コード例 #1
0
    def __init__(self, stix_packets):

        self.num_samples = len(stix_packets['coarse_time'])
        # Header
        self.scet_coarse = stix_packets['coarse_time']
        self.scet_fine = stix_packets['fine_time']
        self.obs_utc = scet_to_datetime(
            f'{self.scet_coarse[0]}:{self.scet_fine[0]}')
        self.obs_beg = self.obs_utc
        self.obs_end = scet_to_datetime(
            f'{self.scet_coarse[-1]}:{self.scet_fine[-1]}')
        self.obs_avg = self.obs_beg + (self.obs_end - self.obs_beg) / 2.0

        # Create array of times as dt from date_obs
        times = [
            scet_to_datetime(f"{stix_packets['coarse_time'][i]}:"
                             f"{stix_packets['fine_time'][i]}")
            for i in range(self.num_samples)
        ]
        time = np.array(times) - times[0]

        # Data
        self.time = [t.total_seconds() for t in time]
        self.sw_running = stix_packets.get('NIXD0021')
        self.instrument_number = stix_packets.get('NIXD0022')
        self.instrument_mode = stix_packets.get('NIXD0023')
        self.hk_dpu_pcb_t = stix_packets.get('NIXD0025')
        self.hk_dpu_fpga_t = stix_packets.get('NIXD0026')
        self.hk_dpu_3v3_c = stix_packets.get('NIXD0027')
        self.hk_dpu_2v5_c = stix_packets.get('NIXD0028')
        self.hk_dpu_1v5_c = stix_packets.get('NIXD0029')
        self.hk_dpu_spw_c = stix_packets.get('NIXD0030')
        self.hk_dpu_spw0_v = stix_packets.get('NIXD0031')
        self.hk_dpu_spw1_v = stix_packets.get('NIXD0032')
        self.sw_version = stix_packets.get('NIXD0001')
        self.cpu_load = stix_packets.get('NIXD0002')
        self.archive_memory_usage = stix_packets.get('NIXD0003')
        self.autonomous_asw_boot_stat = stix_packets.get('NIXD0166')
        self.memory_load_ena_flag = stix_packets.get('NIXD0167')
        self.idpu_identifier = stix_packets.get('NIXD0004')
        self.active_spw_link = stix_packets.get('NIXD0005')
        self.overruns_for_tasks = stix_packets.get('NIXD0168')
        self.watchdog_state = stix_packets.get('NIXD0169')
        self.received_spw_packets = stix_packets.get('NIXD0079')
        self.rejected_spw_packets = stix_packets.get('NIXD0079')
        self.hk_dpu_1v5_v = stix_packets.get('NIXD0035')
        self.hk_ref_2v5_v = stix_packets.get('NIXD0036')
        self.hk_dpu_2v9_v = stix_packets.get('NIXD0037')
        self.hk_psu_temp_t = stix_packets.get('NIXD0024')
        self.fdir_status = stix_packets.get('NIX00085')
        self.fdir_status_mask_of_hk_temperature = stix_packets.get('NIX00161')
        self.fdir_status_mask_of_hk_voltage = stix_packets.get('NIX00162')
        self.hk_selftest_status_flag = stix_packets.get('NIXD0163')
        self.memory_status_flag = stix_packets.get('NIXD0164')
        self.fdir_status_mask_of_hk_current = stix_packets.get('NIXD0165')
        self.number_executed_tc = stix_packets.get('NIX00166')
        self.number_sent_tm = stix_packets.get('NIX00167')
        self.number_failed_tm_gen = stix_packets.get('NIX00168')
コード例 #2
0
ファイル: quicklook.py プロジェクト: i4Ds/STIX_python_PUB023
    def _get_time(self):
        # Replicate packet time for each sample
        base_times = Time(
            list(
                chain(*[[
                    scet_to_datetime(
                        f'{self["scet_coarse"][i]}:{self["scet_fine"][i]}')
                ] * n for i, n in enumerate(self['num_samples'])])))
        # For each sample generate sample number and multiply by duration and apply unit
        start_delta = np.hstack([
            (np.arange(ns) * it)
            for ns, it in self[['num_samples', 'integration_time']]
        ])
        # hstack op loses unit
        start_delta = start_delta.value * self['integration_time'].unit

        duration = np.hstack([
            np.ones(num_sample) * int_time for num_sample, int_time in self[
                ['num_samples', 'integration_time']]
        ])
        duration = duration.value * self['integration_time'].unit

