コード例 #1
0
ファイル: collect.py プロジェクト: pantuza/cpython-modules
def collect_mode(input_list):
    """ Collect time execution of mode of each module """

    begin_py_mode = clock()
    py_mode(input_list)
    end_py_mode = clock()

    begin_mode = clock()
    mode(input_list)
    end_mode = clock()

    times = format_times(end_py_mode - begin_py_mode, end_mode - begin_mode)
    save_times(times, logs['mode'])
コード例 #2
0
ファイル: snap_xaui.py プロジェクト: asiaa/roach2Test20111216
def sync_check():
#    print 'Checking sync...'
    max_mcnt_difference=4
    mcnts=dict()
    mcnts_list=[]
    mcnt_tot=0

    for f,fpga in enumerate(fpgas):
        mcnts[f]=dict()
        try:
            hdr_index=bram_oob[f]['hdr'].index(1)
        except:
            print 'ERR: No headers found in BRAM. Are the F engines properly connected?'
            exit()

        pkt_64bit = struct.unpack('>Q',bram_dmp['bram_msb'][f]['data'][(4*hdr_index):(4*hdr_index)+4]+bram_dmp['bram_lsb'][f]['data'][(4*hdr_index):(4*hdr_index)+4])[0]
        mcnts[f]['mcnt'] =(pkt_64bit&((2**64)-(2**16)))>>16
        mcnts_list.append(mcnts[f]['mcnt'])
#        print '[%s] MCNT: %i'%(servers[f],mcnts[f]['mcnt'])

    mcnts['mean']=stats.mean(mcnts_list)
    mcnts['median']=stats.median(mcnts_list)
    mcnts['mode']=stats.mode(mcnts_list)
    mcnts['modalmean']=stats.mean(mcnts['mode'][1])

#    print 'mean: %i, median: %i, modal mean: %i mode:'%(mcnts['mean'],mcnts['median'],mcnts['modalmean']),mcnts['mode']
    
    for f,fpga in enumerate(fpgas):
        if mcnts[f]['mcnt']>(mcnts['modalmean']+max_mcnt_difference) or mcnts[f]['mcnt'] < (mcnts['modalmean']-max_mcnt_difference):
            print '%s OUT OF SYNC!!'%servers[f]
            mcnts[f]['sync_status']='FAIL with error of %i'%(mcnts[f]['mcnt']-mcnts['modalmean'])
        else:
            mcnts[f]['sync_status']='PASS'

    return mcnts
コード例 #3
0
def calculations(x):
    from stats import median, mean, mode, MAD, RANGE
    return {
        'median': median(x),
        'mean': mean(x),
        'mode': mode(x),
        'range': RANGE(x),
        'MAD': MAD(x)
    }
コード例 #4
0
    def confidence(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)

        choice_votes = votes.count(mode(votes))
        conf = choice_votes / len(votes)
        return conf
コード例 #5
0
def calculations(x):
    from stats import median, mean, mode, MAD, RANGE, maximum, minimum
    return {
        'median': median(x),
        'mean': mean(x),
        'mode': mode(x),
        'range': RANGE(x),
        'MAD': MAD(x),
        'max': maximum(x),
        'min': minimum(x)
    }
コード例 #6
0
def calculations(x):
    rang = lambda y, z: y - z
    y = max(x)
    z = min(x)
    from stats import median, mode
    return {
        'median': median(x),
        'mean': avg(x),
        'mode': mode(x),
        'range': rang(y, z),
        'max': y,
        'min': z
    }
def is_dominated(v, C, delta, error):
    dims = len(v)
    num_checks = int(np.log(1 / delta) * 2)
    num_calls = 0
    if num_checks % 2 == 0:
        num_checks += 1
    for c in C:
        dominated = np.zeros(dims)
        comp = (v, c)
        for dim in range(dims):
            max_i = stats.mode(
                [oracle_max(comp, dim, error) for _ in range(num_checks)])
            num_calls += num_checks
            dominated[dim] = max_i
        if np.all(dominated == 1):
            return True, num_calls
    return False, num_calls
def max_4(s, dim, delta, error):
    num_checks = int(2 * len(s) - (1 / 6) / (error) + 1)
    if num_checks % 2 == 0:
        num_checks += 1
    if len(s) == 0:
        return None
    if len(s) == 1:
        return s[0]
    else:
        curr = s[0]
        for i in range(1, len(s)):
            comp = (curr, s[i])
            temp = stats.mode(
                [oracle_max(comp, dim, error) for _ in range(num_checks)])
            if temp != 0:
                curr = s[i]
        return curr
コード例 #9
0
def sync_check():
    #    print 'Checking sync...'
    max_mcnt_difference = 4
    mcnts = dict()
    mcnts_list = []
    mcnt_tot = 0

