コード例 #1
0
    def _handle_constant(self, hasconst):
        if hasconst is not None:
            if hasconst:
                self.k_constant = 1
                self.const_idx = None
            else:
                self.k_constant = 0
                self.const_idx = None
        elif self.exog is None:
            self.const_idx = None
            self.k_constant = 0
        else:
            # detect where the constant is
            check_implicit = False
            const_idx = np.where(self.exog.ptp(axis=0) == 0)[0].squeeze()
            self.k_constant = const_idx.size

            if self.k_constant == 1:
                if self.exog[:, const_idx].mean() != 0:
                    self.const_idx = const_idx
                else:
                    # we only have a zero column and no other constant
                    check_implicit = True
            elif self.k_constant > 1:
                # we have more than one constant column
                # look for ones
                values = []  # keep values if we need != 0
                for idx in const_idx:
                    value = self.exog[:, idx].mean()
                    if value == 1:
                        self.k_constant = 1
                        self.const_idx = idx
                        break
                    values.append(value)
                else:
                    # we didn't break, no column of ones
                    pos = (np.array(values) != 0)
                    if pos.any():
                        # take the first nonzero column
                        self.k_constant = 1
                        self.const_idx = const_idx[pos.argmax()]
                    else:
                        # only zero columns
                        check_implicit = True
            elif self.k_constant == 0:
                check_implicit = True
            else:
                # shouldn't be here
                pass

            if check_implicit:
                # look for implicit constant
                # Compute rank of augmented matrix
                augmented_exog = np.column_stack(
                    (np.ones(self.exog.shape[0]), self.exog))
                rank_augm = np_matrix_rank(augmented_exog)
                rank_orig = np_matrix_rank(self.exog)
                self.k_constant = int(rank_orig == rank_augm)
                self.const_idx = None
コード例 #2
0
ファイル: data.py プロジェクト: Bhushan1002/statsmodels
    def _handle_constant(self, hasconst):
        if hasconst is not None:
            if hasconst:
                self.k_constant = 1
                self.const_idx = None
            else:
                self.k_constant = 0
                self.const_idx = None
        elif self.exog is None:
            self.const_idx = None
            self.k_constant = 0
        else:
            # detect where the constant is
            check_implicit = False
            const_idx = np.where(self.exog.ptp(axis=0) == 0)[0].squeeze()
            self.k_constant = const_idx.size

            if self.k_constant == 1:
                if self.exog[:, const_idx].mean() != 0:
                    self.const_idx = const_idx
                else:
                    # we only have a zero column and no other constant
                    check_implicit = True
            elif self.k_constant > 1:
                # we have more than one constant column
                # look for ones
                values = []  # keep values if we need != 0
                for idx in const_idx:
                    value = self.exog[:, idx].mean()
                    if value == 1:
                        self.k_constant = 1
                        self.const_idx = idx
                        break
                    values.append(value)
                else:
                    # we didn't break, no column of ones
                    pos = (np.array(values) != 0)
                    if pos.any():
                        # take the first nonzero column
                        self.k_constant = 1
                        self.const_idx = const_idx[pos.argmax()]
                    else:
                        # only zero columns
                        check_implicit = True
            elif self.k_constant == 0:
                check_implicit = True
            else:
                # shouldn't be here
                pass

            if check_implicit:
                # look for implicit constant
                # Compute rank of augmented matrix
                augmented_exog = np.column_stack(
                            (np.ones(self.exog.shape[0]), self.exog))
                rank_augm = np_matrix_rank(augmented_exog)
                rank_orig = np_matrix_rank(self.exog)
                self.k_constant = int(rank_orig == rank_augm)
                self.const_idx = None
コード例 #3
0
    def test_rank(self):
        import warnings
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            X = standard_normal((40, 10))
            self.assertEquals(tools.rank(X), np_matrix_rank(X))

            X[:, 0] = X[:, 1] + X[:, 2]
            self.assertEquals(tools.rank(X), np_matrix_rank(X))
コード例 #4
0
ファイル: test_tools.py プロジェクト: Leo666/statsmodels
    def test_rank(self):
        import warnings
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            X = standard_normal((40,10))
            self.assertEquals(tools.rank(X), np_matrix_rank(X))