        # TODO Write out and simplify
        end_delta = start_delta + duration

        # Add the delta time to base times and convert to relative from start time
        times = base_times + start_delta + (end_delta - start_delta) / 2
        # times -= times[0]
        return times, duration
コード例 #3
0
ファイル: quicklook.py プロジェクト: i4Ds/STIX_python_PUB023
    def from_packets(cls, packets, eng_packets):
        tmp = QTable()
        tmp['scet_coarse'] = packets['coarse_time']
        tmp['scet_fine'] = packets['coarse_time']
        control = Control(tmp)
        data = Data()
        if 'parameters' in packets:

            control['ubsd_counter'] = packets.get('NIX00285')[0]
            control['pald_counter'] = packets.get('NIX00286')[0]
            control['num_samples'] = packets.get('NIX00286')[0]

            # DATA
            data['start_scet_coarse'] = packets.get('NIX00287')
            data['end_scet_coarse'] = packets.get('NIX00287')
            data['obs_utc'] = scet_to_datetime(
                f"{data['start_scet_coarse']}:0")
            data['highest_flareflag'] = packets.get('NIX00289')[0]
            data['tm_byte_volume'] = packets.get('NIX00290')[0]
            data['average_z_loc'] = packets.get('NIX00291')[0]
            data['average_y_loc'] = packets.get('NIX00292')[0]
            data['processing_mask'] = packets.get('NIX00293')[0]

            return cls(control=control, data=data)
        else:
            return None
コード例 #4
0
ファイル: science.py プロジェクト: i4Ds/STIX_python_PUB023
    def from_packets(cls, packets, eng_packets):
        # Header
        control = Control()
        scet_coarse = packets['NIX00445']
        scet_fine = packets['NIX00446']
        start_times = Time([
            scet_to_datetime(f'{scet_coarse[i]}:{scet_fine[i]}')
            for i in range(len(scet_coarse))
        ])

        control['summing_value'] = packets['NIX00088']
        control['averaging_value'] = packets['NIX00490']
        control['index'] = range(len(control))

        delta_time = ((control['summing_value'] * control['averaging_value']) /
                      1000.0)
        samples = packets['NIX00089']

        offsets = [
            delta_time[i] * 0.5 * np.arange(ns) * u.s
            for i, ns in enumerate(samples)
        ]
        time = Time(
            np.hstack(
                [start_times[i] + offsets[i] for i in range(len(offsets))]))
        timedel = np.hstack(offsets).value * u.s

        # Data
        try:
            data = Data()
            data['time'] = time
            data['timedel'] = timedel
            data['cha_diode0'] = packets['NIX00090']
            data['cha_diode1'] = packets['NIX00091']
            data['chb_diode0'] = packets['NIX00092']
            data['chb_diode1'] = packets['NIX00093']
            data['control_index'] = np.hstack(
                [np.full(ns, i) for i, ns in enumerate(samples)])
        except ValueError as e:
            logger.warning(e)
            return None

        return cls(control=control, data=data)
コード例 #5
0
ファイル: quicklook.py プロジェクト: i4Ds/STIX_python_PUB023
 def _get_time(cls, control, num_energies, packets, pad_after):
     times = []
     durations = []
     start = 0
     for i, (ns, it) in enumerate(control['num_samples',
                                          'integration_time']):
         off_sets = np.array(packets.get('NIX00485')[start:start + ns]) * it
         base_time = Time(
             scet_to_datetime(
                 f'{control["scet_coarse"][i]}:{control["scet_fine"][i]}'))
         start_times = base_time + off_sets
         end_times = base_time + off_sets + it
         cur_time = start_times + (end_times - start_times) / 2
         times.extend(cur_time)
         durations.extend([it] * ns)
         start += ns
     time = Time(times)
     time = Time(
         np.pad(time.datetime64, (0, pad_after),
                constant_values=time[-1].datetime64))
     time = time.reshape(-1, num_energies)
     duration = np.pad(np.hstack(durations),
                       (0, pad_after)).reshape(-1, num_energies) * it.unit
     return duration, time
コード例 #6
0
    def __init__(self, stix_packets):

