コード例 #1
0
 def _evaluate_garch_model(self, train, test, split_time):
     """
     Optimize Garch model
     :param train: train part of the signal
     :param test: test part of the signal
     :param split_time: point when you start to predict
     :return: variance volatility
     """
     warnings.filterwarnings("ignore")
     best_score = float(10000)
     best_p = (1)
     best_q = int(1)
     p_values = range(1, 3)
     q_values = range(1, 2)
     for p in p_values:
         for q in q_values:
             try:
                 am = arch_model(train, vol='Garch', p=p, q=q)
                 res = am.fit(last_obs=split_time)
                 aic = SARIMAXResults.aic(res)
                 if abs(aic) < best_score:
                     best_score, best_p, best_q = aic, p, q
                     # print('GARCH : p=%i  GARCH : q=%i  AIC=%.3f' % (p, q, aic))
             except:
                 continue
     print('Best config GARCH model p=%i q=%i AIC=%.3f' %
           (best_p, best_q, best_score))
     am = arch_model(train, vol='Garch', p=best_p, q=best_q)
     res = am.fit(last_obs=split_time)
     forecast_analytic = res.forecast(horizon=len(test), method='analytic')
     forecast_variance = forecast_analytic.variance[split_time:]
     forecast_volatility = forecast_analytic.residual_variance[split_time:]
     forecast_garch = forecast_variance.iloc[:, 0]
     forecast_vol = forecast_volatility.iloc[:, 0]
     return forecast_garch, forecast_vol
コード例 #2
0
def preveProximasCincoSemanas():
    loaded = SARIMAXResults.load('model.pkl')
    
    hoje = date.today()
    ultimaData = date(2020, 3, 15)
    medicoesInicio = round((hoje-ultimaData).days/7)
    numMedicoes=medicoesInicio+5
    primeiraData='2020-03-22'
    
    predicao=loaded.get_forecast(steps=numMedicoes)
    predicao.predicted_mean
    
    ##index_date = pandas.date_range(primeiraData, periods = numMedicoes, freq = 'W')
    
    index_date = pandas.bdate_range(primeiraData, periods = numMedicoes, freq = 'C', weekmask='Mon')
    
    ##forecast_series = pandas.Series(list(predicao.predicted_mean), index = index_date)
    
    datasStr=numpy.datetime_as_string(index_date, unit='D')
    print(numpy.column_stack((datasStr,list(predicao.predicted_mean))))
    
    ##conversaoEmLista = pandas.DataFrame(data=forecast_series).tail(5).to_numpy().tolist()
    conversaoEmLista = pandas.DataFrame(numpy.column_stack((datasStr,list(predicao.predicted_mean)))).tail(5).to_numpy().tolist()
    response = app.response_class(
        response=json.dumps(conversaoEmLista),
        status=200,
        mimetype='application/json'
    )
    return response
コード例 #3
0
ファイル: func_mr.py プロジェクト: Parmenides91/TFG2019
def crearPrediccionMR(fichero_modelo, tipo):
    loaded = SARIMAXResults.load(fichero_modelo)

    DIAS_A_PREDECIR = 7

    inicio = datetime.today().__format__('%Y-%m-%d')  # Hoy
    final = datetime.today()
    for i in range(DIAS_A_PREDECIR):
        final += timedelta(days=1)
    final = final.__format__('%Y-%m-%d')  # x DÍAS EN ADELANTE

    inicio = datetime(2018, 3, 1, 0, 0,
                      0)  # fuerzo un día en concreto because boobs
    final = datetime(2018, 3, 7, 0, 0,
                     0)  # fuerzo un día en concreto because boobs

    predicciones = loaded.predict(
        start=inicio, end=final, dynamic=False,
        typ='levels').rename('SARIMA(2,1,1)(2,0,1,24) Predicciones')