            X[:,0] = X[:,1] + X[:,2]
            self.assertEquals(tools.rank(X), np_matrix_rank(X))
コード例 #5
0
ファイル: sysreg.py プロジェクト: locolucco209/MongoScraper
    def __init__(self, sys, sigma=None, dfk=None):
        if len(sys) % 2 != 0:
            raise ValueError("sys must be a list of pairs of endogenous and \
exogenous variables.  Got length %s" % len(sys))
        if dfk:
            if not dfk.lower() in ['dfk1', 'dfk2']:
                raise ValueError("dfk option %s not understood" % (dfk))
        self._dfk = dfk
        M = len(sys[1::2])
        self._M = M
        #        exog = np.zeros((M,M), dtype=object)
        #        for i,eq in enumerate(sys[1::2]):
        #            exog[i,i] = np.asarray(eq)  # not sure this exog is needed
        # used to compute resids for now
        exog = np.column_stack(np.asarray(sys[1::2][i]) for i in range(M))
        #       exog = np.vstack(np.asarray(sys[1::2][i]) for i in range(M))
        self.exog = exog  # 2d ndarray exog is better
        # Endog, might just go ahead and reshape this?
        endog = np.asarray(sys[::2])
        self.endog = endog
        self.nobs = float(
            self.endog[0].shape[0])  # assumes all the same length

        # Degrees of Freedom
        df_resid = []
        df_model = []
        [df_resid.append(self.nobs - np_matrix_rank(_)) for _ in sys[1::2]]
        [df_model.append(np_matrix_rank(_) - 1) for _ in sys[1::2]]
        self.df_resid = np.asarray(df_resid)
        self.df_model = np.asarray(df_model)

        # "Block-diagonal" sparse matrix of exog
        sp_exog = sparse.lil_matrix(
            (int(self.nobs * M),
             int(np.sum(self.df_model + 1))))  # linked lists to build
        self._cols = np.cumsum(np.hstack((0, self.df_model + 1)))
        for i in range(M):
            sp_exog[i * self.nobs:(i + 1) * self.nobs,
                    self._cols[i]:self._cols[i + 1]] = sys[1::2][i]
        self.sp_exog = sp_exog.tocsr()  # cast to compressed for efficiency
        # Deal with sigma, check shape earlier if given
        if np.any(sigma):
            sigma = np.asarray(sigma)  # check shape
        elif sigma == None:
            resids = []
            for i in range(M):
                resids.append(
                    GLS(endog[i],
                        exog[:, self._cols[i]:self._cols[i + 1]]).fit().resid)
            resids = np.asarray(resids).reshape(M, -1)
            sigma = self._compute_sigma(resids)
        self.sigma = sigma
        self.cholsigmainv = np.linalg.cholesky(np.linalg.pinv(\
                    self.sigma)).T
        self.initialize()
コード例 #6
0
    def _initialize(self):
        """
        Initializes the model for the IRLS fit.

        Resets the history and number of iterations.
        """
        self.pinv_wexog = np.linalg.pinv(self.exog)
        self.normalized_cov_params = np.dot(self.pinv_wexog, np.transpose(self.pinv_wexog))
        self.df_resid = np.float(self.exog.shape[0] - np_matrix_rank(self.exog))
        self.df_model = np.float(np_matrix_rank(self.exog) - 1)
        self.nobs = float(self.endog.shape[0])
コード例 #7
0
    def initialize(self):
        """
        Initialize a generalized linear model.
        """
        # TODO: intended for public use?
        self.history = {"fittedvalues": [], "params": [np.inf], "deviance": [np.inf]}

        self.pinv_wexog = np.linalg.pinv(self.exog)
        self.normalized_cov_params = np.dot(self.pinv_wexog, np.transpose(self.pinv_wexog))

        self.df_model = np_matrix_rank(self.exog) - 1
        self.df_resid = self.exog.shape[0] - np_matrix_rank(self.exog)
コード例 #8
0
ファイル: sysreg.py プロジェクト: 0ceangypsy/statsmodels
    def __init__(self, sys, sigma=None, dfk=None):
        if len(sys) % 2 != 0:
            raise ValueError("sys must be a list of pairs of endogenous and \
exogenous variables.  Got length %s" % len(sys))
        if dfk:
            if not dfk.lower() in ['dfk1','dfk2']:
                raise ValueError("dfk option %s not understood" % (dfk))
        self._dfk = dfk
        M = len(sys[1::2])
        self._M = M
#        exog = np.zeros((M,M), dtype=object)
#        for i,eq in enumerate(sys[1::2]):
#            exog[i,i] = np.asarray(eq)  # not sure this exog is needed
                                        # used to compute resids for now
        exog = np.column_stack(np.asarray(sys[1::2][i]) for i in range(M))
#       exog = np.vstack(np.asarray(sys[1::2][i]) for i in range(M))
        self.exog = exog # 2d ndarray exog is better
# Endog, might just go ahead and reshape this?
        endog = np.asarray(sys[::2])
        self.endog = endog
        self.nobs = float(self.endog[0].shape[0]) # assumes all the same length

# Degrees of Freedom
        df_resid = []
        df_model = []
        [df_resid.append(self.nobs - np_matrix_rank(_)) for _ in sys[1::2]]
        [df_model.append(np_matrix_rank(_) - 1) for _ in sys[1::2]]
        self.df_resid = np.asarray(df_resid)
        self.df_model = np.asarray(df_model)