        self.num_samples = len(stix_packets['coarse_time'])
        # Header
        self.scet_coarse = stix_packets['coarse_time']
        self.scet_fine = stix_packets['fine_time']
        self.obs_utc = scet_to_datetime(
            f'{self.scet_coarse[0]}:{self.scet_fine[0]}')
        self.obs_beg = self.obs_utc
        self.obs_end = scet_to_datetime(
            f'{self.scet_coarse[-1]}:{self.scet_fine[-1]}')
        self.obs_avg = self.obs_beg + (self.obs_end - self.obs_beg) / 2.0

        # Create array of times as dt from date_obs
        times = [
            scet_to_datetime(f"{stix_packets['coarse_time'][i]}:"
                             f"{stix_packets['fine_time'][i]}")
            for i in range(self.num_samples)
        ]
        time = np.array(times) - times[0]

        # Data
        self.time = [t.total_seconds() for t in time]
        self.sw_running = stix_packets.get('NIXD0021')
        self.instrument_number = stix_packets.get('NIXD0022')
        self.instrument_mode = stix_packets.get('NIXD0023')
        self.hk_dpu_pcb_t = stix_packets.get('NIXD0025')
        self.hk_dpu_fpga_t = stix_packets.get('NIXD0026')
        self.hk_dpu_3v3_c = stix_packets.get('NIXD0027')
        self.hk_dpu_2v5_c = stix_packets.get('NIXD0028')
        self.hk_dpu_1v5_c = stix_packets.get('NIXD0029')
        self.hk_dpu_spw_c = stix_packets.get('NIXD0030')
        self.hk_dpu_spw0_v = stix_packets.get('NIXD0031')
        self.hk_dpu_spw1_v = stix_packets.get('NIXD0032')
        self.hk_asp_ref_2v5a_v = stix_packets.get('NIXD0038')
        self.hk_asp_ref_2v5b_v = stix_packets.get('NIXD0039')
        self.hk_asp_tim01_t = stix_packets.get('NIXD0040')
        self.hk_asp_tim02_t = stix_packets.get('NIXD0041')
        self.hk_asp_tim03_t = stix_packets.get('NIXD0042')
        self.hk_asp_tim04_t = stix_packets.get('NIXD0043')
        self.hk_asp_tim05_t = stix_packets.get('NIXD0044')
        self.hk_asp_tim06_t = stix_packets.get('NIXD0045')
        self.hk_asp_tim07_t = stix_packets.get('NIXD0046')
        self.hk_asp_tim08_t = stix_packets.get('NIXD0047')
        self.hk_asp_vsensa_v = stix_packets.get('NIXD0048')
        self.hk_asp_vsensb_v = stix_packets.get('NIXD0049')
        self.hk_att_v = stix_packets.get('NIXD0050')
        self.hk_att_t = stix_packets.get('NIXD0051')
        self.hk_hv_01_16_v = stix_packets.get('NIXD0052')
        self.hk_hv_17_32_v = stix_packets.get('NIXD0053')
        self.det_q1_t = stix_packets.get('NIXD0054')
        self.det_q2_t = stix_packets.get('NIXD0055')
        self.det_q3_t = stix_packets.get('NIXD0056')
        self.det_q4_t = stix_packets.get('NIXD0057')
        self.hk_dpu_1v5_v = stix_packets.get('NIXD0035')
        self.hk_ref_2v5_v = stix_packets.get('NIXD0036')
        self.hk_dpu_2v9_v = stix_packets.get('NIXD0037')
        self.hk_psu_temp_t = stix_packets.get('NIXD0024')
        self.sw_version = stix_packets.get('NIXD0001')
        self.cpu_load = stix_packets.get('NIXD0002')