    for f, fpga in enumerate(fpgas):
        mcnts[f] = dict()
        try:
            hdr_index = bram_oob[f]['hdr'].index(1)
        except:
            print 'ERR: No headers found in BRAM. Are the F engines properly connected?'
            exit()

        pkt_64bit = struct.unpack(
            '>Q',
            bram_dmp['bram_msb'][f]['data'][(4 * hdr_index):(4 * hdr_index) +
                                            4] +
            bram_dmp['bram_lsb'][f]['data'][(4 * hdr_index):(4 * hdr_index) +
                                            4])[0]
        mcnts[f]['mcnt'] = (pkt_64bit & ((2**64) - (2**16))) >> 16
        mcnts_list.append(mcnts[f]['mcnt'])


#        print '[%s] MCNT: %i'%(servers[f],mcnts[f]['mcnt'])

    mcnts['mean'] = stats.mean(mcnts_list)
    mcnts['median'] = stats.median(mcnts_list)
    mcnts['mode'] = stats.mode(mcnts_list)
    mcnts['modalmean'] = stats.mean(mcnts['mode'][1])

    #    print 'mean: %i, median: %i, modal mean: %i mode:'%(mcnts['mean'],mcnts['median'],mcnts['modalmean']),mcnts['mode']

    for f, fpga in enumerate(fpgas):
        if mcnts[f]['mcnt'] > (mcnts['modalmean'] +
                               max_mcnt_difference) or mcnts[f]['mcnt'] < (
                                   mcnts['modalmean'] - max_mcnt_difference):
            print '%s OUT OF SYNC!!' % servers[f]
            mcnts[f]['sync_status'] = 'FAIL with error of %i' % (
                mcnts[f]['mcnt'] - mcnts['modalmean'])
        else:
            mcnts[f]['sync_status'] = 'PASS'

    return mcnts
コード例 #10
0
    def check_xaui_sync(self,verbose=False):
        """Checks if all F engines are in sync by examining mcnts at sync of incomming XAUI streams. \n
        If this test passes, it does not gaurantee that the system is indeed sync'd,
         merely that the F engines were reset between the same 1PPS pulses.
        Returns boolean true/false if system is in sync.
        """
        #WORKING OK 2009-07-01
        max_mcnt_difference=4
        mcnts=dict()
        mcnts_list=[]
        mcnt_tot=0
        rv=True

        for f,fpga in enumerate(self.fpgas):
            for x in range(self.config['n_xaui_ports_per_fpga']):
                n_xaui=f*self.config['n_xaui_ports_per_fpga']+x
                mcnts[n_xaui]=dict()
                mcnts[n_xaui]['mcnt'] =fpga.read_uint('xaui_sync_mcnt%i'%x)
                mcnts_list.append(mcnts[n_xaui]['mcnt'])

#        mcnts['mean']=stats.mean(mcnts_list)
#        mcnts['median']=stats.median(mcnts_list)
        mcnts['mode']=stats.mode(mcnts_list)
        if mcnts['mode']==0:
            raise RuntimeError("Too many XAUI links are receiving no data. Unable to produce a reliable result.")
        mcnts['modalmean']=stats.mean(mcnts['mode'][1])

    #    print 'mean: %i, median: %i, modal mean: %i mode:'%(mcnts['mean'],mcnts['median'],mcnts['modalmean']),mcnts['mode']

        for f,fpga in enumerate(self.fpgas):
            for x in range(self.config['n_xaui_ports_per_fpga']):
                n_xaui=f*self.config['n_xaui_ports_per_fpga']+x
                if mcnts[n_xaui]['mcnt']>(mcnts['modalmean']+max_mcnt_difference) or mcnts[n_xaui]['mcnt'] < (mcnts['modalmean']-max_mcnt_difference):
                    rv=False
                    if verbose: print 'Sync check failed on %s, port %i with error of %i.'%(self.servers[f],x,mcnts[n_xaui]['mcnt']-mcnts['modalmean'])
        return rv
コード例 #11
0
ファイル: test_stats.py プロジェクト: cerize/data_science
    def test_mode_unique(self):
        l = [2, 3, 4, 5, 4, 6]
        my_value = st.mode(l)

        self.assertEqual(my_value[0], [4])
コード例 #12
0
#Nama: Rivaldo Marta Dinata
#NBI : 1461900135
import numpy
import stats
speed = [99, 86, 87, 88, 111, 86, 103, 87, 94, 78, 77, 85, 86]
x = numpy.mean(speed)
print(x)
x = numpy.median(speed)
print(x)
x = stats.mode(speed)
print(x)
コード例 #13
0
 def testSingleMode(self):
         # passing only one data point to mode() must return a list with that value
     self.assertEqual(stats.mode([25.7]), [25.7])
コード例 #14
0
ファイル: 13Lessons.py プロジェクト: irinkam/practice
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score
import os

filename = 'phys.csv'
filepath = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + "\\" + "CsvFiles\\disciplines" + "\\" + filename

data = pd.read_csv(filepath, delimiter=';', encoding='utf-8')
df = pd.DataFrame(data, columns=['Средний_балл', 'Учебное_заведение', 'Город', 'Число_поступающих'])
# print(df)