    ristra = pd.date_range(start=inicio, end=final, freq='h')
    d = {'Fecha': ristra, tipo: predicciones}
    df = pd.DataFrame(data=d)
    ruta_fich = settings.MEDIA_ROOT + '\\prediccionesMR\\'
    ruta_pred = ruta_fich + 'prediccion' + id_random_generator() + '.csv'
    df.to_csv(ruta_pred)

    return ruta_pred
コード例 #4
0
 def _evaluate_models(self, train, d, d_seasonal, WD):
     best_score = float(10000)
     best_cfg_arima = (1, d, 0)
     best_cfg_seasonal = (1, d_seasonal, 0, WD)
     p_values = range(1, 3)
     q_values = range(1, 2)
     for p in p_values:
         for q in q_values:
             for p_s in p_values:
                 for q_s in q_values:
                     order = (p, d, q)
                     seasonal_order = (p_s, d_seasonal, q_s, WD)
                     try:
                         model = SARIMAX(train,
                                         order=order,
                                         seasonal_order=seasonal_order)
                         md_fit = model.fit()
                         aic = SARIMAXResults.aic(md_fit)
                         if abs(aic) < best_score:
                             best_score, best_cfg_arima, best_cfg_seasonal = aic, order, seasonal_order
                     except:
                         continue
     print('Best ARIMA%s Best Seasonal%s AIC=%.3f' %
           (best_cfg_arima, best_cfg_seasonal, best_score))
     return best_cfg_arima, best_cfg_seasonal, best_score
コード例 #5
0
ファイル: time_series.py プロジェクト: pkings/ewiis3_python
 def predict_with_sarima(self, order=(1, 0, 0), seasonal_order=(1, 0, 0, 24)):
     # seasonal_order=(1, 1, 1, 24),
     saved_model = SARIMAXResults.load('{}{}{}.pkl'.format(self.model_dir, self.name, self.sarima_models_suffix))
     data_used_for_prediction = self.train[-48:]
     model = SARIMAX(endog=data_used_for_prediction, order=order, seasonal_order=seasonal_order)
     fitted_model = model.filter(params=saved_model.params)
     self.prediction = fitted_model.predict(start=len(data_used_for_prediction), end=len(data_used_for_prediction) + self.prediction_length - 1)
     return self.prediction
コード例 #6
0
    def load(self, filepath):
        '''
        Loads a model from a pickle file

        Arguments:
          filepath - Path to the pickle file containing the model
        '''
        self.model = SARIMAXResults.load(filepath)
コード例 #7
0
ファイル: func_mr.py プロジェクト: Parmenides91/TFG2019
def crearPrediccionMRunico(modelo, tipo, rango):
    """
    Crea las predicciones de precios para cada tarifa del mercado regulado.

    :param modelo: ruta del modelo a partir del cual crear la predicción.
    :param tipo: tarifa en concreto de la que se creará la predicción
    :param rango: franja temporal en la que crear la predicción.
    :return: ruta del fichero que contiene la predicción creada.
    """

    loaded = SARIMAXResults.load(modelo)

    inicio = pd.to_datetime(rango.get('principio'))
    final = pd.to_datetime(rango.get('final'))

