コード例 #1
0
    def _fit_pirls(self, alpha, start_params=None, maxiter=100, tol=1e-8,
                   scale=None, cov_type='nonrobust', cov_kwds=None, use_t=None,
                   weights=None):
        """fit model with penalized reweighted least squares

        """
        # TODO: this currently modifies several attributes
        # self.scale, self.scaletype, self.mu, self.weights
        # self.data_weights,
        # and possibly self._offset_exposure
        # several of those might not be necessary, e.g. mu and weights

        # alpha = alpha * len(y) * self.scale / 100
        # TODO: we need to rescale alpha
        endog = self.endog
        wlsexog = self.exog  # smoother.basis
        spl_s = self.penal.penalty_matrix(alpha=alpha)

        nobs, n_columns = wlsexog.shape

        # TODO what are these values?
        if weights is None:
            self.data_weights = np.array([1.] * nobs)
        else:
            self.data_weights = weights

        if not hasattr(self, '_offset_exposure'):
            self._offset_exposure = 0

        self.scaletype = scale
        # TODO: check default scale types
        # self.scaletype = 'dev'
        # during iteration
        self.scale = 1

        if start_params is None:
            mu = self.family.starting_mu(endog)
            lin_pred = self.family.predict(mu)
        else:
            lin_pred = np.dot(wlsexog, start_params) + self._offset_exposure
            mu = self.family.fitted(lin_pred)
        dev = self.family.deviance(endog, mu)

        history = dict(params=[None, start_params], deviance=[np.inf, dev])
        converged = False
        criterion = history['deviance']
        # This special case is used to get the likelihood for a specific
        # params vector.
        if maxiter == 0:
            mu = self.family.fitted(lin_pred)
            self.scale = self.estimate_scale(mu)
            wls_results = lm.RegressionResults(self, start_params, None)
            iteration = 0

        for iteration in range(maxiter):

            # TODO: is this equivalent to point 1 of page 136:
            # w = 1 / (V(mu) * g'(mu))  ?
            self.weights = self.data_weights * self.family.weights(mu)

            # TODO: is this equivalent to point 1 of page 136:
            # z = g(mu)(y - mu) + X beta  ?
            wlsendog = (lin_pred + self.family.link.deriv(mu) * (endog - mu)
                        - self._offset_exposure)

            # this defines the augmented matrix point 2a on page 136
            wls_results = penalized_wls(wlsendog, wlsexog, spl_s, self.weights)
            lin_pred = np.dot(wlsexog, wls_results.params).ravel()
            lin_pred += self._offset_exposure
            mu = self.family.fitted(lin_pred)

            # We don't need to update scale in GLM/LEF models
            # We might need it in dispersion models.
            # self.scale = self.estimate_scale(mu)
            history = self._update_history(wls_results, mu, history)

            if endog.squeeze().ndim == 1 and np.allclose(mu - endog, 0):
                msg = "Perfect separation detected, results not available"
                raise PerfectSeparationError(msg)

            # TODO need atol, rtol
            # args of _check_convergence: (criterion, iteration, atol, rtol)
            converged = _check_convergence(criterion, iteration, tol, 0)
            if converged:
                break
        self.mu = mu
        self.scale = self.estimate_scale(mu)
        glm_results = GLMGamResults(self, wls_results.params,
                                    wls_results.normalized_cov_params,
                                    self.scale,
                                    cov_type=cov_type, cov_kwds=cov_kwds,
                                    use_t=use_t)

        glm_results.method = "PIRLS"
        history['iteration'] = iteration + 1
        glm_results.fit_history = history
        glm_results.converged = converged

        return GLMGamResultsWrapper(glm_results)
コード例 #2
0
    def _fit_pirls(self, alpha, start_params=None, maxiter=100, tol=1e-8,
                   scale=None, cov_type='nonrobust', cov_kwds=None, use_t=None,
                   weights=None):
        """fit model with penalized reweighted least squares

        """
        # TODO: this currently modifies several attributes
        # self.scale, self.scaletype, self.mu, self.weights
        # self.data_weights,
        # and possibly self._offset_exposure
        # several of those might not be necessary, e.g. mu and weights

        # alpha = alpha * len(y) * self.scale / 100
        # TODO: we need to rescale alpha
        endog = self.endog
        wlsexog = self.exog  # smoother.basis
        spl_s = self.penal.penalty_matrix(alpha=alpha)

        nobs, n_columns = wlsexog.shape

        # TODO what are these values?
        if weights is None:
            self.data_weights = np.array([1.] * nobs)
        else:
            self.data_weights = weights

        if not hasattr(self, '_offset_exposure'):
            self._offset_exposure = 0

        self.scaletype = scale
        # TODO: check default scale types
        # self.scaletype = 'dev'
        # during iteration
        self.scale = 1

        if start_params is None:
            mu = self.family.starting_mu(endog)
            lin_pred = self.family.predict(mu)
        else:
            lin_pred = np.dot(wlsexog, start_params) + self._offset_exposure
            mu = self.family.fitted(lin_pred)
        dev = self.family.deviance(endog, mu)

        history = dict(params=[None, start_params], deviance=[np.inf, dev])
        converged = False
        criterion = history['deviance']
        # This special case is used to get the likelihood for a specific
        # params vector.
        if maxiter == 0:
            mu = self.family.fitted(lin_pred)
            self.scale = self.estimate_scale(mu)
            wls_results = lm.RegressionResults(self, start_params, None)
            iteration = 0

        for iteration in range(maxiter):

            # TODO: is this equivalent to point 1 of page 136:
            # w = 1 / (V(mu) * g'(mu))  ?
            self.weights = self.data_weights * self.family.weights(mu)

            # TODO: is this equivalent to point 1 of page 136:
            # z = g(mu)(y - mu) + X beta  ?
            wlsendog = (lin_pred + self.family.link.deriv(mu) * (endog - mu)
                        - self._offset_exposure)

            # this defines the augmented matrix point 2a on page 136
            wls_results = penalized_wls(wlsendog, wlsexog, spl_s, self.weights)
            lin_pred = np.dot(wlsexog, wls_results.params).ravel()
            lin_pred += self._offset_exposure
            mu = self.family.fitted(lin_pred)

            # We don't need to update scale in GLM/LEF models
            # We might need it in dispersion models.
            # self.scale = self.estimate_scale(mu)
            history = self._update_history(wls_results, mu, history)

            if endog.squeeze().ndim == 1 and np.allclose(mu - endog, 0):
                msg = "Perfect separation detected, results not available"
                raise PerfectSeparationError(msg)

            # TODO need atol, rtol
            # args of _check_convergence: (criterion, iteration, atol, rtol)
            converged = _check_convergence(criterion, iteration, tol, 0)
            if converged:
                break
        self.mu = mu
        self.scale = self.estimate_scale(mu)
        glm_results = GLMGamResults(self, wls_results.params,
                                    wls_results.normalized_cov_params,
                                    self.scale,
                                    cov_type=cov_type, cov_kwds=cov_kwds,
                                    use_t=use_t)

        glm_results.method = "PIRLS"
        history['iteration'] = iteration + 1
        glm_results.fit_history = history
        glm_results.converged = converged

        return GLMGamResultsWrapper(glm_results)