# Mean, Median, and Mode
mean = n.mean(df['Средний_балл'])
median = n.median(df['Средний_балл'])
mode = s.mode(df['Средний_балл'])

print("Среднее: ", mean, "\nМедиана: ", median, "\nМода: ", mode, "\n")

# Standard Deviation
std = n.std(df['Средний_балл'])
var = n.var(df['Средний_балл'])

print("Стандартное отклонение: ", std, "\nОтклонение: ", var, "\n")

# Percentiles
per25 = n.percentile(df['Средний_балл'], 25)
per75 = n.percentile(df['Средний_балл'], 75)

print("25-я процентиль: ", per25, "\n75-я процентиль: ", per75, "\n")
コード例 #15
0
import stats 

stats = stats.Stats()

list1 = [1,3,5,6]
list2 = [1,3,4,5]

total1 = stats.total(list1)  
total2 = stats.total(list2)  
mean1 = stats.mean(list1)  
mean2 = stats.mean(list2)  
mode1 = stats.mode(list1)  
mode2 = stats.mode(list2)  
median1 = stats.median(list1)  
median2 = stats.median(list2)  
variance1 = stats.variance(list1)  
variance2 = stats.variance(list2)  
standard_deviation1 = stats.SD(list1)  
standard_deviation2 = stats.SD(list2)  
covariance_pop = stats.covariance(list1, list2)  
covariance_sample = stats.covariance(list1, list2, True)  
correlation = stats.correlation(list1, list2)  
skewness_pop1 = stats.skewness(list1)  
skewness_pop2 = stats.skewness(list2)  
skewness_sample1 = stats.skewness(list1, True)  
skewness_sample2 = stats.skewness(list2, True)  
kurtosis_pop1 = stats.kurtosis(list1)  
kurtosis_pop2 = stats.kurtosis(list2)  
kurtosis_sample1 = stats.kurtosis(list1, True)  
kurtosis_sample2 = stats.kurtosis(list2, True)  
コード例 #16
0
ファイル: test_stats.py プロジェクト: 451488975/EPE_tutorial
def test_mode():
    obs = mode([1, 1, 1, 0])
    exp = 1
    assert_equal(obs, exp)
コード例 #17
0
ファイル: statstest.py プロジェクト: mozilla/jx-sqlite
l = range(1,21)
lf = range(1,21)
lf[2] = 3.0
a = N.array(l)
af = N.array(lf)
ll = [l]*5
aa = N.array(ll)

print('\nCENTRAL TENDENCY')
print('geometricmean:',stats.geometricmean(l), stats.geometricmean(lf), stats.geometricmean(a), stats.geometricmean(af))
print('harmonicmean:',stats.harmonicmean(l), stats.harmonicmean(lf), stats.harmonicmean(a), stats.harmonicmean(af))
print('mean:',stats.mean(l), stats.mean(lf), stats.mean(a), stats.mean(af))
print('median:',stats.median(l),stats.median(lf),stats.median(a),stats.median(af))
print('medianscore:',stats.medianscore(l),stats.medianscore(lf),stats.medianscore(a),stats.medianscore(af))
print('mode:',stats.mode(l),stats.mode(a))
print('\nMOMENTS')
print('moment:',stats.moment(l),stats.moment(lf),stats.moment(a),stats.moment(af))
print('variation:',stats.variation(l),stats.variation(a),stats.variation(lf),stats.variation(af))
print('skew:',stats.skew(l),stats.skew(lf),stats.skew(a),stats.skew(af))
print('kurtosis:',stats.kurtosis(l),stats.kurtosis(lf),stats.kurtosis(a),stats.kurtosis(af))
print('mean:',stats.mean(a),stats.mean(af))
print('var:',stats.var(a),stats.var(af))
print('stdev:',stats.stdev(a),stats.stdev(af))
print('sem:',stats.sem(a),stats.sem(af))
print('describe:')
print(stats.describe(l))
print(stats.describe(lf))
print(stats.describe(a))
print(stats.describe(af))
print('\nFREQUENCY')
コード例 #18
0
print("vector A = ", A)
print("sorted A = ", sorted(A))