    if tipo == 'TPD':
        predicciones = loaded.predict(
            start=inicio, end=final, dynamic=False,
            typ='levels').rename('SARIMA(3,1,1)(2,0,1,24) Predicciones')
        ristra = pd.date_range(start=inicio, end=final, freq='h')
        d = {'Fecha': ristra, tipo: predicciones}
        df = pd.DataFrame(data=d)
        ruta_fich = settings.MEDIA_ROOT + '\\prediccionesMR\\'
        ruta_pred = ruta_fich + 'prediccionMR_' + tipo + '_' + id_random_generator(
        ) + '.csv'
        df.to_csv(ruta_pred)
        return ruta_pred
    elif tipo == 'EDP':
        predicciones = loaded.predict(
            start=inicio, end=final, dynamic=False,
            typ='levels').rename('SARIMA(1,0,0)(2,0,0,24) Predicciones')
        ristra = pd.date_range(start=inicio, end=final, freq='h')
        d = {'Fecha': ristra, tipo: predicciones}
        df = pd.DataFrame(data=d)
        ruta_fich = settings.MEDIA_ROOT + '\\prediccionesMR\\'
        ruta_pred = ruta_fich + 'prediccionMR_' + tipo + '_' + id_random_generator(
        ) + '.csv'
        df.to_csv(ruta_pred)
        return ruta_pred
    elif tipo == 'VE':
        predicciones = loaded.predict(
            start=inicio, end=final, dynamic=False,
            typ='levels').rename('SARIMA(2,0,0)(2,0,0,24) Predicciones')
        ristra = pd.date_range(start=inicio, end=final, freq='h')
        d = {'Fecha': ristra, tipo: predicciones}
        df = pd.DataFrame(data=d)
        ruta_fich = settings.MEDIA_ROOT + '\\prediccionesMR\\'
        ruta_pred = ruta_fich + 'prediccionMR_' + tipo + '_' + id_random_generator(
        ) + '.csv'
        df.to_csv(ruta_pred)
        return ruta_pred
    else:
        # Creación de modelos para tarifas que no se tienen en cuenta: NOPE.
        print('Creación de Predicciones unicas mercado regulado: error')

    return False
コード例 #8
0
    def load_model(self, path, filename, version):
        """

        :param path: Full or relative path for the model file
        :param filename: Name of the file
        :param version: Version number
        :return: unpickled instance of the SARIMAX model
        """
        return SARIMAXResults.load(
            self.__generate_pkl_filename(path, filename, version))
コード例 #9
0
 def load(self, model_path, scaler_path=None):
     '''
     Loads the model from disk
     :param model_path: Path to saved model
     '''
     if os.path.splitext(model_path)[1] != '.pkl':
         raise Exception('Model file path for ' + self.name +
                         ' must have ".pkl" extension.')
     self.model = SARIMAXResults.load(model_path)
     return
コード例 #10
0
def plot_sarima_forecast(idf_df):
    idf_df[c.EnergyConso.CONSUMPTION] = idf_df[c.EnergyConso.CONSUMPTION].fillna(
        idf_df[c.EnergyConso.CONSUMPTION].mean())

    idf_train = idf_df[md.END_TRAIN_DATE - timedelta(days=365):md.END_TRAIN_DATE]
    idf_test = idf_df[md.END_TRAIN_DATE:md.END_TRAIN_DATE + timedelta(hours=md.NB_HOURS_PRED)]

    best_model = SARIMAXResults.load(os.path.join(SARIMA_MODELS_PATH, "best_model.pkl"))

    plot_sarima(idf_test, idf_train, best_model, md.NB_HOURS_PRED, s=1, d=1)
コード例 #11
0
ファイル: main.py プロジェクト: abijna/Krishi-Kranthi
def price_predict():
    product_name = request.args.get("product_name")
    num_steps = int(request.args.get("num_steps"))
    loaded = SARIMAXResults.load(product_name + ".pkl")

    pred_uc = loaded.get_forecast(steps=num_steps)
    pred_ci = pred_uc.conf_int()
    print(pred_ci)

    bytes_obj = get_plot(pred_uc, pred_ci, product_name)

    #return send_file(bytes_obj,attachment_filename='plot.png',mimetype='image/png')
    return "Done"
コード例 #12
0
def crearPrediccion(fichero):
    """
    Creación de la predicción de consumo para un Inmueble.

