コード例 #1
0
def main():
    sagemaker_session = sagemaker.Session()
    stepfunctions.set_stream_logger(level=logging.INFO)

    bucket = 's3://pixiv-image-backet'

    sagemaker_execution_role = 'arn:aws:iam::829044821271:role/service-role/AmazonSageMaker-ExecutionRole-20200412T194702'
    workflow_execution_role = 'arn:aws:iam::829044821271:role/StepFunctionsWorkflowExecutionRole'

    estimator1 = PyTorch(entry_point='train.py',
                         source_dir='projection_discriminator',
                         role=sagemaker_execution_role,
                         framework_version='1.4.0',
                         train_instance_count=2,
                         train_instance_type='ml.m5.2xlarge',
                         hyperparameters={
                             'train_epoch': 1,
                         })

    estimator2 = PyTorch(entry_point='train.py',
                         source_dir='wgan_gp',
                         role=sagemaker_execution_role,
                         framework_version='1.4.0',
                         train_instance_count=2,
                         train_instance_type='ml.m5.2xlarge',
                         hyperparameters={
                             'train_epoch': 1,
                         })

    training_step1 = steps.TrainingStep(state_id='Train Step1',
                                        estimator=estimator1,
                                        data={
                                            'training': bucket,
                                        },
                                        job_name='PD-Train-{0}'.format(
                                            uuid.uuid4()))

    training_step2 = steps.TrainingStep(state_id='Train Step2',
                                        estimator=estimator2,
                                        data={
                                            'training': bucket,
                                        },
                                        job_name='PD-Train-{0}'.format(
                                            uuid.uuid4()))

    parallel_state = steps.Parallel(state_id='Parallel', )

    parallel_state.add_branch(training_step1)
    parallel_state.add_branch(training_step2)

    workflow_definition = steps.Chain([parallel_state])

    workflow = Workflow(
        name='MyTraining-{0}'.format(uuid.uuid4()),
        definition=workflow_definition,
        role=workflow_execution_role,
    )

    workflow.create()
    workflow.execute()
コード例 #2
0
        role=workflow_execution_role,
        execution_input=execution_input
    )
    workflow.create()


# Documentation states the following:
# Updates an existing state machine by modifying its definition and/or role. Executions started immediately after calling this method may use the previous definition and role.
import time
time.sleep(60) # wait 60 secs to allow the update of the workflow to complete. The method is not syncronous!


# Finally, run the workflow!
execution = workflow.execute(
    inputs={
        'TrainingJobName': training_job_name, # Each Sagemaker Job requires a unique name,
        'ModelName': model_name # Each Model requires a unique name,   
   }
)

# now let's create the cloudformation template parameters file ready for the CodeDeploy step in the pipeline

model_data_url = 's3://{}/{}/output'.format(bucket, project_name) + "/" + training_job_name + "/output/model.tar.gz"

parameter_file_data = {
    
        "Parameters" : {
            "ModelName" : model_name,
            "ModelDataUrl" : model_data_url,
            "TrainingImage": container,
            "InstanceType" : "ml.t2.xlarge",
            "InstanceCount": "1",
コード例 #3
0
ファイル: pipeline.py プロジェクト: tkazusa/ML-CICD-pipeline
            }
    )

    ## SageMaker の学習ジョブを実行するステップ
    estimator = create_estimator()
    data_path = {'train': args.data_path}

    training_step = steps.TrainingStep(
        'Train Step', 
        estimator=estimator,
        data=data_path,
        job_name=execution_input['TrainJobName'],  
        wait_for_completion=False  # SFnを実行した後に Bitbucket へプルリクを上げるように変更したため、ここは True で良いかも。
    )

    # 各 Step を連結
    chain_list = [etl_step, training_step]
    workflow_definition = steps.Chain(chain_list)

    # Workflow の作成
    workflow = Workflow(
        name=FLOW_NAME,
        definition=workflow_definition,
        role=WORKFLOW_ROLE,
        execution_input=execution_input
    )
    workflow.create()

    # Workflow の実行
    execution = workflow.execute(inputs=inputs)
コード例 #4
0
    name="Main-workflow",
    definition=Main_workflow_definition,
    role=workflow_execution_role
)

# COMMAND ----------

Main_workflow.render_graph()

# COMMAND ----------

Main_workflow.create()

# COMMAND ----------

Main_workflow_execution = Main_workflow.execute()

# COMMAND ----------

# MAGIC %md
# MAGIC Main_workflow_execution = Workflow(
# MAGIC     name="Campaign_Workflow",
# MAGIC     definition=path1,
# MAGIC     role=workflow_execution_role
# MAGIC )

# COMMAND ----------



# COMMAND ----------