mean = st.mean(A)
print("A's mean = ", mean)

median = st.median(A)
print("A's median = ", median)

quantile = st.quantile(A, 0.2)
print("A's 20% quantile = ", quantile)

quantile = st.quantile(A, 0.9)
print("A's 90% quantile = ", quantile)

mode = st.mode(A)
print("A's mode = ", mode)

data_range = st.data_range(A)
print("A's range = ", data_range)

variance = st.variance(A)
print("A's variance = ", variance)

standard_deviation = st.standard_deviation(A)
print("A's standard deviation = ", standard_deviation)

interquartile_range = st.interquartile_range(A)
print("A's interquartile range of 25% ~ 75% = ", interquartile_range)

x = [-2, -1, 0, 1, 2]
コード例 #19
0
        finals.sort()
        return finals[-1][-1]

    def mostPopularPlayer1(self):
        allplayers = []
コード例 #20
0
'''
statistics_calculator.py

Read numbers from a file, calculate and print statistical measures:
mean, median, mode, variance, standard deviation
'''

from stats import mean, median, mode, variance_sd


def read_data(filename):
    numbers = []
    with open(filename) as f:
        for line in f:
            numbers.append(float(line))

    return numbers


if __name__ == '__main__':
    data = read_data('mydata.txt')
    m = mean(data)
    median = median(data)
    mode = mode(data)
    variance, sd = variance_sd(data)
    print('Mean: {0:.5f}'.format(m))
    print('Median: {0:.5f}'.format(median))
    print('Mode: {0:.5f}'.format(mode))
    print('Variance: {0:.5f}'.format(variance))
    print('Standard deviation: {0:.5f}'.format(sd))
コード例 #21
0
import numpy as np
import stats as sts

data = [1, 2, 2, 3]
#集中趋势的度量
print('求和:', np.sum(data))
print('个数:', len(data))
print('平均值:', np.mean(data))
print('中位数:', np.median(data))
print('众数:', sts.mode(data))
print('上四分位数', sts.quantile(data, p=0.25))
print('下四分位数', sts.quantile(data, p=0.75))
#离散趋势的度量
print('最大值:', np.max(data))
print('最小值:', np.min(data))
print('极差:', np.max(data) - np.min(data))
print('四分位差', sts.quantile(data, p=0.75) - sts.quantile(data, p=0.25))
print('标准差:', np.std(data))
print('方差:', np.var(data))
print('变异系数:', np.std(data) / np.mean(data))
#偏度与峰度的度量
print('偏度:', sts.skewness(data))
print('峰度:', sts.kurtosis(data))

# 随机生成两个样本
x = np.random.randint(0, 9, 1000)
y = np.random.randint(0, 9, 1000)

# 计算平均值
mx = x.mean()
my = y.mean()
コード例 #22
0
print('方差', df['身高'].var())
print('标准差', df['身高'].std())
print('极差', df['身高'].max() - df['身高'].min())

print('偏度', df['身高'].skew())
print('峰度', df['身高'].kurt())

import numpy as np
import stats as sts
scores = [1, 2, 2, 2, 5]
#集中趋势的度量
print('求和:', np.sum(scores))
print('个数:', len(scores))
print('平均值:', np.mean(scores))
print('中位数:', np.median(scores))
print('众数:', sts.mode(scores))
print('上四分位数', sts.quantile(scores, p=0.25))
print('下四分位数', sts.quantile(scores, p=0.75))
#离散趋势的度量
print('最大值:', np.max(scores))
print('最小值:', np.min(scores))
print('极差:', np.max(scores) - np.min(scores))
print('四分位差', sts.quantile(scores, p=0.75) - sts.quantile(scores, p=0.25))
print('标准差:', np.std(scores))
print('方差:', np.var(scores))
print('离散系数:', np.std(scores) / np.mean(scores))
#偏度与峰度的度量
print('偏度:', sts.skewness(scores))
print('峰度:', sts.kurtosis(scores))
コード例 #23
0
ファイル: test_stats.py プロジェクト: cerize/data_science
    def test_mode_multiple(self):
        l = [2, 3, 4, 5, 4, 6, 5]
        my_value = st.mode(l)

        self.assertEqual(my_value[0], [4, 5])
コード例 #24
0
a = N.array(l)
af = N.array(lf)
ll = [l] * 5
aa = N.array(ll)

