n_int':n_int },
                       'qf':{'variable':'qf', 'distribution':'uniform', 'loc':1500., 'scale':100., 'n_int':n_int },
                       'L':{'variable':'L', 'distribution':'uniform', 'loc':0.02, 'scale':rf.L / 2., 'n_int':n_int},
                       'A':{'variable':'A', 'distribution':'uniform', 'loc':5.30929158457e-10, 'scale':.03 * 5.30929158457e-10, 'n_int':n_int },
                       'E_mod':{'variable':'E_mod', 'distribution':'uniform', 'loc':70.e9, 'scale':250.e9, 'n_int':n_int},
                       'z':{'variable':'z', 'distribution':'uniform', 'loc':0., 'scale':.03, 'n_int':n_int },
                       'phi':{'variable':'phi', 'distribution':'cos_distr', 'loc':0., 'scale':1., 'n_int':n_int},
                       'f':{'variable':'f', 'distribution':'uniform', 'loc':0., 'scale':.03, 'n_int':n_int },
                       }

            n_var = len( dict_rv )
            n_com = 0
            for k in range( 6, 7 ):
                n_com += choose( n_var, k )
                
            # end of the while loop
            if comb == n_com:
                while_cond = 0
                
            list_rv_comb = list( powerset( dict_rv, par=6 ) )

            for rv in list_rv_comb[comb]:
                s.add_rv( **dict_rv[rv] )
        
            # define a tables with the run configurations to start in a batch
        
            run_list = [
                        ( 
                         {'cached_dG'         : False,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : True },
                          'bx-',
                          '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec'
                         ),
                        ( 
                         {'cached_dG'         : False,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : False },
                         'r-2',
                         '$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec',
                         ),
                        ( 
                         {'cached_dG'         : True,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : True },
                          'go-',
                          '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec',
                          ),
                        ( 
                         {'cached_dG'         : True,
                          'compiled_QdG_loop'  : False,
                          'compiled_eps_loop' : False },
                         'b--',
                         '$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec'
                         ),
                        ]
            
            print 'Combination', list_rv_comb[comb], ' -- ', i
            outfile.write( "Combination %s -- %i\n" % ( list_rv_comb[comb], i ) )
            outfile.write( "%s \t %s\n" % ( "Run", "Time" ) )
            
            for idx, run in enumerate( run_list ):
                run_options, plot_options, legend_string = run
                print 'run', idx,
                s.set( **run_options )
                plt.figure( comb )
                s.mean_curve.plot( plt, plot_options, linewidth=2, label=legend_string % s.exec_time )
                print 'execution time', s.exec_time, s.mu_q_peak
                outfile.write( "%s \t %s\n" % ( idx, s.exec_time ) )
            
            outfile.write( "=================\n" )
        
            plt.xlabel( 'strain [-]' )
            plt.ylabel( 'stress' )
            plt.legend( loc='lower right' )
        
            plt.title( s.rf.title )
            del s
    plt.show()
コード例 #22
0
ファイル: demo.py プロジェクト: kelidas/scratch
def run():
    # Quantities for the response function
    # and randomization
    # 
    E_mod = 70 * 1e+9 # Pa
    sig_u = 1.25 * 1e+9 # Pa
    D = 26 * 1.0e-6 # m
    A = ( D / 2.0 ) ** 2 * pi
    xi_u = sig_u / E_mod


    # construct a default response function for a single filament

    rf = Filament( E_mod=70.e9, xi=0.02, A=A, theta=0, lambd=0 )

    # construct the integrator and provide it with the response function.

    s = SPIRRID( rf=rf,
                 min_eps=0.00, max_eps=0.05, n_eps=80 )

    # construct the random variables

    n_int = 70

    s.add_rv( 'xi', distribution='weibull_min', scale=0.02, shape=10., n_int=n_int )
#   s.add_rv( 'E_mod', distribution = 'uniform', loc = 70e+9, scale = 15e+9, n_int = n_int )
    s.add_rv( 'theta', distribution='uniform', loc=0.0, scale=0.01, n_int=n_int )
    s.add_rv( 'lambd', distribution='uniform', loc=0.0, scale=.2, n_int=n_int )
    s.add_rv( 'A', distribution='uniform', loc=A * 0.3, scale=0.7 * A, n_int=n_int )
    