    :param fichero: ruta del modelo predictivo a emplear.
    :return: ruta del fichero con la predicción.
    """

    print('Has entrado a la función')
    # print(File(fichero))
    print(fichero)
    print('Cargamos el fichero')
    loaded = SARIMAXResults.load(fichero)
    print('Ya está cargado')

    DIAS_A_PREDECIR = 7

    inicio = datetime.today().__format__('%Y-%m-%d')  # Hoy
    final = datetime.today()
    for i in range(DIAS_A_PREDECIR):
        final += timedelta(days=1)
    final = final.__format__('%Y-%m-%d')  # x DÍAS EN ADELANTE

    inicio = datetime(2018, 3, 1, 0, 0,
                      0)  # fuerzo un día en concreto because boobs
    final = datetime(2018, 3, 7, 0, 0,
                     0)  # fuerzo un día en concreto because boobs
    # print(inicio)
    # print(final)
    print('Fechas elegidas. Procedo a predecir.')
    predicciones = loaded.predict(
        start=inicio, end=final, dynamic=False,
        typ='levels').rename('SARIMA(1,1,1)(2,0,3,24) Predicciones')
    print('Predicciones hechas.')

    #Creo un dataframe con los valores de las predicciones
    ristra = pd.date_range(start=inicio, end=final, freq='h')
    d = {'Fecha': ristra, 'Consumo_kWh': predicciones}
    df = pd.DataFrame(data=d)
    ruta_fich = settings.MEDIA_ROOT + '\\predicciones\\'
    ruta_pred = ruta_fich + 'prediccion' + id_random_generator() + '.csv'
    df.to_csv(ruta_pred)

    # prediccion = predicciones.to_csv('LaPrediccion.csv')
    print('Guardado en csv. Te lo mando.')

    # return predicciones
    return ruta_pred
コード例 #13
0
def forecast_sarima(df, n_history, pred_horizon):

    start = len(df[:-pred_horizon]) - 1
    end = start + pred_horizon - 1
    starttime = time.time()
    
    order = (1, 3, 0)
    seasonal_order = (1, 1, 1, n_history) #last parameter should be 52 for weekly saisonality
    train_sarima(df, n_history = n_history, pred_horizon=pred_horizon, order=order, seasonal_order=seasonal_order)
    print("training sarima took ", time.time() - starttime)

    model = SARIMAXResults.load('sarima.pkl')
    
    predictions = model.predict(start=start, end=end, dynamic=False).rename('SARIMAX Predictions' % n_history)
    
    df_forecast = pd.DataFrame(predictions.values, columns=['SARIMA Predictions (1, 3, 0)(1, 1, 1, n_history) ' % n_history])
    return generate_index_forecast(df, df_forecast, pred_horizon=pred_horizon) 
コード例 #14
0
    def predict_with_trained_SARIMA_model(self, df, game_id, dep_var, indep_var, X_out_of_sample, target, type, model_type):
        # might be mistakes here!
        save_path = util.build_model_save_path(game_id, target, type, model_type)

        if not util.check_for_model_existence(save_path):
            print("Cannot predict for {}. No model has been trained yet.".format(dep_var))
            return

        saved_model = SARIMAXResults.load(save_path)

        Y = df[dep_var]
        X = df[indep_var]
        X_out_of_sample.index = range(max(Y.index) + 1, max(Y.index) + 24 + 1)
        latest_index = max(Y.index)

        latest_timeslot = df.iloc[latest_index]['timeslot']

        if self.seasonal_order is None:
            model = SARIMAX(endog=Y, exog=X, order=self.order)
        else:
            model = SARIMAX(endog=Y, exog=X, order=self.order, seasonal_order=self.seasonal_order)

        fitted_model = model.filter(params=saved_model.params)
        prediction = fitted_model.predict(exog=X_out_of_sample, start=latest_index + 1,
                                          end=latest_index + 1 + self.forecast_length - 1)
        df_prediction = pd.DataFrame(
            {'target_timeslot': range(latest_timeslot + 1, latest_timeslot + 1 + self.forecast_length),
             'prediction': prediction})