print '\nCENTRAL TENDENCY'
print 'geometricmean:', stats.geometricmean(l), stats.geometricmean(
    lf), stats.geometricmean(a), stats.geometricmean(af)
print 'harmonicmean:', stats.harmonicmean(l), stats.harmonicmean(
    lf), stats.harmonicmean(a), stats.harmonicmean(af)
print 'mean:', stats.mean(l), stats.mean(lf), stats.mean(a), stats.mean(af)
print 'median:', stats.median(l), stats.median(lf), stats.median(
    a), stats.median(af)
print 'medianscore:', stats.medianscore(l), stats.medianscore(
    lf), stats.medianscore(a), stats.medianscore(af)
print 'mode:', stats.mode(l), stats.mode(a)

print '\nMOMENTS'
print 'moment:', stats.moment(l), stats.moment(lf), stats.moment(
    a), stats.moment(af)
print 'variation:', stats.variation(l), stats.variation(a), stats.variation(
    lf), stats.variation(af)
print 'skew:', stats.skew(l), stats.skew(lf), stats.skew(a), stats.skew(af)
print 'kurtosis:', stats.kurtosis(l), stats.kurtosis(lf), stats.kurtosis(
    a), stats.kurtosis(af)
print 'mean:', stats.mean(a), stats.mean(af)
print 'var:', stats.var(a), stats.var(af)
print 'stdev:', stats.stdev(a), stats.stdev(af)
print 'sem:', stats.sem(a), stats.sem(af)
print 'describe:'
print stats.describe(l)
コード例 #25
0
 def classify(self, features):
     votes = []
     for c in self._classifiers:
         v = c.classify(features)
         votes.append(v)
     return mode(votes)
コード例 #26
0
ファイル: stats.py プロジェクト: benswa/cndtools
        d = map(float, sys.stdin.xreadlines())
    else:
        d = map(long, sys.stdin.xreadlines())
except ValueError, err:
    sys.stderr.write("Bad datum: %s\n" % str(err))
    sys.exit(1)

if len(d) == 0:
    sys.stderr.write("No data given\n")
    sys.exit(1)
        
d.sort()

print "           N =", len(d)
print "         SUM =", stats.sum(d)
print "         MIN =", min(d)
print "1ST-QUARTILE =", stats.firstquartile(d)
print "      MEDIAN =", stats.median(d)
print "3RD-QUARTILE =", stats.thirdquartile(d)
print "         MAX =", max(d)
print "        MEAN =", stats.mean(d)

if d[0] < 0:
    print "         N50 = NA"
else:
    print "         N50 =", stats.n50(d)

if options.showMode:
    modeinfo = stats.mode(d)
    print "     MODE(S) =", ','.join(map(str, modeinfo[0])), "(%d)" % modeinfo[1]
コード例 #27
0
ファイル: stats_test.py プロジェクト: gary-white/dmwp
 def test_mode(self):
     self.assertEqual(stats.mode([10]), 10)
     self.assertEqual(stats.mode([10, 20, 30, 40, 20]), 20)
コード例 #28
0
 def testSingleMode(self):
     # passing only one data point to mode() must return a list with that value
     self.assertEqual(stats.mode([25.7]), [25.7])
コード例 #29
0
import numpy as np
import stats as sts
scares = [
    31, 24, 23, 25, 14, 25, 13, 12, 14, 23, 32, 34, 43, 41, 21, 23, 26, 26, 34,
    42, 43, 25, 24, 23, 24, 44, 23, 14, 52, 32, 42, 44, 35, 28, 17, 21, 32, 42,
    12, 34
]

print('求和:', np.sum(scares))
print('個數:', len(scares))
print('平均值:', np.mean(scares))
print('中位數:', np.median(scares))
print('眾數:', sts.mode(scares))
print('上四分位數:', sts.quantile(scares, p=0.25))
print('下四分位數:', sts.quantile(scares, p=0.75))

print('最大值:', np.max(scares))
print('最小值:', np.min(scares))
print('極差:', np.std(scares))
print('四分位數:', sts.quantile(scares, p=0.75), sts.quantile(scares, p=0.25))
print('標準差:', np.std(scares))
print('方差', np.var(scares))
print('離散係數', np.std(scares) / np.mean(scares))

