コード例 #1
0
ファイル: surveillance.py プロジェクト: jdetmold/rpisurv
def handle_stats( stats_counter ):
    stats_counter_thresh=40
    # Updating stats for rpisurv community every 40 loops
    if stats_counter % stats_counter_thresh == 0:
        stats.update_stats(uniqid, str(stats.get_runtime(start_time)), update_stats_enabled)
    else:
        logger.debug("stats_counter is " + str(stats_counter) + ". Only sending every " + str(stats_counter_thresh))
コード例 #2
0
ファイル: surveillance.py プロジェクト: mrudtf/rpisurv
def handle_stats( stats_counter ):
    stats_counter_thresh=40
    # Updating stats for rpisurv community every 40 loops
    if stats_counter % stats_counter_thresh == 0:
        stats.update_stats(uniqid, str(stats.get_runtime(start_time)), update_stats_enabled)
    else:
        logger.debug("stats_counter is " + str(stats_counter) + ". Only sending every " + str(stats_counter_thresh))
コード例 #3
0
ファイル: app.py プロジェクト: eea/ldaplog
def update():
    more = True
    while more:
        stat_session = db.StatSession()
        log_session = db.LogSession()
        events, more = logparser.parse_sql(log_session)
        stats.update_stats(stat_session, events)
        stat_session.commit()
        log_session.commit()
コード例 #4
0
def hidden_stats(ticker, adj, mar, n):

    ## Checking delist.csv
    file = os.getcwd() + '\\data\\delist.csv'
    dlf = pd.read_csv(file)

    delist_date = dlf.columns[0]
    td = (dateparser.parse(str(today)) - dateparser.parse(delist_date))

    # If delist.csv has not been updated since yesterday, then update.
    if td > timedelta(days=1):
        print('Retrieving a new list of delisted stocks...')
        delist.update_delist()

    # Adjusting values based on slider from the top dashboard
    st = stats.update_stats(ticker)
    if st != None and st != 'NoneType':
        if adj != 0 or mar != 5:
            st['parsed']['Entry Point (Decimal)'] = st['parsed'][
                'Entry Point (Decimal)'] + (adj / 100)
            st['parsed']['Entry Point'] = '{}%'.format(
                st['parsed']['Entry Point (Decimal)'] * 100)
            st['notes']['Engage?'] = '{} ({})'.format(
                st['parsed']['Engage?'], st['parsed']['Entry Point'])

        st = json.dumps(st, indent=4)
        return (st)
コード例 #5
0
def test_model(trained_model, test_data, language_stats, device,
               language_names_dict, int2lang):
    correct_per_example = 0
    total_predictions = 5000
    incorrect_guesses_per_instance = 0
    percent = 0
    example = 0
    batch_nr = 1
    tenp = 500
    num_characters = []
    count = 0
    for x, y in tqdm(test_data):
        batch_nr += 1
        example += 1
        hidden_layer = trained_model.init_hidden(1).to(device)
        for examples in zip(x, y):
            #total_predictions += 1
            count += 1
            prediction = trained_model(examples[0].unsqueeze(0).to(device),
                                       hidden_layer)
            _, indeces = torch.max(prediction[0].data, dim=1)
            characters = len(torch.nonzero(examples[0]))

            if indeces[0].item() == examples[1].item():
                num_characters.append(characters)
                correct_per_example += 1
                stats.update_stats(language_stats, indeces[0].item(),
                                   examples[1].item(), int2lang, characters,
                                   language_names_dict)
                break
            else:
                #characters = 0
                stats.update_stats(language_stats, indeces[0].item(),
                                   examples[1].item(), int2lang, characters,
                                   language_names_dict)
                incorrect_guesses_per_instance += 1
                continue

    print(example)
    print(correct_per_example)
    print(incorrect_guesses_per_instance)
    print(count)

    return language_stats
コード例 #6
0
def compute_update_stats(writer, step, modules, prev_params):
  for name, module in modules.items():
    update_scales, param_scales, fractions = stats.update_stats(
      get_cpu_params(module), prev_params[name])
    writer.add_scalar(
      f'update/{name}_mean_update_scale', np.mean(update_scales), step)
    writer.add_scalar(
      f'update/{name}_mean_param_scale', np.mean(param_scales), step)
    writer.add_scalar(
      f'update/{name}_mean_update_to_param_scale', np.mean(fractions), step)
    writer.add_histogram(
      f'update/{name}_update_to_param_scale', fractions, step)
    writer.add_histogram(
      f'update/{name}_update_scale', update_scales, step)
    writer.add_histogram(
      f'update/{name}_param_scale', param_scales, step)
コード例 #7
0
def create_new_descriptive_stats():
    data = convert_to_string(request.data)
    descriptive, correlations = stats.update_stats(data)
    cache.set("descriptive", descriptive)
    cache.set("correlations", correlations)
    return "Successfully updated statistics cache", 200