        # set lower and upper bound for prediction

        tolerance = 0.2

        prediction_upper_bound = max(Y) * (1 + tolerance) if max(Y) > 0 else max(Y) * (1 - tolerance)
        prediction_lower_bound = min(Y) * (1 - tolerance) if min(Y) > 0 else min(Y) * (1 + tolerance)
        # restrict prediction in lower and upper bound
        df_prediction['prediction'] = df_prediction['prediction'].apply(
            lambda x: max([min([x, prediction_upper_bound]), prediction_lower_bound]))

        df_prediction['prediction_timeslot'] = latest_timeslot
        df_prediction['proximity'] = df_prediction['target_timeslot'] - df_prediction['prediction_timeslot']
        df_prediction['game_id'] = game_id

        df_prediction['target'] = target
        df_prediction['type'] = type
        return df_prediction
コード例 #15
0
    def fit_predict(self, df):
        """ Responsible for the train/inference pipeline of the model
		Args:
			df: the dataframe containing the time series data
		"""
        logger.info("SARIMAX Modeling")
        self.df = df
        self.df.index = pd.date_range(df.index[0], df.index[-1], freq='H')

        # Log Transform to battle Heteroscedasticity
        self.data = np.log(self.df['requests'])
        # Train/Test Split
        #train, test, exog_train, exog_test = self.train_test_split(self.df, data)
        self.train_test_split()
        if not self.trainmodel:
            logger.info("\tLoading Model from Disk...")
            self.result = SARIMAXResults.load(self.modelpath)
        else:
            self.train_sarimax()
        self.predict_sarimax()
コード例 #16
0
from statsmodels.tsa.statespace.sarimax import SARIMAXResults
import pickle
forecast_model_train = SARIMAXResults.load('forecast_model_train.pkl')
# Make a forecast for the next 6 periods after the last period in the training set
future = forecast_model_train.forecast(steps=5)
print('Train forecats...')
print(future)

# Make a forecast for the next 6 periods after the last period in the test set
forecast_model_test = SARIMAXResults.load('forecast_model_test.pkl')
future = forecast_model_test.forecast(steps=5)
print('\nTest forecasts')
print(future)
コード例 #17
0
        concentrate_scale=False,
        trend_offset=1,
        use_exact_diffuse=False,
        dates=None,
        freq=None,
        missing='none'
    )

    res = mod.fit(disp=False)

    if SAVE_MODEL:
        res.save('save/prediction_model.pkl')

else:

    res = SARIMAXResults.load('save/prediction_model.pkl')

# ------------------------------ Prediction -----------------------------------

def forecast_two_next_weeks(two_last_weeks, res, length):
    """Predicts the two next weeks of a time series from the last two weeks using
     the SARIMAX method above

    Arguments:
        two_last_weeks {float tab} -- Two last weeks of the time series from which we predict
        res {statsmodels.tsa.statespace.sarimax.SARIMAXResults} -- prediction model (defined above)
        length {int} -- length of the prediction

    Returns:
        float np.array -- forecast of the next values of the time series
コード例 #18
0
def sarima_test():
    data = pd.read_csv('../data/CGMData.csv', header=None)
    cgm, bolus = load_data(path=os.path.abspath('..'))
    data.reindex(index=data.index[::-1])
    t=0
    for i in range(len(data.columns)):
      data[i][0] = t
      t+=5
    data.iloc[1] = data.iloc[1].interpolate()
    data = data.T
    data = data[:len(bolus)]
    data.columns=["time","CGMreading"]
    y = data.set_index(["time"])
    results = SARIMAXResults.load(os.path.join('..', 'model', "mc_sarima.pkl"))
    classification_model = pickle.load(open(os.path.join('..', 'model', 'classifer_model.pkl'), 'rb'))

    pred = results.get_prediction(start=26255, dynamic=False)
    pred_ci = pred.conf_int()
    ax = y.plot(label='observed')
    pred.predicted_mean.plot(ax=ax, label='One-step ahead Forecast', alpha=.7, figsize=(14, 4))
    ax.fill_between(pred_ci.index,
                    pred_ci.iloc[:, 0],
                    pred_ci.iloc[:, 1], color='k', alpha=.2)
    ax.set_xlabel('Date')
    ax.set_ylabel('Retail_sold')
    plt.legend()
    plt.show()