    # define a tables with the run configurations to start in a batch

    run_list = [
                ( 
                 {'cached_dG'         : False,
                  'compiled_QdG_loop'  : True,
                  'compiled_eps_loop' : True },
                  'bx-',
                  '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec'
                 ),
                ( 
                 {'cached_dG'         : False,
                  'compiled_QdG_loop'  : True,
                  'compiled_eps_loop' : False },
                 'r-2',
                 '$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec',
                 ),
                ( 
                 {'cached_dG'         : True,
                  'compiled_QdG_loop'  : True,
                  'compiled_eps_loop' : True },
                  'go-',
                  '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec',
                  ),
                ( 
                 {'cached_dG'         : True,
                  'compiled_QdG_loop'  : False,
                  'compiled_eps_loop' : False },
                 'y--',
                 '$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec'
                 ),
                ]

    legend = []

    for idx, run in enumerate( run_list ):
        run_options, plot_options, legend_string = run
        print 'run', idx,
        s.set( **run_options )
        s.mean_curve.plot( plt, plot_options )
        print 'execution time', s.exec_time
        legend.append( legend_string % s.exec_time )

    plt.xlabel( 'strain [-]' )
    plt.ylabel( 'stress' )
    plt.legend( legend )

    plt.title( s.rf.title )
    plt.show()
コード例 #23
0
ファイル: fiber_cb_8p.py プロジェクト: rosoba/simvisage
            q_x = q_x * Heaviside(x + Ll) * Heaviside(Lr - x)
            q_x = q_x * Heaviside(q_x)

            return q_x

    q = CBClampedFiberSP()

    s = SPIRRID(
        q=q,
        sampling_type='LHS',
        evars=dict(w=np.linspace(0.0, 0.4, 50),
                   x=np.linspace(-20.1, 20.5, 100),
                   Lr=np.linspace(0.1, 20.0, 50)),
        tvars=dict(
            tau=RV('uniform', 0.7, 1.0),
            l=RV('uniform', 5.0, 10.0),
            D_f=26e-3,
            E_f=72e3,
            theta=0.0,
            xi=RV('weibull_min', scale=0.017, shape=8, n_int=10),
            phi=1.0,
            Ll=50.0,
            #                              Lr = 1.0
        ),
        n_int=5)

    e_arr = make_ogrid(s.evar_lst)
    n_e_arr = [e / np.max(np.fabs(e)) for e in e_arr]

    max_mu_q = np.max(np.fabs(s.mu_q_arr))
    n_mu_q_arr = s.mu_q_arr / max_mu_q
    n_std_q_arr = np.sqrt(s.var_q_arr) / max_mu_q
コード例 #24
0
ファイル: demo_simple_comb.py プロジェクト: kelidas/scratch
def run():
    # Quantities for the response function
    # and randomization
    # 
    dict_var = {'x' : 10,
                'y' : 20,
                'z' : 30,
                'a' : 40}
    
    n_var = len( dict_var )
    n_com = 0
    for k in range( 0, n_var ):
        n_com += choose( n_var, k )
        
    outfile = open( 'simple_comb_stat.dat', 'w' )
    
    for comb in range( 1, n_com + 1 ):
        for i in range( 0, 2 ):
            # construct a default response function for a single filament
            rf = Filament()
            rf.set( **dict_var ) # (x=10, y=20, ...)
        