print('遍度:', sts.skewness(scares))
print('峰度:', sts.kurtosis(scares))
コード例 #30
0
import numpy as np
import stats as sts
a = [31, 24, 23, 25, 14, 25, 13, 12, 14, 23,
          32, 34, 43, 41, 21, 23, 26, 26, 34, 42,
          43, 25, 24, 23, 24, 44, 23, 14, 52,32,
          42, 44, 35, 28, 17, 21, 32, 42, 12, 34]
scores=np.array(a)
print('總合為:',np.sum(scores))
print('筆數為:',len(scores))
print('平均值為:',np.mean(scores))
print('中位數為:',np.median(scores))
print('眾數為:',sts.mode(scores))
print('上四分位數為',sts.quantile(scores,p=0.25))
print('下四分位數為',sts.quantile(scores,p=0.75))
print('最大值:',np.max(scores))
print('最小值:',np.min(scores))
print('全距:',np.ptp(scores))
print('標準差:',np.std(scores))
print('變異數:',np.var(scores))
print('離散係數:',np.std(scores)/np.mean(scores))
print('偏態係數:',sts.skewness(scores))
print('峰態係數:',sts.kurtosis(scores))
コード例 #31
0
    obs = mean([0, -200])
    exp = -100
    assert_equal(obs, exp)

    obs = mean([0]) 
    exp = 0
    assert_equal(obs, exp)

def test_floating_mean1():
    obs = mean([1, 2])
    exp = 1.5
    assert_equal(obs, exp)

# FIXME Put Median tests here
def testMedian()
    obs= mode(1,1,2)
    exp = 1
    assert_equal(obs, exp)


# FIXME Put Mode tests here

def test_std1():
    obs = std([0.0, 2.0])
    exp = 1.0
    assert_equal(obs, exp)

def test_std2():
    obs = std([])
    exp = 0.0
    assert_equal(obs, exp)
コード例 #32
0
 def mode(self, data):
     print('众数:', sts.mode(data))
コード例 #33
0
ファイル: test_stats.py プロジェクト: cerize/data_science
    def test_mode_none(self):
        l = [1, 2, 3, 4, 5]
        my_value = st.mode(l)

        self.assertEqual(my_value[0], [])
コード例 #34
0
ファイル: statstest.py プロジェクト: Delostik/common
l = range(1,21)
lf = range(1,21)
lf[2] = 3.0
a = N.array(l)
af = N.array(lf)
ll = [l]*5
aa = N.array(ll)

print '\nCENTRAL TENDENCY'
print 'geometricmean:',stats.geometricmean(l), stats.geometricmean(lf), stats.geometricmean(a), stats.geometricmean(af)
print 'harmonicmean:',stats.harmonicmean(l), stats.harmonicmean(lf), stats.harmonicmean(a), stats.harmonicmean(af)
print 'mean:',stats.mean(l), stats.mean(lf), stats.mean(a), stats.mean(af)
print 'median:',stats.median(l),stats.median(lf),stats.median(a),stats.median(af)
print 'medianscore:',stats.medianscore(l),stats.medianscore(lf),stats.medianscore(a),stats.medianscore(af)
print 'mode:',stats.mode(l),stats.mode(a)

print '\nMOMENTS'
print 'moment:',stats.moment(l),stats.moment(lf),stats.moment(a),stats.moment(af)
print 'variation:',stats.variation(l),stats.variation(a),stats.variation(lf),stats.variation(af)
print 'skew:',stats.skew(l),stats.skew(lf),stats.skew(a),stats.skew(af)
print 'kurtosis:',stats.kurtosis(l),stats.kurtosis(lf),stats.kurtosis(a),stats.kurtosis(af)
print 'tmean:',stats.tmean(a,(5,17)),stats.tmean(af,(5,17))
print 'tvar:',stats.tvar(a,(5,17)),stats.tvar(af,(5,17))
print 'tstdev:',stats.tstdev(a,(5,17)),stats.tstdev(af,(5,17))
print 'tsem:',stats.tsem(a,(5,17)),stats.tsem(af,(5,17))
print 'describe:'
print stats.describe(l)
print stats.describe(lf)
print stats.describe(a)
print stats.describe(af)
コード例 #35
0
ファイル: test_stats.py プロジェクト: mbentz80/jzigbeercp
 def check_basic(self):
     data1 = [3,5,1,10,23,3,2,6,8,6,10,6]
     vals = stats.mode(data1)
     assert_almost_equal(vals[0][0],6)
     assert_almost_equal(vals[1][0],3)
コード例 #36
0
"""
statistics_calculator.py