    y_forecasted = pred.predicted_mean
    y_truth = y[131275:]['CGMreading']
    mse = ((y_forecasted - y_truth) ** 2).mean()
    print('The Mean Squared Error is {}'.format(round(mse, 2)))
    print('The Root Mean Squared Error is {}'.format(round(np.sqrt(mse), 2)))

    testPredict = []
    for i in range(0,(len(pred.predicted_mean)-6)):
        temp_predict = []
        temp_predict.append(pred.predicted_mean.iloc[i])
        temp_predict.append(pred.predicted_mean.iloc[i+1])
        temp_predict.append(pred.predicted_mean.iloc[i+2])
        temp_predict.append(pred.predicted_mean.iloc[i+3])
        temp_predict.append(pred.predicted_mean.iloc[i+4])
        temp_predict.append(pred.predicted_mean.iloc[i+5])
        testPredict.append(temp_predict)
    testPredict = np.array(testPredict)

    test = cgm[26249:(len(cgm))]

    test = test.reshape(-1, 1)
    test = regression_scaler.fit_transform(test)



    testX, testY = create_dataset_multi_feature(test, 6)

    _, _, _, bolus_test, classification_scaler = classification_split(cgm, bolus)
    bolus_test = bolus_test[6 - 1:testX.shape[0] + 6 - 2]

    predicted_labels = []
    regression_predictions = copy.deepcopy(testPredict)
    classification_train_data = classification_scaler.transform(regression_predictions)
    prediction = classification_model.predict(classification_train_data)
    predicted_labels.extend(prediction)

    print(classification_report(bolus_test, predicted_labels))
コード例 #19
0
def home():
    fcast = ""
    if request.method == 'POST':
        method = request.form['forecast']

        # Forecasting using saved ARMA model
        if method == "arma":
            result = SARIMAXResults.load('model/arma_model.pkl')
            forecast_values = result.get_forecast(steps=test.shape[0])
            forecast_values_mean = forecast_values.predicted_mean
            conf_interval = forecast_values.conf_int()

            arma_forecast_df = pd.DataFrame({
                'Date':
                test.index,
                'Views':
                forecast_values.predicted_mean,
                'lower_views':
                conf_interval['lower Views'].values,
                'upper_views':
                conf_interval['upper Views'].values
            })
            arma_forecast_df = arma_forecast_df.set_index('Date')

            fig, ax = plt.subplots(figsize=(15, 4))
            test.rename(columns={
                'Views': 'Actual value'
            }).plot(ax=ax, color='blue')
            arma_forecast_df[['Views']].rename(columns={
                'Views': 'Forecast'
            }).plot(ax=ax, label='Forecast', color='red')
            plt.fill_between(arma_forecast_df.index, \
                arma_forecast_df.lower_views, \
                arma_forecast_df.upper_views, \
                color='pink', alpha=0.5)
            plt.xlabel('Date')
            plt.ylabel('Views')
            plt.legend(loc='best')
            new_arma_plot = "arma_plot_" + str(time.time()) + ".png"

            for filename in os.listdir('static/'):
                if filename.startswith('arma_plot_'):
                    os.remove('static/' + filename)

            plt.savefig('static/' + new_arma_plot)
            return render_template('index.html',
                                   forecast='ARMA',
                                   fcast='static/' + new_arma_plot)

        # Forecasting using saved ARIMA model
        elif method == "arima":
            arima_result = SARIMAXResults.load('model/arima_model.pkl')
            arima_forecast_values = arima_result.get_forecast(
                steps=test.shape[0])
            arima_forecast_mean = arima_forecast_values.predicted_mean
            arima_conf_interval = arima_forecast_values.conf_int()

            arima_forecast_df = pd.DataFrame({
                'Date':
                test.index,
                'Views':
                arima_forecast_values.predicted_mean,
                'lower_views':
                arima_conf_interval['lower Views'].values,
                'upper_views':
                arima_conf_interval['upper Views'].values
            })
            arima_forecast_df = arima_forecast_df.set_index('Date')