        self.archive_memory_usage = stix_packets.get('NIXD0003')
        self.autonomous_asw_boot_stat = stix_packets.get('NIXD0166')
        self.memory_load_ena_flag = stix_packets.get('NIXD0167')
        self.idpu_identifier = stix_packets.get('NIXD0004')
        self.active_spw_link = stix_packets.get('NIXD0005')
        self.overruns_for_tasks = stix_packets.get('NIXD0168')
        self.watchdog_state = stix_packets.get('NIXD0169')
        self.received_spw_packets = stix_packets.get('NIXD0079')
        self.rejected_spw_packets = stix_packets.get('NIXD0078')
        self.endis_detector_status = stix_packets.get('NIXD0070')
        self.spw1_power_status = stix_packets.get('NIXD0080')
        self.spw0_power_status = stix_packets.get('NIXD0081')
        self.q4_power_status = stix_packets.get('NIXD0082')
        self.q3_power_status = stix_packets.get('NIXD0083')
        self.q2_power_status = stix_packets.get('NIXD0084')
        self.q1_power_status = stix_packets.get('NIXD0085')
        self.aspect_b_power_status = stix_packets.get('NIXD0086')
        self.aspect_a_power_status = stix_packets.get('NIXD0087')
        self.att_m2_moving = stix_packets.get('NIXD0088')
        self.att_m1_moving = stix_packets.get('NIXD0089')
        self.hv17_32_enabled_status = stix_packets.get('NIXD0090')
        self.hv01_16_enabled_status = stix_packets.get('NIXD0091')
        self.lv_enabled_status = stix_packets.get('NIXD0092')
        self.hv1_depolar_in_progress = stix_packets.get('NIXD0066')
        self.hv2_depolar_in_progress = stix_packets.get('NIXD0067')
        self.att_ab_flag_open = stix_packets.get('NIXD0068')
        self.att_bc_flag_closed = stix_packets.get('NIXD0069')
        self.med_value_trg_acc = stix_packets.get('NIX00072')
        self.max_value_of_trig_acc = stix_packets.get('NIX00073')
        self.hv_regulators_mask = stix_packets.get('NIXD0074')
        self.tc_20_128_seq_cnt = stix_packets.get('NIXD0077')
        self.attenuator_motions = stix_packets.get('NIX00076')
        self.hk_asp_photoa0_v = stix_packets.get('NIX00078')
        self.hk_asp_photoa1_v = stix_packets.get('NIX00079')
        self.hk_asp_photob0_v = stix_packets.get('NIX00080')
        self.hk_asp_photob1_v = stix_packets.get('NIX00081')
        self.attenuator_currents = stix_packets.get('NIXD0075')
        self.hk_att_c = stix_packets.get('NIXD0075')
        self.hk_det_c = stix_packets.get('NIXD0058')
        self.fdir_function_status = stix_packets.get('NIX00085')
コード例 #7
0
ファイル: quicklook.py プロジェクト: i4Ds/STIX_python_PUB023
    def from_packets(cls, packets, eng_packets):
        control = Control.from_packets(packets)

        control['integration_time'] = (
            np.array(packets['NIX00122'], np.uint32) + 1) * 0.1 * u.s
        # control['obs_beg'] = control['obs_utc']
        # control['.obs_end'] = control['obs_beg'] + timedelta(seconds=control['duration'].astype('float'))
        # control['.obs_avg'] = control['obs_beg'] + (control['obs_end'] - control['obs_beg']) / 2