            # construct the integrator and provide it with the response function.
        
            s = SPIRRID( rf=rf,
                         min_eps=0.00, max_eps=0.05, n_eps=1 )
        
            # construct the random variables
        
            n_int = 35
            
            dict_rv = {
                       'x':{'variable':'x', 'distribution':'norm', 'loc':10., 'scale':2., 'n_int':n_int},
                       'y':{'variable':'y', 'distribution':'norm', 'loc':10., 'scale':2., 'n_int':n_int},
                       'z':{'variable':'z', 'distribution':'norm', 'loc':10., 'scale':2., 'n_int':n_int},
                       'a':{'variable':'a', 'distribution':'norm', 'loc':10., 'scale':2., 'n_int':n_int},
                       }
            list_rv_comb = list( powerset( dict_rv ) )
            for rv in list_rv_comb[comb]:
                s.add_rv( **dict_rv[rv] )
                    
            # define a tables with the run configurations to start in a batch
        
            run_list = [
                        ( 
                         {'cached_dG'         : False,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : True },
                          'bx-',
                          '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec'
                         ),
                        ( 
                         {'cached_dG'         : False,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : False },
                         'r-2',
                         '$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec',
                         ),
                        ( 
                         {'cached_dG'         : True,
                          'compiled_QdG_loop'  : True,
                          'compiled_eps_loop' : True },
                          'go-',
                          '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec',
                          ),
                        ( 
                         {'cached_dG'         : True,
                          'compiled_QdG_loop'  : False,
                          'compiled_eps_loop' : False },
                         'y--',
                         '$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec'
                         ),
                        ]
        
            legend = []
        
            print 'Combination', list_rv_comb[comb], ' -- ', i
            outfile.write( "Combination %s -- %i\n" % ( list_rv_comb[comb], i ) )
            outfile.write( "%s \t %s\n" % ( "Run", "Time" ) )
            
            for idx, run in enumerate( run_list ):
                run_options, plot_options, legend_string = run
                print 'run', idx,
                s.set( **run_options )
                s.mean_curve.plot( plt, plot_options )
                print 'execution time', s.exec_time, s.mu_q_peak
                outfile.write( "%s \t %s\n" % ( idx, s.exec_time ) )
                legend.append( legend_string % s.exec_time )

            
            outfile.write( "=================\n" )

            plt.xlabel( 'strain [-]' )
            plt.ylabel( 'stress' )
            plt.legend( legend )
        
            plt.title( s.rf.title )
            del s 
    plt.show()
    outfile.close()
コード例 #25
0
def run():
    # Quantities for the response function
    # and randomization
    #
    dict_var = {"x": 10, "y": 20, "z": 30, "a": 40}

    n_var = len(dict_var)
    n_com = 0
    for k in range(0, n_var):
        n_com += choose(n_var, k)

    outfile = open("simple_comb_loop_stat.dat", "w")

    for comb in range(1, n_com + 1):
        for i in range(0, 2):
            # construct a default response function for a single filament
            rf = Filament()
            rf.set(**dict_var)  # (x=10, y=20, ...)

            # construct the integrator and provide it with the response function.

            s = SPIRRID(rf=rf, min_eps=0.00, max_eps=0.05, n_eps=1)

            # construct the random variables

            n_int = 35

            dict_rv = {
                "x": {"variable": "x", "distribution": "norm", "loc": 10.0, "scale": 2.0, "n_int": n_int},
                "y": {"variable": "y", "distribution": "norm", "loc": 10.0, "scale": 2.0, "n_int": n_int},
                "z": {"variable": "z", "distribution": "norm", "loc": 10.0, "scale": 2.0, "n_int": n_int},
                "a": {"variable": "a", "distribution": "norm", "loc": 10.0, "scale": 2.0, "n_int": n_int},
            }
            list_rv_comb = list(powerset(dict_rv))
            for rv in list_rv_comb[comb]:
                s.add_rv(**dict_rv[rv])

            # define a tables with the run configurations to start in a batch

            run_list = [
                (
                    {"cached_qg": False, "compiled_qg_loop": True, "compiled_eps_loop": True},
                    "bx-",
                    "$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec",
                ),
                (
                    {"cached_qg": False, "compiled_qg_loop": True, "compiled_eps_loop": False},
                    "r-2",
                    "$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec",
                ),
                (
                    {"cached_qg": True, "compiled_qg_loop": True, "compiled_eps_loop": True},
                    "go-",
                    "$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec",
                ),
                (
                    {"cached_qg": True, "compiled_qg_loop": False, "compiled_eps_loop": False},
                    "y--",
                    "$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec",
                ),
            ]

