コード例 #1
0
def cov_cluster_2groups(results, group, group2=None, use_correction=True):
    '''cluster robust covariance matrix for two groups/clusters

    Parameters
    ----------
    results : result instance
       result of a regression, uses results.model.exog and results.resid
       TODO: this should use wexog instead
    use_correction : bool
       If true (default), then the small sample correction factor is used.

    Returns
    -------
    cov_both : ndarray, (k_vars, k_vars)
        cluster robust covariance matrix for parameter estimates, for both
        clusters
    cov_0 : ndarray, (k_vars, k_vars)
        cluster robust covariance matrix for parameter estimates for first
        cluster
    cov_1 : ndarray, (k_vars, k_vars)
        cluster robust covariance matrix for parameter estimates for second
        cluster

    Notes
    -----

    verified against Peterson's table, (4 decimal print precision)
    '''

    if group2 is None:
        if group.ndim != 2 or group.shape[1] != 2:
            raise ValueError(
                'if group2 is not given, then groups needs to be ' +
                'an array with two columns')
        group0 = group[:, 0]
        group1 = group[:, 1]
    else:
        group0 = group
        group1 = group2
        group = (group0, group1)

    cov0 = cov_cluster(results, group0, use_correction=use_correction)[0]
    #[0] because we get still also returns bse
    cov1 = cov_cluster(results, group1, use_correction=use_correction)[0]

    group_intersection = Group(group)
    #cov of cluster formed by intersection of two groups
    cov01 = cov_cluster(results,
                        group_intersection.group_int,
                        use_correction=use_correction)[0]

    #robust cov matrix for union of groups
    cov_both = cov0 + cov1 - cov01

    #return all three (for now?)
    return cov_both, cov0, cov1
コード例 #2
0
def test_group_class():
    # Moved from grouputils __main__ section
    g = np.array([0, 0, 1, 2, 1, 1, 2, 0])

    x = np.arange(len(g)*3).reshape(len(g), 3, order='F')
    mygroup = Group(g)

    mygroup.group_int
    mygroup.group_sums(x)
    mygroup.labels()