コード例 #1
0
ファイル: test_oneway.py プロジェクト: quuhua911/statsmodels
def test_simulate_equivalence():
    # regression test, needs large k_mc to be reliable

    k_groups = 4
    k_repl = 10
    nobs = np.array([10, 12, 13, 15]) * k_repl
    means = np.array([-1, 0, 0, 1]) * 0.12
    vars_ = np.array([1, 2, 3, 4])
    nobs_t = nobs.sum()

    eps = 0.0191 * 10
    opt_var = ["unequal", "equal", "bf"]
    k_mc = 100
    np.random.seed(987126)
    res_mc = smo.simulate_power_equivalence_oneway(means,
                                                   nobs,
                                                   eps,
                                                   vars_=vars_,
                                                   k_mc=k_mc,
                                                   trim_frac=0.1,
                                                   options_var=opt_var,
                                                   margin_type="wellek")

    frac_reject = (res_mc.pvalue <= 0.05).sum(0) / k_mc
    assert_allclose(frac_reject, [0.17, 0.18, 0.14], atol=0.001)
    # result with k_mc = 10000 is [0.1466, 0.1871, 0.1606]
    # similar to asy below, but not very close for all

    es_alt_li = []
    for uv in opt_var:
        es = effectsize_oneway(means, vars_, nobs, use_var=uv)
        es_alt_li.append(es)

    # compute asy power as comparison
    margin = wellek_to_f2(eps, k_groups)
    pow_ = [
        power_equivalence_oneway(es_,
                                 margin,
                                 nobs_t,
                                 n_groups=k_groups,
                                 df=None,
                                 alpha=0.05,
                                 margin_type="f2") for es_ in es_alt_li
    ]
    # regression test numbers
    assert_allclose(pow_, [0.147749, 0.173358, 0.177412], atol=0.007)
コード例 #2
0
ファイル: test_oneway.py プロジェクト: quuhua911/statsmodels
    def test_equivalence_welch(self):
        # reference numbers from Jan and Shieh 2019, p. 6
        means = self.means
        nobs = self.nobs
        stds = self.stds
        n_groups = self.n_groups
        vars_ = stds**2

        eps = 0.5
        res0 = anova_generic(means,
                             vars_,
                             nobs,
                             use_var="unequal",
                             welch_correction=False)
        f_stat = res0.statistic
        res = equivalence_oneway_generic(f_stat,
                                         n_groups,
                                         nobs.sum(),
                                         eps,
                                         res0.df,
                                         alpha=0.05,
                                         margin_type="wellek")
        assert_allclose(res.pvalue, 0.0110, atol=0.001)
        assert_allclose(res.df, [3.0, 22.6536], atol=0.0006)

        # agreement for Welch f-stat looks too low b/c welch_correction=False
        assert_allclose(f_stat, 0.1102, atol=0.007)

        res = equivalence_oneway(self.data,
                                 eps,
                                 use_var="unequal",
                                 margin_type="wellek")
        assert_allclose(res.pvalue, 0.0110, atol=1e-4)
        assert_allclose(res.df, [3.0, 22.6536], atol=0.0006)
        assert_allclose(res.f_stat, 0.1102, atol=1e-4)  # 0.007)

        # check post-hoc power, JS p. 6
        pow_ = _power_equivalence_oneway_emp(f_stat, n_groups, nobs, eps,
                                             res0.df)
        assert_allclose(pow_, 0.1552, atol=0.007)

        pow_ = power_equivalence_oneway(eps,
                                        eps,
                                        nobs.sum(),
                                        n_groups=n_groups,
                                        df=None,
                                        alpha=0.05,
                                        margin_type="wellek")
        assert_allclose(pow_, 0.05, atol=1e-13)

        nobs_t = nobs.sum()
        es = effectsize_oneway(means, vars_, nobs, use_var="unequal")
        es = np.sqrt(es)
        es_w0 = f2_to_wellek(es**2, n_groups)
        es_w = np.sqrt(fstat_to_wellek(f_stat, n_groups, nobs_t / n_groups))

        pow_ = power_equivalence_oneway(es_w,
                                        eps,
                                        nobs_t,
                                        n_groups=n_groups,
                                        df=None,
                                        alpha=0.05,
                                        margin_type="wellek")
        assert_allclose(pow_, 0.1552, atol=0.007)
        assert_allclose(es_w0, es_w, atol=0.007)

        margin = wellek_to_f2(eps, n_groups)
        pow_ = power_equivalence_oneway(es**2,
                                        margin,
                                        nobs_t,
                                        n_groups=n_groups,
                                        df=None,
                                        alpha=0.05,
                                        margin_type="f2")
        assert_allclose(pow_, 0.1552, atol=0.007)