# "Block-diagonal" sparse matrix of exog
        sp_exog = sparse.lil_matrix((int(self.nobs*M),
            int(np.sum(self.df_model+1)))) # linked lists to build
        self._cols = np.cumsum(np.hstack((0, self.df_model+1)))
        for i in range(M):
            sp_exog[i*self.nobs:(i+1)*self.nobs,
                    self._cols[i]:self._cols[i+1]] = sys[1::2][i]
        self.sp_exog = sp_exog.tocsr() # cast to compressed for efficiency
# Deal with sigma, check shape earlier if given
        if np.any(sigma):
            sigma = np.asarray(sigma) # check shape
        elif sigma == None:
            resids = []
            for i in range(M):
                resids.append(GLS(endog[i],exog[:,
                    self._cols[i]:self._cols[i+1]]).fit().resid)
            resids = np.asarray(resids).reshape(M,-1)
            sigma = self._compute_sigma(resids)
        self.sigma = sigma
        self.cholsigmainv = np.linalg.cholesky(np.linalg.pinv(\
                    self.sigma)).T
        self.initialize()
コード例 #9
0
    def _initialize(self):
        """
        Initializes the model for the IRLS fit.

        Resets the history and number of iterations.
        """
        self.pinv_wexog = np.linalg.pinv(self.exog)
        self.normalized_cov_params = np.dot(self.pinv_wexog,
                                            np.transpose(self.pinv_wexog))
        self.df_resid = (np.float(self.exog.shape[0] -
                                  np_matrix_rank(self.exog)))
        self.df_model = np.float(np_matrix_rank(self.exog) - 1)
        self.nobs = float(self.endog.shape[0])
コード例 #10
0
    def initialize(self):
        """
        Initialize a generalized linear model.
        """
        #TODO: intended for public use?
        self.history = {'fittedvalues' : [],
                        'params' : [np.inf],
                        'deviance' : [np.inf]}

        self.pinv_wexog = np.linalg.pinv(self.exog)
        self.normalized_cov_params = np.dot(self.pinv_wexog,
                                            np.transpose(self.pinv_wexog))

        self.df_model = np_matrix_rank(self.exog)-1
        self.df_resid = self.exog.shape[0] - np_matrix_rank(self.exog)
コード例 #11
0
ファイル: contrast.py プロジェクト: viveksck/langchange
def contrastfromcols(L, D, pseudo=None):
    """
    From an n x p design matrix D and a matrix L, tries
    to determine a p x q contrast matrix C which
    determines a contrast of full rank, i.e. the
    n x q matrix

    dot(transpose(C), pinv(D))

    is full rank.

    L must satisfy either L.shape[0] == n or L.shape[1] == p.

    If L.shape[0] == n, then L is thought of as representing
    columns in the column space of D.

    If L.shape[1] == p, then L is thought of as what is known
    as a contrast matrix. In this case, this function returns an estimable
    contrast corresponding to the dot(D, L.T)

    Note that this always produces a meaningful contrast, not always
    with the intended properties because q is always non-zero unless
    L is identically 0. That is, it produces a contrast that spans
    the column space of L (after projection onto the column space of D).

    Parameters
    ----------
    L : array-like
    D : array-like
    """
    L = np.asarray(L)
    D = np.asarray(D)

    n, p = D.shape

    if L.shape[0] != n and L.shape[1] != p:
        raise ValueError("shape of L and D mismatched")

    if pseudo is None:
        pseudo = np.linalg.pinv(D)  # D^+ \approx= ((dot(D.T,D))^(-1),D.T)

    if L.shape[0] == n:
        C = np.dot(pseudo, L).T
    else:
        C = L
        C = np.dot(pseudo, np.dot(D, C.T)).T

    Lp = np.dot(D, C.T)

    if len(Lp.shape) == 1:
        Lp.shape = (n, 1)

    if np_matrix_rank(Lp) != Lp.shape[1]:
        Lp = fullrank(Lp)
        C = np.dot(pseudo, Lp).T

    return np.squeeze(C)
コード例 #12
0
ファイル: contrast.py プロジェクト: mas-dse/statsmodels
def contrastfromcols(L, D, pseudo=None):
    """
    From an n x p design matrix D and a matrix L, tries
    to determine a p x q contrast matrix C which
    determines a contrast of full rank, i.e. the
    n x q matrix

    dot(transpose(C), pinv(D))

    is full rank.

    L must satisfy either L.shape[0] == n or L.shape[1] == p.

    If L.shape[0] == n, then L is thought of as representing
    columns in the column space of D.

    If L.shape[1] == p, then L is thought of as what is known
    as a contrast matrix. In this case, this function returns an estimable
    contrast corresponding to the dot(D, L.T)

    Note that this always produces a meaningful contrast, not always
    with the intended properties because q is always non-zero unless
    L is identically 0. That is, it produces a contrast that spans
    the column space of L (after projection onto the column space of D).