            fig, ax = plt.subplots(figsize=(15, 4))
            test.rename(columns={
                'Views': 'Actual value'
            }).plot(ax=ax, color='blue')
            arima_forecast_df[['Views']].rename(columns={
                'Views': 'Forecast'
            }).plot(ax=ax, label='Forecast', color='red')
            plt.fill_between(arima_forecast_df.index, \
                arima_forecast_df.lower_views, \
                arima_forecast_df.upper_views, \
                color='pink', alpha=0.5)
            plt.xlabel('Date')
            plt.ylabel('Views')
            plt.legend(loc='best')
            new_arima_plot = "arima_plot_" + str(time.time()) + ".png"

            for filename in os.listdir('static/'):
                if filename.startswith('arima_plot_'):
                    os.remove('static/' + filename)

            plt.savefig('static/' + new_arima_plot)
            return render_template('index.html',
                                   forecast='ARIMA',
                                   fcast='static/' + new_arima_plot)

        # Forecasting using saved Exponential Smoothing model
        elif method == 'exp':
            exp_model = pickle.load(open('model/exp_smoothing_model.pkl',
                                         'rb'))
            exp_smoothing_result = exp_model.fit(smoothing_level=0.5,
                                                 optimized=True)
            test.index = pd.DatetimeIndex(test.index)
            exp_smoothing_forecast = exp_smoothing_result.forecast(
                test.shape[0])
            exp_smoothing_forecast = exp_smoothing_forecast.reset_index(
            ).rename(columns={
                'index': 'Date',
                0: 'Views'
            }).set_index('Date')

            fig, ax = plt.subplots(figsize=(15, 4))
            test.rename(columns={
                'Views': 'Actual data'
            }).plot(ax=ax, color='blue')
            exp_smoothing_forecast.rename(columns={
                'Views': 'Forecast'
            }).plot(ax=ax, color='red')
            plt.xlabel('Date')
            plt.ylabel('Views')
            plt.legend(loc='best')

            new_exp_plot = "exp_plot_" + str(time.time()) + ".png"

            for filename in os.listdir('static/'):
                if filename.startswith('exp_plot_'):
                    os.remove('static/' + filename)

            plt.savefig('static/' + new_exp_plot)
            return render_template('index.html',
                                   forecast='Exponential Smoothing',
                                   fcast='static/' + new_exp_plot)

        # Forecasting using saved Prophet model
        elif method == 'prophet':
            prophet_model = pickle.load(open('model/prophet_model.pkl', 'rb'))
            test.index = pd.DatetimeIndex(test.index)
            future = prophet_model.make_future_dataframe(periods=test.shape[0])
            prophet_forecast = prophet_model.predict(future)

            forecast_prophet = prophet_forecast[[
                'ds', 'yhat_lower', 'yhat_upper', 'yhat'
            ]][-test.shape[0]:]
            forecast_prophet = forecast_prophet.set_index('ds')

            fig, ax = plt.subplots(figsize=(15, 4))
            pd.plotting.register_matplotlib_converters()
            test.rename(columns={
                'Views': 'Actual data'
            }).plot(ax=ax, color='blue')
            forecast_prophet.rename(columns={'yhat': 'Forecast'})[[
                'Forecast'
            ]].plot(ax=ax, color='red')
            plt.fill_between(forecast_prophet.index,
                             forecast_prophet['yhat_lower'],
                             forecast_prophet['yhat_upper'],
                             color='pink',
                             alpha=0.5)
            plt.xlabel('Date')
            plt.ylabel('Views')
            plt.legend(loc='best')

            new_prophet_plot = "prophet_plot_" + str(time.time()) + ".png"

            for filename in os.listdir('static/'):
                if filename.startswith('prophet_plot_'):
                    os.remove('static/' + filename)

            plt.savefig('static/' + new_prophet_plot)
            return render_template('index.html',
                                   forecast='Prophet',
                                   fcast='static/' + new_prophet_plot)