            legend = []

            print "Combination", list_rv_comb[comb], " -- ", i
            outfile.write("Combination %s -- %i\n" % (list_rv_comb[comb], i))
            outfile.write("%s \t %s\n" % ("Run", "Time"))

            for idx, run in enumerate(run_list):
                run_options, plot_options, legend_string = run
                print "run", idx,
                s.set(**run_options)
                s.mean_curve.plot(plt, plot_options)
                print "execution time", s.exec_time, s.mu_q_peak
                outfile.write("%s \t %s\n" % (idx, s.exec_time))
                legend.append(legend_string % s.exec_time)

            outfile.write("=================\n")

            plt.xlabel("strain [-]")
            plt.ylabel("stress")
            plt.legend(legend)

            plt.title(s.rf.title)
            del s
    plt.show()
    outfile.close()
コード例 #26
0
                  L = 0.02, # 
                  # L = RV('uniform', 0.02, 0.02 / 2.),
                  A = RV('norm', 5.30929158457e-10, .03 * 5.30929158457e-10),
                  E_mod = RV('uniform', 70.e9, 250.e9),
                  z = RV('uniform', 0.0, 0.03),
                  phi = 0.0, # 
                  # phi = RV('cos_distr', 0.0, 1.0),
                  # phi = RV('uniform', 0.0, 1.0),
                  f = RV('uniform', 0.0, 0.03))

    #===========================================================================
    # Integrator object
    #===========================================================================
    s = SPIRRID(q = ConstantFrictionFiniteFiber(),
                e_arr = e_arr,
                n_int = 30,
                tvars = tvars,
                )

    #===========================================================================
    # Lab
    #===========================================================================
    slab = SPIRRIDLAB(s = s, save_output = True, show_output = True,
                      qname = 'fiber_po_8p',
                      )

    #===========================================================================
    # Compare efficiency of sampling types 
    #===========================================================================
    powers = np.linspace(1, math.log(20, 10), 6)
    n_int_range = np.array(np.power(10, powers), dtype = int)
コード例 #27
0
def run():
    # Quantities for the response function
    # and randomization
    # 
    #E_mod = 70 * 1e+9 # Pa
    #sig_u = 1.25 * 1e+9 # Pa
    #D = 26 * 1.0e-6 # m
    #A = ( D / 2.0 ) ** 2 * pi
    #xi_u = sig_u / E_mod

    # construct a default response function for a single filament
    dict_var = {'fu':1200.0e6,
                'qf':1500.,
                'L':0.02,
                'A':5.30929158457e-10,
                'E_mod':70.0e9,
                'z':0.0,
                'phi':0.0,
                'f':0.0}

    e_arr = np.linspace(0, 0.012, 40)

    # random variable dictionary
    tvars = dict(fu = RV('weibull_min', 1200.0e6, 200.),
                   qf = RV('uniform', 1500., 100.),
                   L = RV('uniform', 0.02, 0.02 / 2.),
                  A = RV('uniform', 5.30929158457e-10, .03 * 5.30929158457e-10),
                  E_mod = RV('uniform', 70.e9, 250.e9),
                  z = RV('uniform', 0.0, 0.03),
                   phi = RV('sin_distr', 0.0, 1.0),
                  f = RV('uniform', 0.0, 0.03))

    # list of all combinations of response function parameters
    rv_comb_list = list(powerset(dict_var))

    # define a tables with the run configurations to start in a batch
    run_list = [
                ('c',
                 {'cached_dG'         : False,
                  'compiled_eps_loop' : True },
                  'bx-',
                  '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec'
                 ),
                ('c',
                 {'cached_dG'         : False,
                  'compiled_eps_loop' : False },
                 'r-2',
                 '$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1]  g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec',
                 ),
                ('numpy',
                 { },
                  'go-',
                  '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec',
                  ),
                 ('c',
                 {'cached_dG'         : True,
                  'compiled_eps_loop' : False },
                 'y--',
                 '$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec'
                 ),
                ]

    outfile = open('pullout_comb_stat_new.dat', 'w')
    sp1_outfile = open('pullout_comb_1_new.dat', 'w')
    sp2_outfile = open('pullout_comb_2_new.dat', 'w')

    plot = True

    for id, rv_comb in enumerate(rv_comb_list[163:219]):#[0,-1]
        for i in range(0, 2):
            num_rv = len(rv_comb) # number of randomized variables
            if i == 0:
                sp1_outfile.write('%i \t %i' % (id, num_rv))
            else:
                sp2_outfile.write('%i \t %i' % (id, num_rv))
            # construct a default response function