    Parameters
    ----------
    L : array-like
    D : array-like
    """
    L = np.asarray(L)
    D = np.asarray(D)

    n, p = D.shape

    if L.shape[0] != n and L.shape[1] != p:
        raise ValueError("shape of L and D mismatched")

    if pseudo is None:
        pseudo = np.linalg.pinv(D)    # D^+ \approx= ((dot(D.T,D))^(-1),D.T)

    if L.shape[0] == n:
        C = np.dot(pseudo, L).T
    else:
        C = L
        C = np.dot(pseudo, np.dot(D, C.T)).T

    Lp = np.dot(D, C.T)

    if len(Lp.shape) == 1:
        Lp.shape = (n, 1)

    if np_matrix_rank(Lp) != Lp.shape[1]:
        Lp = fullrank(Lp)
        C = np.dot(pseudo, Lp).T

    return np.squeeze(C)
コード例 #13
0
def isestimable(C, D):
    """ True if (Q, P) contrast `C` is estimable for (N, P) design `D`

    From an Q x P contrast matrix `C` and an N x P design matrix `D`, checks if
    the contrast `C` is estimable by looking at the rank of ``vstack([C,D])``
    and verifying it is the same as the rank of `D`.

    Parameters
    ----------
    C : (Q, P) array-like
        contrast matrix. If `C` has is 1 dimensional assume shape (1, P)
    D: (N, P) array-like
        design matrix

    Returns
    -------
    tf : bool
        True if the contrast `C` is estimable on design `D`

    Examples
    --------
    >>> D = np.array([[1, 1, 1, 0, 0, 0],
    ...               [0, 0, 0, 1, 1, 1],
    ...               [1, 1, 1, 1, 1, 1]]).T
    >>> isestimable([1, 0, 0], D)
    False
    >>> isestimable([1, -1, 0], D)
    True
    """
    C = np.asarray(C)
    D = np.asarray(D)
    if C.ndim == 1:
        C = C[None, :]
    if C.shape[1] != D.shape[1]:
        raise ValueError('Contrast should have %d columns' % D.shape[1])
    new = np.vstack([C, D])
    if np_matrix_rank(new) != np_matrix_rank(D):
        return False
    return True
コード例 #14
0
ファイル: tools.py プロジェクト: Leo666/statsmodels
def isestimable(C, D):
    """ True if (Q, P) contrast `C` is estimable for (N, P) design `D`

    From an Q x P contrast matrix `C` and an N x P design matrix `D`, checks if
    the contrast `C` is estimable by looking at the rank of ``vstack([C,D])``
    and verifying it is the same as the rank of `D`.

    Parameters
    ----------
    C : (Q, P) array-like
        contrast matrix. If `C` has is 1 dimensional assume shape (1, P)
    D: (N, P) array-like
        design matrix

    Returns
    -------
    tf : bool
        True if the contrast `C` is estimable on design `D`

    Examples
    --------
    >>> D = np.array([[1, 1, 1, 0, 0, 0],
    ...               [0, 0, 0, 1, 1, 1],
    ...               [1, 1, 1, 1, 1, 1]]).T
    >>> isestimable([1, 0, 0], D)
    False
    >>> isestimable([1, -1, 0], D)
    True
    """
    C = np.asarray(C)
    D = np.asarray(D)
    if C.ndim == 1:
        C = C[None, :]
    if C.shape[1] != D.shape[1]:
        raise ValueError('Contrast should have %d columns' % D.shape[1])
    new = np.vstack([C, D])
    if np_matrix_rank(new) != np_matrix_rank(D):
        return False
    return True
コード例 #15
0
ファイル: sysreg.py プロジェクト: locolucco209/MongoScraper
    def __init__(self, sys, indep_endog=None, instruments=None):
        if len(sys) % 2 != 0:
            raise ValueError("sys must be a list of pairs of endogenous and \
exogenous variables.  Got length %s" % len(sys))
        M = len(sys[1::2])
        self._M = M
        # The lists are probably a bad idea
        self.endog = sys[::2]  # these are just list containers
        self.exog = sys[1::2]
        self._K = [np_matrix_rank(_) for _ in sys[1::2]]
        #        fullexog = np.column_stack((_ for _ in self.exog))

        self.instruments = instruments

        # Keep the Y_j's in a container to get IVs
        instr_endog = {}
        [instr_endog.setdefault(_, []) for _ in iterkeys(indep_endog)]

        for eq_key in indep_endog:
            for varcol in indep_endog[eq_key]:
                instr_endog[eq_key].append(self.exog[eq_key][:, varcol])
                # ^ copy needed?
#        self._instr_endog = instr_endog

        self._indep_endog = indep_endog
        _col_map = np.cumsum(np.hstack((0, self._K)))  # starting col no.s
        # move this check to whiten since we're not going to build a full exog?
        for eq_key in indep_endog:
            try:
                iter(indep_endog[eq_key])
            except:
                #                eq_key = [eq_key]
                raise TypeError("The values of the indep_exog dict must be\
 iterable. Got type %s for converter %s" % (type(del_col)))