Read numbers from a file, calculate and print statistical measures:
mean, median, mode, variance, standard deviation
"""

from stats import mean, median, mode, variance_sd


def read_data(filename):
    numbers = []
    with open(filename) as f:
        for line in f:
            numbers.append(float(line))

    return numbers


if __name__ == "__main__":
    data = read_data("mydata.txt")
    m = mean(data)
    median = median(data)
    mode = mode(data)
    variance, sd = variance_sd(data)
    print("Mean: {0:.5f}".format(m))
    print("Median: {0:.5f}".format(median))
    print("Mode: {0:.5f}".format(mode))
    print("Variance: {0:.5f}".format(variance))
    print("Standard deviation: {0:.5f}".format(sd))
コード例 #37
0
ファイル: modelcall.py プロジェクト: siagosheva/yasso07ui
 def _fill_moment_results(self):
     """
     Fills the result arrays used for storing the calculated moments
      common format: time, mean, mode, var, skewness, kurtosis,
                     95% confidence lower limit, 95% upper limit
     """
     toprocess = [('stock_tom', self.c_stock, 2),
                  ('stock_woody', self.c_stock, 3),
                  ('stock_non_woody', self.c_stock, 4),
                  ('stock_acid', self.c_stock, 5),
                  ('stock_water', self.c_stock, 6),
                  ('stock_ethanol',  self.c_stock, 7),
                  ('stock_non_soluble', self.c_stock, 8),
                  ('stock_humus', self.c_stock, 9),
                  ('change_tom', self.c_change, 2),
                  ('change_woody', self.c_change, 3),
                  ('change_non_woody', self.c_change, 4),
                  ('change_acid', self.c_change, 5),
                  ('change_water', self.c_change, 6),
                  ('change_ethanol', self.c_change, 7),
                  ('change_non_soluble', self.c_change, 8),
                  ('change_humus', self.c_change, 9),
                  ('co2', self.co2_yield, 2)]
     for (resto, dataarr, dataind) in toprocess:
         # filter time steps
         ts = numpy.unique(dataarr[:,1])
         # extract data for the timestep
         for timestep in ts:
             ind = numpy.where(dataarr[:,1]==timestep)
             mean = stats.mean(dataarr[ind[0], dataind])
             mode_res = stats.mode(dataarr[ind[0], dataind])
             mode = mode_res[0]
             var = stats.var(dataarr[ind[0], dataind])
             skew = stats.skew(dataarr[ind[0], dataind])
             kurtosis = stats.kurtosis(dataarr[ind[0], dataind])
             if var>0.0:
                 sd2 = 2 * math.sqrt(var)
             else:
                 sd2 = var
             res = [[timestep, mean, mode[0], var, skew, kurtosis,
                    mean - sd2, mean + sd2]]
             if resto=='stock_tom':
                 self.md.stock_tom = numpy.append(self.md.stock_tom,
                                                  res, axis=0)
             elif resto=='stock_woody':
                 self.md.stock_woody = numpy.append(self.md.stock_woody,
                                                    res, axis=0)
             elif resto=='stock_non_woody':
                 self.md.stock_non_woody = numpy.append(\
                         self.md.stock_non_woody, res, axis=0)
             elif resto=='stock_acid':
                 self.md.stock_acid = numpy.append(self.md.stock_acid,
                                                   res, axis=0)
             elif resto=='stock_water':
                 self.md.stock_water = numpy.append(self.md.stock_water,
                                                    res, axis=0)
             elif resto=='stock_ethanol':
                 self.md.stock_ethanol = numpy.append(self.md.stock_ethanol,
                                                      res, axis=0)
             elif resto=='stock_non_soluble':
                 self.md.stock_non_soluble= numpy.append(
                                     self.md.stock_non_soluble, res, axis=0)
             elif resto=='stock_humus':
                 self.md.stock_humus = numpy.append(self.md.stock_humus,
                                                    res, axis=0)
             elif resto=='change_tom':
                 self.md.change_tom = numpy.append(self.md.change_tom,
                                                   res, axis=0)
             elif resto=='change_woody':
                 self.md.change_woody = numpy.append(self.md.change_woody,
                                                     res, axis=0)
             elif resto=='change_non_woody':
                 self.md.change_non_woody = numpy.append(\
                         self.md.change_non_woody, res, axis=0)
             elif resto=='change_acid':
                 self.md.change_acid = numpy.append(self.md.change_acid,
                                                    res, axis=0)
             elif resto=='change_water':
                 self.md.change_water = numpy.append(self.md.change_water,
                                                     res, axis=0)
             elif resto=='change_ethanol':
                 self.md.change_ethanol = numpy.append(
                                         self.md.change_ethanol, res, axis=0)
             elif resto=='change_non_soluble':
                 self.md.change_non_soluble=numpy.append(
                                     self.md.change_non_soluble, res, axis=0)
             elif resto=='change_humus':
                 self.md.change_humus = numpy.append(self.md.change_humus,
                                                     res, axis=0)
             elif resto=='co2':
                 self.md.co2 = numpy.append(self.md.co2, res, axis=0)
コード例 #38