            # construct the integrator and provide it with the response function.  

            tvars_up = dict_var
            for rv in rv_comb:
                tvars_up[rv] = tvars[rv]

            if plot == True:
                legend = []

            s = SPIRRID(q = ConstantFrictionFiniteFiber(),
                e_arr = e_arr,
                n_int = 20,
                tvars = tvars_up,
                )
            s.sampling_type = 'TGrid'
            s.recalc = True
            s.sampling.recalc = True
            print 'Combination', rv_comb, ' -- ', i
            outfile.write("Combination %s -- %i\n" % (rv_comb, i))
            outfile.write("%s \t %s\n" % ("Run", "Time"))

            for idx, run in enumerate(run_list):
                code, run_options, plot_options, legend_string = run
                s.codegen_type = code
                s.codegen.set(**run_options)
                print 'run', idx,
                if plot == True:
                    plt.figure(id)
                    plt.plot(s.evar_list[0], s.mu_q_arr, plot_options)
                    legend.append(legend_string % s.exec_time)
                print 'execution time', s.exec_time
                outfile.write("%s \t %.6f\n" % (idx, s.exec_time))

                if i == 0:
                    sp1_outfile.write("\t %.6f" % (s.exec_time))
                else:
                    sp2_outfile.write("\t %.6f" % (s.exec_time))
            #plt.show()

            outfile.write("=================\n")
            outfile.flush()

            if i == 0:
                sp1_outfile.write('\t %s\n' % str(rv_comb))
                sp1_outfile.flush()
            else:
                sp2_outfile.write('\t %s\n' % str(rv_comb))
                sp2_outfile.flush()
            if plot == True:
                plt.xlabel('strain [-]')
                plt.ylabel('stress')
                plt.legend(legend)
                #plt.title(s.rf.title)


        del s


    outfile.close()
    sp1_outfile.close()
    sp2_outfile.close()
    if plot == True:
        plt.show()
コード例 #28
0
def create_demo_object():

    D = 26 * 1.0e-6  # m
    A = (D / 2.0)**2 * math.pi

    # set the mean and standard deviation of the two random variables
    la_mean, la_stdev = 0.0, 0.2
    xi_mean, xi_stdev = 0.019027, 0.0022891
    E_mean, E_stdev = 70.0e+9, 15.0e+9
    th_mean, th_stdev = 0.0, 0.01
    A_mean, A_stdev = A * 0.3, 0.7 * A

    do = 'norm'

    if do == 'general':

        # set the mean and standard deviation of the two random variables
        la_mean, la_stdev = 0.0, 0.2
        xi_mean, xi_stdev = 0.019027, 0.0022891
        E_mean, E_stdev = 70.0e+9, 15.0e+9
        th_mean, th_stdev = 0.0, 0.01
        A_mean, A_stdev = A * 0.3, 0.7 * A

        # construct the normal distributions and get the methods
        # for the evaluation of the probability density functions
        g_la = RV('uniform', la_mean, la_stdev)
        g_xi = RV('norm', xi_mean, xi_stdev)
        g_E = RV('uniform', E_mean, E_stdev)
        g_th = RV('uniform', th_mean, th_stdev)
        g_A = RV('uniform', A_mean, A_stdev)

        mu_ex_file = 'fiber_tt_5p_30.txt'
        delimiter = ','

    elif do == 'uniform':