#            for del_col in indep_endog[eq_key]:
#                fullexog = np.delete(fullexog,  _col_map[eq_key]+del_col, 1)
#                _col_map[eq_key+1:] -= 1

# Josef's example for deleting reoccuring "rows"
#        fullexog = np.unique(fullexog.T.view([('',fullexog.dtype)]*\
#                fullexog.shape[0])).view(fullexog.dtype).reshape(\
#                fullexog.shape[0],-1)
# From http://article.gmane.org/gmane.comp.python.numeric.general/32276/
# Or Jouni' suggetsion of taking a hash:
# http://www.mail-archive.com/[email protected]/msg04209.html
# not clear to me how this would work though, only if they are the *same*
# elements?
#        self.fullexog = fullexog
        self.wexog = self.whiten(instr_endog)
コード例 #16
0
ファイル: sysreg.py プロジェクト: 0ceangypsy/statsmodels
    def __init__(self, sys, indep_endog=None, instruments=None):
        if len(sys) % 2 != 0:
            raise ValueError("sys must be a list of pairs of endogenous and \
exogenous variables.  Got length %s" % len(sys))
        M = len(sys[1::2])
        self._M = M
# The lists are probably a bad idea
        self.endog = sys[::2]   # these are just list containers
        self.exog = sys[1::2]
        self._K = [np_matrix_rank(_) for _ in sys[1::2]]
#        fullexog = np.column_stack((_ for _ in self.exog))

        self.instruments = instruments

        # Keep the Y_j's in a container to get IVs
        instr_endog = {}
        [instr_endog.setdefault(_,[]) for _ in iterkeys(indep_endog)]

        for eq_key in indep_endog:
            for varcol in indep_endog[eq_key]:
                instr_endog[eq_key].append(self.exog[eq_key][:,varcol])
                # ^ copy needed?
#        self._instr_endog = instr_endog

        self._indep_endog = indep_endog
        _col_map = np.cumsum(np.hstack((0,self._K))) # starting col no.s
# move this check to whiten since we're not going to build a full exog?
        for eq_key in indep_endog:
            try:
                iter(indep_endog[eq_key])
            except:
#                eq_key = [eq_key]
                raise TypeError("The values of the indep_exog dict must be\
 iterable. Got type %s for converter %s" % (type(del_col)))
#            for del_col in indep_endog[eq_key]:
#                fullexog = np.delete(fullexog,  _col_map[eq_key]+del_col, 1)
#                _col_map[eq_key+1:] -= 1

# Josef's example for deleting reoccuring "rows"
#        fullexog = np.unique(fullexog.T.view([('',fullexog.dtype)]*\
#                fullexog.shape[0])).view(fullexog.dtype).reshape(\
#                fullexog.shape[0],-1)
# From http://article.gmane.org/gmane.comp.python.numeric.general/32276/
# Or Jouni' suggetsion of taking a hash:
# http://www.mail-archive.com/[email protected]/msg04209.html
# not clear to me how this would work though, only if they are the *same*
# elements?
#        self.fullexog = fullexog
        self.wexog = self.whiten(instr_endog)
コード例 #17
0
def fullrank(X, r=None):
    """
    Return a matrix whose column span is the same as X.

    If the rank of X is known it can be specified as r -- no check
    is made to ensure that this really is the rank of X.

    """

    if r is None:
        r = np_matrix_rank(X)

    V, D, U = L.svd(X, full_matrices=0)
    order = np.argsort(D)
    order = order[::-1]
    value = []
    for i in range(r):
        value.append(V[:, order[i]])
    return np.asarray(np.transpose(value)).astype(np.float64)
コード例 #18
0
ファイル: tools.py プロジェクト: Leo666/statsmodels
def fullrank(X, r=None):
    """
    Return a matrix whose column span is the same as X.

    If the rank of X is known it can be specified as r -- no check
    is made to ensure that this really is the rank of X.