0
ファイル: test_stats.py プロジェクト: klimente/homework
 def test_mode(self):
     self.assertEqual(stats.mode([1, 2, 3, 4, 2]), [2])
     self.assertEqual(stats.mode([1, 2]), [1, 2])
コード例 #39
0
 def _fill_moment_results(self):
     """
     Fills the result arrays used for storing the calculated moments
      common format: time, mean, mode, var, skewness, kurtosis,
                     95% confidence lower limit, 95% upper limit
     """
     toprocess = [('stock_tom', self.c_stock, 2),
                  ('stock_woody', self.c_stock, 3),
                  ('stock_non_woody', self.c_stock, 4),
                  ('stock_acid', self.c_stock, 5),
                  ('stock_water', self.c_stock, 6),
                  ('stock_ethanol', self.c_stock, 7),
                  ('stock_non_soluble', self.c_stock, 8),
                  ('stock_humus', self.c_stock, 9),
                  ('change_tom', self.c_change, 2),
                  ('change_woody', self.c_change, 3),
                  ('change_non_woody', self.c_change, 4),
                  ('change_acid', self.c_change, 5),
                  ('change_water', self.c_change, 6),
                  ('change_ethanol', self.c_change, 7),
                  ('change_non_soluble', self.c_change, 8),
                  ('change_humus', self.c_change, 9),
                  ('co2', self.co2_yield, 2)]
     for (resto, dataarr, dataind) in toprocess:
         # filter time steps
         ts = numpy.unique(dataarr[:, 1])
         # extract data for the timestep
         for timestep in ts:
             ind = numpy.where(dataarr[:, 1] == timestep)
             mean = stats.mean(dataarr[ind[0], dataind])
             mode_res = stats.mode(dataarr[ind[0], dataind])
             mode = mode_res[0]
             var = stats.var(dataarr[ind[0], dataind])
             skew = stats.skew(dataarr[ind[0], dataind])
             kurtosis = stats.kurtosis(dataarr[ind[0], dataind])
             if var > 0.0:
                 sd2 = 2 * math.sqrt(var)
             else:
                 sd2 = var
             res = [[
                 timestep, mean, mode[0], var, skew, kurtosis, mean - sd2,
                 mean + sd2
             ]]
             if resto == 'stock_tom':
                 self.md.stock_tom = numpy.append(self.md.stock_tom,
                                                  res,
                                                  axis=0)
             elif resto == 'stock_woody':
                 self.md.stock_woody = numpy.append(self.md.stock_woody,
                                                    res,
                                                    axis=0)
             elif resto == 'stock_non_woody':
                 self.md.stock_non_woody = numpy.append(\
                         self.md.stock_non_woody, res, axis=0)
             elif resto == 'stock_acid':
                 self.md.stock_acid = numpy.append(self.md.stock_acid,
                                                   res,
                                                   axis=0)
             elif resto == 'stock_water':
                 self.md.stock_water = numpy.append(self.md.stock_water,
                                                    res,
                                                    axis=0)
             elif resto == 'stock_ethanol':
                 self.md.stock_ethanol = numpy.append(self.md.stock_ethanol,
                                                      res,
                                                      axis=0)
             elif resto == 'stock_non_soluble':
                 self.md.stock_non_soluble = numpy.append(
                     self.md.stock_non_soluble, res, axis=0)
             elif resto == 'stock_humus':
                 self.md.stock_humus = numpy.append(self.md.stock_humus,
                                                    res,
                                                    axis=0)
             elif resto == 'change_tom':
                 self.md.change_tom = numpy.append(self.md.change_tom,
                                                   res,
                                                   axis=0)
             elif resto == 'change_woody':
                 self.md.change_woody = numpy.append(self.md.change_woody,
                                                     res,
                                                     axis=0)
             elif resto == 'change_non_woody':
                 self.md.change_non_woody = numpy.append(\
                         self.md.change_non_woody, res, axis=0)
             elif resto == 'change_acid':
                 self.md.change_acid = numpy.append(self.md.change_acid,
                                                    res,
                                                    axis=0)
             elif resto == 'change_water':
                 self.md.change_water = numpy.append(self.md.change_water,
                                                     res,
                                                     axis=0)
             elif resto == 'change_ethanol':
                 self.md.change_ethanol = numpy.append(
                     self.md.change_ethanol, res, axis=0)
             elif resto == 'change_non_soluble':
                 self.md.change_non_soluble = numpy.append(
                     self.md.change_non_soluble, res, axis=0)
             elif resto == 'change_humus':
                 self.md.change_humus = numpy.append(self.md.change_humus,
                                                     res,
                                                     axis=0)
             elif resto == 'co2':
                 self.md.co2 = numpy.append(self.md.co2, res, axis=0)