コード例 #1
0
def test_eval_measures():
    #mainly regression tests

    x = np.arange(20).reshape(4,5)
    y = np.ones((4,5))
    assert_equal(iqr(x, y), 5*np.ones(5))
    assert_equal(iqr(x, y, axis=1), 2*np.ones(4))
    assert_equal(iqr(x, y, axis=None), 9)

    assert_equal(mse(x, y),
                 np.array([  73.5,   87.5,  103.5,  121.5,  141.5]))
    assert_equal(mse(x, y, axis=1),
                 np.array([   3.,   38.,  123.,  258.]))

    assert_almost_equal(rmse(x, y),
                        np.array([  8.5732141 ,   9.35414347,  10.17349497,
                                   11.02270384,  11.89537725]))
    assert_almost_equal(rmse(x, y, axis=1),
                        np.array([  1.73205081,   6.164414,
                                   11.09053651,  16.0623784 ]))

    assert_equal(maxabs(x, y),
                 np.array([ 14.,  15.,  16.,  17.,  18.]))
    assert_equal(maxabs(x, y, axis=1),
                 np.array([  3.,   8.,  13.,  18.]))

    assert_equal(meanabs(x, y),
                 np.array([  7. ,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(meanabs(x, y, axis=1),
                 np.array([  1.4,   6. ,  11. ,  16. ]))
    assert_equal(meanabs(x, y, axis=0),
                 np.array([  7. ,   7.5,   8.5,   9.5,  10.5]))

    assert_equal(medianabs(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(medianabs(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(bias(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(bias(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(medianbias(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(medianbias(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(vare(x, y),
                 np.array([ 31.25,  31.25,  31.25,  31.25,  31.25]))
    assert_equal(vare(x, y, axis=1),
                 np.array([ 2.,  2.,  2.,  2.]))
コード例 #2
0
def test_eval_measures():
    #mainly regression tests

    x = np.arange(20).reshape(4,5)
    y = np.ones((4,5))
    assert_equal(iqr(x, y), 5*np.ones(5))
    assert_equal(iqr(x, y, axis=1), 2*np.ones(4))
    assert_equal(iqr(x, y, axis=None), 9)

    assert_equal(mse(x, y),
                 np.array([  73.5,   87.5,  103.5,  121.5,  141.5]))
    assert_equal(mse(x, y, axis=1),
                 np.array([   3.,   38.,  123.,  258.]))

    assert_almost_equal(rmse(x, y),
                        np.array([  8.5732141 ,   9.35414347,  10.17349497,
                                   11.02270384,  11.89537725]))
    assert_almost_equal(rmse(x, y, axis=1),
                        np.array([  1.73205081,   6.164414,
                                   11.09053651,  16.0623784 ]))

    assert_equal(maxabs(x, y),
                 np.array([ 14.,  15.,  16.,  17.,  18.]))
    assert_equal(maxabs(x, y, axis=1),
                 np.array([  3.,   8.,  13.,  18.]))

    assert_equal(meanabs(x, y),
                 np.array([  7. ,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(meanabs(x, y, axis=1),
                 np.array([  1.4,   6. ,  11. ,  16. ]))
    assert_equal(meanabs(x, y, axis=0),
                 np.array([  7. ,   7.5,   8.5,   9.5,  10.5]))

    assert_equal(medianabs(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(medianabs(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(bias(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(bias(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(medianbias(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(medianbias(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(vare(x, y),
                 np.array([ 31.25,  31.25,  31.25,  31.25,  31.25]))
    assert_equal(vare(x, y, axis=1),
                 np.array([ 2.,  2.,  2.,  2.]))
コード例 #3
0
def test_eval_measures():
    # mainly regression tests
    x = np.arange(20).reshape(4, 5)
    y = np.ones((4, 5))

    assert_equal(iqr(x, y), 5 * np.ones(5))
    assert_equal(iqr(x, y, axis=1), 2 * np.ones(4))
    assert_equal(iqr(x, y, axis=None), 9)

    assert_equal(mse(x, y), np.array([73.5, 87.5, 103.5, 121.5, 141.5]))
    assert_equal(mse(x, y, axis=1), np.array([3.0, 38.0, 123.0, 258.0]))

    assert_almost_equal(
        rmse(x, y),
        np.array(
            [8.5732141, 9.35414347, 10.17349497, 11.02270384, 11.89537725]
        ),
    )
    assert_almost_equal(
        rmse(x, y, axis=1),
        np.array([1.73205081, 6.164414, 11.09053651, 16.0623784]),
    )