    """

    if r is None:
        r = np_matrix_rank(X)

    V, D, U = L.svd(X, full_matrices=0)
    order = np.argsort(D)
    order = order[::-1]
    value = []
    for i in range(r):
        value.append(V[:, order[i]])
    return np.asarray(np.transpose(value)).astype(np.float64)
コード例 #19
0
    def setupClass(cls):
        from .results.results_regression import Longley
        data = longley.load()
        data.exog = add_constant(data.exog, prepend=False)
        res1 = OLS(data.endog, data.exog).fit()
        res2 = Longley()
        res2.wresid = res1.wresid  # workaround hack
        cls.res1 = res1
        cls.res2 = res2

        res_qr = OLS(data.endog, data.exog).fit(method="qr")

        model_qr = OLS(data.endog, data.exog)
        Q, R = np.linalg.qr(data.exog)
        model_qr.exog_Q, model_qr.exog_R = Q, R
        model_qr.normalized_cov_params = np.linalg.inv(np.dot(R.T, R))
        model_qr.rank = np_matrix_rank(R)
        res_qr2 = model_qr.fit(method="qr")

        cls.res_qr = res_qr
        cls.res_qr_manual = res_qr2
コード例 #20
0
    def setupClass(cls):
        from .results.results_regression import Longley
        data = longley.load()
        data.exog = add_constant(data.exog, prepend=False)
        res1 = OLS(data.endog, data.exog).fit()
        res2 = Longley()
        res2.wresid = res1.wresid # workaround hack
        cls.res1 = res1
        cls.res2 = res2

        res_qr = OLS(data.endog, data.exog).fit(method="qr")

        model_qr = OLS(data.endog, data.exog)
        Q, R = np.linalg.qr(data.exog)
        model_qr.exog_Q, model_qr.exog_R  = Q, R
        model_qr.normalized_cov_params = np.linalg.inv(np.dot(R.T, R))
        model_qr.rank = np_matrix_rank(R)
        res_qr2 = model_qr.fit(method="qr")

        cls.res_qr = res_qr
        cls.res_qr_manual = res_qr2
コード例 #21
0
ファイル: catadd.py プロジェクト: locolucco209/MongoScraper
def add_indep(x, varnames, dtype=None):
    '''
    construct array with independent columns

    x is either iterable (list, tuple) or instance of ndarray or a subclass of it.
    If x is an ndarray, then each column is assumed to represent a variable with
    observations in rows.
    '''
    #TODO: this needs tests for subclasses

    if isinstance(x, np.ndarray) and x.ndim == 2:
        x = x.T

    nvars_orig = len(x)
    nobs = len(x[0])
    #print('nobs, nvars_orig', nobs, nvars_orig)
    if not dtype:
        dtype = np.asarray(x[0]).dtype
    xout = np.zeros((nobs, nvars_orig), dtype=dtype)
    count = 0
    rank_old = 0
    varnames_new = []
    varnames_dropped = []
    keepindx = []
    for (xi, ni) in zip(x, varnames):
        #print(xi.shape, xout.shape)
        xout[:, count] = xi
        rank_new = np_matrix_rank(xout)
        #print(rank_new)
        if rank_new > rank_old:
            varnames_new.append(ni)
            rank_old = rank_new
            count += 1
        else:
            varnames_dropped.append(ni)

    return xout[:, :count], varnames_new
コード例 #22
0
ファイル: catadd.py プロジェクト: JerWatson/statsmodels
def add_indep(x, varnames, dtype=None):
    """
    construct array with independent columns

    x is either iterable (list, tuple) or instance of ndarray or a subclass of it.
    If x is an ndarray, then each column is assumed to represent a variable with
    observations in rows.
    """
    # TODO: this needs tests for subclasses

    if isinstance(x, np.ndarray) and x.ndim == 2:
        x = x.T

    nvars_orig = len(x)
    nobs = len(x[0])
    # print('nobs, nvars_orig', nobs, nvars_orig)
    if not dtype:
        dtype = np.asarray(x[0]).dtype
    xout = np.zeros((nobs, nvars_orig), dtype=dtype)
    count = 0
    rank_old = 0
    varnames_new = []
    varnames_dropped = []
    keepindx = []
    for (xi, ni) in zip(x, varnames):
        # print(xi.shape, xout.shape)
        xout[:, count] = xi
        rank_new = np_matrix_rank(xout)
        # print(rank_new)
        if rank_new > rank_old:
            varnames_new.append(ni)
            rank_old = rank_new
            count += 1
        else:
            varnames_dropped.append(ni)

    return xout[:, :count], varnames_new
コード例 #23
0
    def fit(self, q=.5, vcov='robust', kernel='epa', bandwidth='hsheather',
            max_iter=1000, p_tol=1e-6, **kwargs):
        '''Solve by Iterative Weighted Least Squares

        Parameters
        ----------
        q : float
            Quantile must be between 0 and 1
        vcov : string, method used to calculate the variance-covariance matrix
            of the parameters. Default is ``robust``:

            - robust : heteroskedasticity robust standard errors (as suggested
              in Greene 6th edition)
            - iid : iid errors (as in Stata 12)

        kernel : string, kernel to use in the kernel density estimation for the
            asymptotic covariance matrix:

            - epa: Epanechnikov
            - cos: Cosine
            - gau: Gaussian
            - par: Parzene

        bandwidth: string, Bandwidth selection method in kernel density
            estimation for asymptotic covariance estimate (full
            references in QuantReg docstring):