        # set the mean and standard deviation of the two random variables
        la_mean, la_stdev = 0.0, 0.2
        xi_mean, xi_stdev = 0.01, 0.02
        E_mean, E_stdev = 70.0e+9, 15.0e+9
        th_mean, th_stdev = 0.0, 0.01
        A_mean, A_stdev = A * 0.3, 0.7 * A

        # construct the uniform distributions and get the methods
        # for the evaluation of the probability density functions
        g_la = RV('uniform', la_mean, la_stdev)
        g_xi = RV('uniform', xi_mean, xi_stdev)
        g_E = RV('uniform', E_mean, E_stdev)
        g_th = RV('uniform', th_mean, th_stdev)
        g_A = RV('uniform', A_mean, A_stdev)

        mu_ex_file = 'fiber_tt_5p_40_unif.txt'
        delimiter = ' '

    elif do == 'norm':

        # set the mean and standard deviation of the two random variables
        la_mean, la_stdev = 0.1, 0.02
        xi_mean, xi_stdev = 0.019027, 0.0022891
        E_mean, E_stdev = 70.0e+9, 15.0e+9
        th_mean, th_stdev = 0.005, 0.001
        A_mean, A_stdev = 5.3e-10, 1.0e-11

        # construct the normal distributions and get the methods
        # for the evaluation of the probability density functions
        g_la = RV('norm', la_mean, la_stdev)
        g_xi = RV('norm', xi_mean, xi_stdev)
        g_E = RV('norm', E_mean, E_stdev)
        g_th = RV('norm', th_mean, th_stdev)
        g_A = RV('norm', A_mean, A_stdev)

        mu_ex_file = os.path.join(file_dir,
                                  'fiber_tt_5p_n_int_40_norm_exact.txt')
        delimiter = ' '

    # discretize the control variable (x-axis)
    e_arr = np.linspace(0, 0.04, 40)

    # n_int range for sampling efficiency test
    powers = np.linspace(1, math.log(20, 10), 15)
    n_int_range = np.array(np.power(10, powers), dtype=int)

    #===========================================================================
    # Randomization
    #===========================================================================
    s = SPIRRID(
        q=fiber_tt_5p(),
        e_arr=e_arr,
        n_int=10,
        tvars=dict(lambd=g_la, xi=g_xi, E_mod=g_E, theta=g_th, A=g_A),
    )

    # Exact solution
    def mu_q_ex(e):
        data = np.loadtxt(mu_ex_file, delimiter=delimiter)
        x, y = data[:, 0], data[:, 1]
        f = interp1d(x, y, kind='linear')
        return f(e)

    #===========================================================================
    # Lab
    #===========================================================================
    slab = SPIRRIDLAB(s=s,
                      save_output=False,
                      show_output=True,
                      dpi=300,
                      exact_arr=mu_q_ex(e_arr),
                      plot_mode='subplots',
                      n_int_range=n_int_range,
                      extra_compiler_args=True,
                      le_sampling_lst=['LHS', 'PGrid'],
                      le_n_int_lst=[25, 30])

    return slab
コード例 #29
0
 def _get_s(self):
     return SPIRRID(rf=self.rf,
                    min_eps=0.00,
                    max_eps=1.0,
                    n_eps=20,
                    compiler_verbose=0)
コード例 #30
0
if __name__ == '__main__':

    from stats.spirrid import SPIRRID, Heaviside

    class fiber_tt_2p:

        la = Float(0.1)

        def __call__(self, e, la, xi=0.017):
            ''' Response function of a single fiber '''
            return la * e * Heaviside(xi - e)

    s = SPIRRID(
        q=fiber_tt_2p(),
        sampling_type='LHS',
        evars={'e': [0, 1]},
        tvars={
            'la': 1.0,  # RV( 'norm', 10.0, 1.0 ),
            'xi': RV('norm', 1.0, 0.1)
        })

    print 'tvar_names', s.tvar_names
    print 'tvars', s.tvar_lst
    print 'evar_names', s.evar_names
    print 'evars', s.evar_lst
    print 'var_defaults', s.var_defaults

    #print 'mu_q', s.mu_q_arr

    s = SPIRRID(
        q=fiber_tt_2p(),
        sampling_type='LHS',