    err = x - y
    loc = np.where(x != 0)
    err[loc] /= x[loc]
    err[np.where(x == 0)] = np.nan
    expected = np.sqrt(np.nanmean(err ** 2, 0) * 100)
    assert_almost_equal(rmspe(x, y), expected)
    err[np.where(np.isnan(err))] = 0.0
    expected = np.sqrt(np.nanmean(err ** 2, 0) * 100)
    assert_almost_equal(rmspe(x, y, zeros=0), expected)

    assert_equal(maxabs(x, y), np.array([14.0, 15.0, 16.0, 17.0, 18.0]))
    assert_equal(maxabs(x, y, axis=1), np.array([3.0, 8.0, 13.0, 18.0]))

    assert_equal(meanabs(x, y), np.array([7.0, 7.5, 8.5, 9.5, 10.5]))
    assert_equal(meanabs(x, y, axis=1), np.array([1.4, 6.0, 11.0, 16.0]))
    assert_equal(meanabs(x, y, axis=0), np.array([7.0, 7.5, 8.5, 9.5, 10.5]))

    assert_equal(medianabs(x, y), np.array([6.5, 7.5, 8.5, 9.5, 10.5]))
    assert_equal(medianabs(x, y, axis=1), np.array([1.0, 6.0, 11.0, 16.0]))

    assert_equal(bias(x, y), np.array([6.5, 7.5, 8.5, 9.5, 10.5]))
    assert_equal(bias(x, y, axis=1), np.array([1.0, 6.0, 11.0, 16.0]))

    assert_equal(medianbias(x, y), np.array([6.5, 7.5, 8.5, 9.5, 10.5]))
    assert_equal(medianbias(x, y, axis=1), np.array([1.0, 6.0, 11.0, 16.0]))

    assert_equal(vare(x, y), np.array([31.25, 31.25, 31.25, 31.25, 31.25]))
    assert_equal(vare(x, y, axis=1), np.array([2.0, 2.0, 2.0, 2.0]))
コード例 #4
0
def ValidatePred(ndata, par, steps, nplasmids, npromoters, variants, random=100, timespan=3600):
    """ Simulating all combinations will become too expensive with large sets! """
    """ Alternative ask for a random sample """
    if random is None:
        points = np.arange(ndata.shape[0])
    else:
        points = np.hstack( [ [0,ndata.shape[0]-1], 
                             np.random.choice(ndata.shape[0],
                                              min(ndata.shape[0],random-2),
                                              replace=False) ] )
    library = []
    results = []
    for i in points:
        select = [ int( re.sub('L', '',x)) for x in np.array( ndata.iloc[i,0:-1] )  ]
        design = Assembly( select, steps, nplasmids, npromoters, variants  )
        pw = Construct(par,design)
        library.append(pw)
        target = SelectCurves(pw)
        s = pw.simulate(0,timespan,1000)
        ds = pd.DataFrame(s,columns=s.colnames)
        results.append( s[target][-1] )
    ndata.loc[points,'sim'] = results
    ix = np.logical_not( np.isnan( ndata['sim'] ) )
    sim = ndata.loc[ix,'sim']
    pred = ndata.loc[ix,'pred']
    rms = rmse(pred, sim)
    iq = iqr(pred,sim)
    ym = np.mean(sim)
    ols1 = smf.ols(formula="sim ~ pred", data=ndata )
    res1 = ols1.fit()
    performance = { 'rms': rms, 'lib': library, 'ndata': ndata, 'res': res1, 
                   'iqr': float(iq), 'ym': ym }
    return performance
コード例 #5
0
def test_iqr_axis(reset_randomstate):
    x1 = np.random.standard_normal((100, 100))
    x2 = np.random.standard_normal((100, 100))
    ax_none = iqr(x1, x2, axis=None)
    ax_none_direct = iqr(x1.ravel(), x2.ravel())
    assert_equal(ax_none, ax_none_direct)

    ax_0 = iqr(x1, x2, axis=0)
    assert ax_0.shape == (100, )
    ax_0_direct = [iqr(x1[:, i], x2[:, i]) for i in range(100)]
    assert_almost_equal(ax_0, np.array(ax_0_direct))

    ax_1 = iqr(x1, x2, axis=1)
    assert ax_1.shape == (100, )
    ax_1_direct = [iqr(x1[i, :], x2[i, :]) for i in range(100)]
    assert_almost_equal(ax_1, np.array(ax_1_direct))

    assert any(ax_0 != ax_1)