            - hsheather: Hall-Sheather (1988)
            - bofinger: Bofinger (1975)
            - chamberlain: Chamberlain (1994)
        '''

        if q < 0 or q > 1:
            raise Exception('p must be between 0 and 1')

        kern_names = ['biw', 'cos', 'epa', 'gau', 'par']
        if kernel not in kern_names:
            raise Exception("kernel must be one of " + ', '.join(kern_names))
        else:
            kernel = kernels[kernel]

        if bandwidth == 'hsheather':
            bandwidth = hall_sheather
        elif bandwidth == 'bofinger':
            bandwidth = bofinger
        elif bandwidth == 'chamberlain':
            bandwidth = chamberlain
        else:
            raise Exception("bandwidth must be in 'hsheather', 'bofinger', 'chamberlain'")

        endog = self.endog
        exog = self.exog
        nobs = self.nobs
        exog_rank = np_matrix_rank(self.exog)
        self.rank = exog_rank
        self.df_model = float(self.rank - self.k_constant)
        self.df_resid = self.nobs - self.rank
        n_iter = 0
        xstar = exog

        beta = np.ones(exog_rank)
        # TODO: better start, initial beta is used only for convergence check

        # Note the following doesn't work yet,
        # the iteration loop always starts with OLS as initial beta
#        if start_params is not None:
#            if len(start_params) != rank:
#                raise ValueError('start_params has wrong length')
#            beta = start_params
#        else:
#            # start with OLS
#            beta = np.dot(np.linalg.pinv(exog), endog)

        diff = 10
        cycle = False

        history = dict(params = [], mse=[])
        while n_iter < max_iter and diff > p_tol and not cycle:
            n_iter += 1
            beta0 = beta
            xtx = np.dot(xstar.T, exog)
            xty = np.dot(xstar.T, endog)
            beta = np.dot(pinv(xtx), xty)
            resid = endog - np.dot(exog, beta)

            mask = np.abs(resid) < .000001
            resid[mask] = ((resid[mask] >= 0) * 2 - 1) * .000001
            resid = np.where(resid < 0, q * resid, (1-q) * resid)
            resid = np.abs(resid)
            xstar = exog / resid[:, np.newaxis]
            diff = np.max(np.abs(beta - beta0))
            history['params'].append(beta)
            history['mse'].append(np.mean(resid*resid))

            if (n_iter >= 300) and (n_iter % 100 == 0):
                # check for convergence circle, shouldn't happen
                for ii in range(2, 10):
                    if np.all(beta == history['params'][-ii]):
                        cycle = True
                        break
                warnings.warn("Convergence cycle detected", ConvergenceWarning)

        if n_iter == max_iter:
            warnings.warn("Maximum number of iterations (1000) reached.",
                          IterationLimitWarning)

        e = endog - np.dot(exog, beta)
        # Greene (2008, p.407) writes that Stata 6 uses this bandwidth:
        # h = 0.9 * np.std(e) / (nobs**0.2)
        # Instead, we calculate bandwidth as in Stata 12
        iqre = stats.scoreatpercentile(e, 75) - stats.scoreatpercentile(e, 25)
        h = bandwidth(nobs, q)
        h = min(np.std(endog),
                iqre / 1.34) * (norm.ppf(q + h) - norm.ppf(q - h))

        fhat0 = 1. / (nobs * h) * np.sum(kernel(e / h))

        if vcov == 'robust':
            d = np.where(e > 0, (q/fhat0)**2, ((1-q)/fhat0)**2)
            xtxi = pinv(np.dot(exog.T, exog))
            xtdx = np.dot(exog.T * d[np.newaxis, :], exog)
            vcov = chain_dot(xtxi, xtdx, xtxi)
        elif vcov == 'iid':
            vcov = (1. / fhat0)**2 * q * (1 - q) * pinv(np.dot(exog.T, exog))
        else:
            raise Exception("vcov must be 'robust' or 'iid'")

        lfit = QuantRegResults(self, beta, normalized_cov_params=vcov)

        lfit.q = q
        lfit.iterations = n_iter
        lfit.sparsity = 1. / fhat0
        lfit.bandwidth = h
        lfit.history = history

        return RegressionResultsWrapper(lfit)
コード例 #24
0
    def fit(self, q=.5, vcov='robust', kernel='epa', bandwidth='hsheather',
            max_iter=1000, p_tol=1e-6, **kwargs):
        '''Solve by Iterative Weighted Least Squares

        Parameters
        ----------
        q : float
            Quantile must be between 0 and 1
        vcov : string, method used to calculate the variance-covariance matrix
            of the parameters. Default is ``robust``:

            - robust : heteroskedasticity robust standard errors (as suggested
              in Greene 6th edition)
            - iid : iid errors (as in Stata 12)

        kernel : string, kernel to use in the kernel density estimation for the
            asymptotic covariance matrix:

