コード例 #1
0
def test_fullbatch_cluster_models(model_type):
    G = example_graph_random(n_nodes=50)
    generator = ClusterNodeGenerator(G, clusters=10)
    nodes = G.nodes()[:40]
    gen = generator.flow(nodes, targets=np.ones(len(nodes)))

    gnn = model_type(
        generator=generator,
        layer_sizes=[16, 16, 1],
        activations=["relu", "relu", "relu"],
    )

    model = tf.keras.Model(*gnn.in_out_tensors())
    model.compile(optimizer="adam", loss="binary_crossentropy")
    history = model.fit(gen, validation_data=gen, epochs=2)
    results = model.evaluate(gen)

    # this doesn't work for any cluster models including ClusterGCN
    # because the model spits out predictions with shapes:
    # [(1, cluster_1_size, feat_size), (1, cluster_2_size, feat_size)...]
    # and attempts to concatenate along axis 0
    # predictions = model.predict(gen)
    x_in, x_out = gnn.in_out_tensors()
    x_out_flat = tf.squeeze(x_out, 0)
    embedding_model = tf.keras.Model(inputs=x_in, outputs=x_out_flat)
    predictions = embedding_model.predict(gen)

    assert predictions.shape == (len(nodes), 1)
コード例 #2
0
def test_benchmark_ClusterGCN_generator(benchmark, q):
    G = example_graph_random(feature_size=10, n_nodes=1000, n_edges=5000)

    generator = ClusterNodeGenerator(G, clusters=10, q=q)
    seq = generator.flow(G.nodes())

    # iterate over all the batches
    benchmark(lambda: list(seq))
コード例 #3
0
def test_ClusterGCN_apply():

    G = create_stellargraph()

    generator = ClusterNodeGenerator(G)

    cluster_gcn_model = ClusterGCN(
        layer_sizes=[2], generator=generator, activations=["relu"], dropout=0.0
    )

    x_in, x_out = cluster_gcn_model.build()
    model = keras.Model(inputs=x_in, outputs=x_out)

    # Check fit_generator method
    preds_2 = model.predict_generator(generator.flow(["a", "b", "c"]))
    assert preds_2.shape == (1, 3, 2)
コード例 #4
0
def test_ClusterGCN_apply():

    G, _ = create_graph_features()

    generator = ClusterNodeGenerator(G)

    cluster_gcn_model = ClusterGCN(layer_sizes=[2],
                                   generator=generator,
                                   activations=["relu"],
                                   dropout=0.0)

    x_in, x_out = cluster_gcn_model.in_out_tensors()
    model = keras.Model(inputs=x_in, outputs=x_out)

    # Check fit method
    preds_2 = model.predict(generator.flow(["a", "b", "c"]))
    assert preds_2.shape == (1, 3, 2)
コード例 #5
0
ファイル: ml_utils.py プロジェクト: BlueBrain/BlueGraph
def _fit_deep_graph_infomax(train_graph, params, model_name):
    """Train unsupervised Deep Graph Infomax."""
    if "gcn_dgi" in model_name or "gat_dgi" in model_name:
        if "cluster" in model_name:
            generator = ClusterNodeGenerator(
                train_graph, clusters=params["clusters"],
                q=params["clusters_q"])
        else:
            generator = FullBatchNodeGenerator(train_graph, sparse=False)

        if "gcn_dgi" in model_name:
            embedding_layer = GCN(
                layer_sizes=[params["embedding_dimension"]],
                activations=["relu"], generator=generator)
        elif "gat_dgi" in model_name:
            embedding_layer = GAT(
                layer_sizes=[params["embedding_dimension"]],
                activations=["relu"], generator=generator, attn_heads=8)
    elif model_name == "graphsage_dgi":
        generator = GraphSAGENodeGenerator(
            train_graph, batch_size=50, num_samples=[5])
        embedding_layer = GraphSAGE(
            layer_sizes=[params["embedding_dimension"]], activations=["relu"],
            generator=generator
        )
    else:
        raise ValueError(f"Unknown mode name {model_name}")

    embedding_model = _execute_deep_graph_infomax(
        train_graph, embedding_layer, generator, params)

    # Here the models can be both inductive and transductive
    if model_name in ["gcn_dgi", "gat_dgi", "graphsage_dgi"]:
        return embedding_model.predict(
            generator.flow(train_graph.nodes()))
    else:
        return embedding_model
コード例 #6
0
def test_ClusterNodeSequence_cluster_without_targets():
    G = create_stellargraph()
    generator = ClusterNodeGenerator(G, clusters=2, q=1)
    seq = generator.flow(node_ids=["a"], targets=[0])
    _ = list(seq)