        # Forecasting using saved AutoARIMA model
        elif method == 'auto_arima':
            auto_arima_result = SARIMAXResults.load(
                'model/auto_arima_model.pkl')
            auto_arima_forecast = auto_arima_result.predict(
                n_periods=test.shape[0])
            auto_arima_forecast = pd.DataFrame(auto_arima_forecast,
                                               index=test.index,
                                               columns=['Forecast'])

            fig, ax = plt.subplots(figsize=(15, 4))
            test.rename(columns={
                'Views': 'Actual value'
            }).plot(ax=ax, color='blue')
            auto_arima_forecast[['Forecast']].plot(ax=ax,
                                                   label='Forecast',
                                                   color='red')
            ax.set_xlabel('Date')
            ax.set_ylabel('Views')
            plt.legend(loc='best')

            new_auto_arima_plot = "auto_arima_plot_" + str(
                time.time()) + ".png"

            for filename in os.listdir('static/'):
                if filename.startswith('auto_arima_plot_'):
                    os.remove('static/' + filename)

            plt.savefig('static/' + new_auto_arima_plot)
            return render_template('index.html',
                                   forecast='Auto-arima',
                                   fcast='static/' + new_auto_arima_plot)
    return render_template('index.html', fcast=fcast)
コード例 #20
0
def test(csv_file, pkl_file, power_test, amb_test):

    power_path = str(power_test)  # "power.csv"
    power = pd.read_csv(power_path,
                        index_col=[0],
                        parse_dates=True,
                        names=["dt", "power"])
    # Read Ambient Temperature Data
    temp_path = str(amb_test)  # "amb_temp.csv"
    temp = pd.read_csv(temp_path,
                       index_col=[0],
                       parse_dates=True,
                       names=["dt", "temp"])
    df = pd.DataFrame()
    df = power.resample('15T').mean()
    df["temp"] = temp.resample('15T').mean()

    new_predicted = []
    output = []

    important = pd.read_csv("csv_file")
    H = important[0]
    L = important[1]
    coef = important[2]
    intercept = important[3]

    load_ = str(pkl_file)
    load_model = sresults.load(load_)

    start = df.index[0]
    end = df.index[-1]

    predicted = loaded.predict(start, end).values
    actual = power.power.values

    df["pred"] = predicted
    df["epsilon"] = (df["power"] - df["pred"]) / df["pred"]

    epsilon = df.epsilon.values
    power_val = df.power.values
    temp_val = df.temp.values

    for i in range(len(epsilon)):
        new_p = 0
        if epsilon[i] > H:
            output.append("Positive Outlier")
            new_p = coef * temp_val[i] + intercept
            new_predicted.append(new_p)
        elif epsilon[i] < L:
            output.append("Negetive Outlier")
            new_p = coef * temp_val[i] + intercept
            new_predicted.append(new_p)
        else:
            outout.append("No Outlier")
            new_predicted.append(power_val[i])

    new_df = pd.DataFrame(new_predicted)
    new_df.columns = ["Result"]
    new_df["Remark"] = output
    new_df.to_csv("Final_result.csv", index=False)
    return
コード例 #21
0
import matplotlib.pyplot as plt
from pandas import datetime
import calendar
import seaborn as sns
from statsmodels.tsa.ar_model import AR
from statsmodels.tsa.arima_model import ARMA
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.statespace.sarimax import SARIMAXResults


def parser(x):
    return datetime.strptime(x, '%d-%m-%Y')


loaded = SARIMAXResults.load('model1.pkl')
test = pd.read_csv('validation_data.csv',
                   header=0,
                   parse_dates=[1],
                   index_col=1,
                   date_parser=parser)
series = pd.read_csv('trenddata.csv',
                     header=0,
                     parse_dates=[1],
                     index_col=1,
                     date_parser=parser)
print(test.index)
test = test[['Sales']]
test = test[:22]
print(test)
train = series