            - epa: Epanechnikov
            - cos: Cosine
            - gau: Gaussian
            - par: Parzene

        bandwidth: string, Bandwidth selection method in kernel density
            estimation for asymptotic covariance estimate (full
            references in QuantReg docstring):

            - hsheather: Hall-Sheather (1988)
            - bofinger: Bofinger (1975)
            - chamberlain: Chamberlain (1994)
        '''

        if q < 0 or q > 1:
            raise Exception('p must be between 0 and 1')

        kern_names = ['biw', 'cos', 'epa', 'gau', 'par']
        if kernel not in kern_names:
            raise Exception("kernel must be one of " + ', '.join(kern_names))
        else:
            kernel = kernels[kernel]

        if bandwidth == 'hsheather':
            bandwidth = hall_sheather
        elif bandwidth == 'bofinger':
            bandwidth = bofinger
        elif bandwidth == 'chamberlain':
            bandwidth = chamberlain
        else:
            raise Exception("bandwidth must be in 'hsheather', 'bofinger', 'chamberlain'")

        endog = self.endog
        exog = self.exog
        nobs = self.nobs
        exog_rank = np_matrix_rank(self.exog)
        self.rank = exog_rank
        self.df_model = float(self.rank - self.k_constant)
        self.df_resid = self.nobs - self.rank
        n_iter = 0
        xstar = exog

        beta = np.ones(exog_rank)
        # TODO: better start, initial beta is used only for convergence check

        # Note the following doesn't work yet,
        # the iteration loop always starts with OLS as initial beta
#        if start_params is not None:
#            if len(start_params) != rank:
#                raise ValueError('start_params has wrong length')
#            beta = start_params
#        else:
#            # start with OLS
#            beta = np.dot(np.linalg.pinv(exog), endog)

        diff = 10
        cycle = False

        history = dict(params = [], mse=[])
        while n_iter < max_iter and diff > p_tol and not cycle:
            n_iter += 1
            beta0 = beta
            xtx = np.dot(xstar.T, exog)
            xty = np.dot(xstar.T, endog)
            beta = np.dot(pinv(xtx), xty)
            resid = endog - np.dot(exog, beta)

            mask = np.abs(resid) < .000001
            resid[mask] = ((resid[mask] >= 0) * 2 - 1) * .000001
            resid = np.where(resid < 0, q * resid, (1-q) * resid)
            resid = np.abs(resid)
            xstar = exog / resid[:, np.newaxis]
            diff = np.max(np.abs(beta - beta0))
            history['params'].append(beta)
            history['mse'].append(np.mean(resid*resid))

            if (n_iter >= 300) and (n_iter % 100 == 0):
                # check for convergence circle, shouldn't happen
                for ii in range(2, 10):
                    if np.all(beta == history['params'][-ii]):
                        cycle = True
                        warnings.warn("Convergence cycle detected", ConvergenceWarning)
                        break

        if n_iter == max_iter:
            warnings.warn("Maximum number of iterations (" + str(max_iter) +
                          ") reached.", IterationLimitWarning)

        e = endog - np.dot(exog, beta)
        # Greene (2008, p.407) writes that Stata 6 uses this bandwidth:
        # h = 0.9 * np.std(e) / (nobs**0.2)
        # Instead, we calculate bandwidth as in Stata 12
        iqre = stats.scoreatpercentile(e, 75) - stats.scoreatpercentile(e, 25)
        h = bandwidth(nobs, q)
        h = min(np.std(endog),
                iqre / 1.34) * (norm.ppf(q + h) - norm.ppf(q - h))

        fhat0 = 1. / (nobs * h) * np.sum(kernel(e / h))

        if vcov == 'robust':
            d = np.where(e > 0, (q/fhat0)**2, ((1-q)/fhat0)**2)
            xtxi = pinv(np.dot(exog.T, exog))
            xtdx = np.dot(exog.T * d[np.newaxis, :], exog)
            vcov = chain_dot(xtxi, xtdx, xtxi)
        elif vcov == 'iid':
            vcov = (1. / fhat0)**2 * q * (1 - q) * pinv(np.dot(exog.T, exog))
        else:
            raise Exception("vcov must be 'robust' or 'iid'")

        lfit = QuantRegResults(self, beta, normalized_cov_params=vcov)

        lfit.q = q
        lfit.iterations = n_iter
        lfit.sparsity = 1. / fhat0
        lfit.bandwidth = h
        lfit.history = history

        return RegressionResultsWrapper(lfit)
コード例 #25
0
ファイル: svar_model.py プロジェクト: z99205388/statsmodels
 def check_rank(self, J):
     rank = np_matrix_rank(J)
     if rank < np.size(J, axis=1):
         raise ValueError("Rank condition not met: "
                          "solution may not be unique.")