        # Control
        control['quiet_time'] = np.array(packets['NIX00123'], np.uint16)
        control['live_time'] = np.array(packets['NIX00124'], np.uint32)
        control['average_temperature'] = np.array(packets['NIX00125'],
                                                  np.uint16)
        control['detector_mask'] = _get_detector_mask(packets)
        control['pixel_mask'] = _get_pixel_mask(packets)
        control['subspectrum_mask'] = _get_sub_spectrum_mask(packets)
        control['compression_scheme_counts_skm'] = _get_compression_scheme(
            packets, 'NIXD0126', 'NIXD0127', 'NIXD0128')
        subspec_data = {}
        j = 129
        for subspec, i in enumerate(range(300, 308)):
            subspec_data[subspec + 1] = {
                'num_points': packets.get(f'NIXD0{j}')[0],
                'num_summed_channel': packets.get(f'NIXD0{j + 1}')[0],
                'lowest_channel': packets.get(f'NIXD0{j + 2}')[0]
            }
            j += 3

        control['num_samples'] = np.array(packets.get('NIX00159'), np.uint16)
        # control.remove_column('index')
        # control = unique(control)
        # control['index'] = np.arange(len(control))

        control['subspec_num_points'] = np.array(
            [v['num_points'] for v in subspec_data.values()]).reshape(1, -1)
        control['subspec_num_summed_channel'] = np.array([
            v['num_summed_channel'] for v in subspec_data.values()
        ]).reshape(1, -1)
        control['subspec_lowest_channel'] = np.array([
            v['lowest_channel'] for v in subspec_data.values()
        ]).reshape(1, -1)

        subspec_index = np.argwhere(
            control['subspectrum_mask'][0].flatten() == 1)
        num_sub_spectra = control['subspectrum_mask'].sum(axis=1)
        sub_channels = [
            np.arange(control['subspec_num_points'][0, index] + 1) *
            (control['subspec_num_summed_channel'][0, index] + 1) +
            control['subspec_lowest_channel'][0, index]
            for index in subspec_index
        ]
        channels = list(chain(*[ch.tolist() for ch in sub_channels]))
        control['num_channels'] = len(channels)

        # Data
        data = Data()
        data['control_index'] = [0]
        data['time'] = (Time(
            scet_to_datetime(f"{control['scet_coarse'][0]}"
                             f":{control['scet_fine'][0]}")) +
                        control['integration_time'][0] / 2).reshape(1)
        data['timedel'] = control['integration_time'][0]
        # data['detector_id'] = np.array(packets.get('NIXD0155'), np.ubyte)
        # data['pixel_id'] = np.array(packets.get('NIXD0156'), np.ubyte)
        # data['subspec_id'] = np.array(packets.get('NIXD0157'), np.ubyte)
        num_spec_points = np.array(packets.get('NIX00146'))

        cs, ck, cm = control['compression_scheme_counts_skm'][0]
        counts, counts_var = decompress(packets.get('NIX00158'),
                                        s=cs,
                                        k=ck,
                                        m=cm,
                                        return_variance=True)

        counts_rebinned = np.apply_along_axis(
            rebin_proportional, 1, counts.reshape(-1, len(channels)), channels,
            np.arange(1025))

        counts_var_rebinned = np.apply_along_axis(
            rebin_proportional, 1, counts_var.reshape(-1, len(channels)),
            channels, np.arange(1025))

        dids = np.array(packets.get('NIXD0155'),
                        np.ubyte).reshape(-1, num_sub_spectra[0])[:, 0]
        pids = np.array(packets.get('NIXD0156'),
                        np.ubyte).reshape(-1, num_sub_spectra[0])[:, 0]

        full_counts = np.zeros((32, 12, 1024))
        full_counts[dids, pids] = counts_rebinned
        full_counts_var = np.zeros((32, 12, 1024))
        full_counts_var[dids, pids] = counts_var_rebinned
        data['counts'] = full_counts.reshape((1, *full_counts.shape))
        data['counts_err'] = np.sqrt(full_counts_var).reshape(
            (1, *full_counts_var.shape))

        return cls(control=control, data=data)
コード例 #8
0
ファイル: science.py プロジェクト: i4Ds/STIX_python_PUB023
    def from_packets(cls, packets, eng_packets):
        # Control
        control = Control.from_packets(packets)

        control['pixel_mask'] = np.unique(_get_pixel_mask(packets), axis=0)
        control['detector_mask'] = np.unique(_get_detector_mask(packets),
                                             axis=0)
        control['rcr'] = np.unique(packets['NIX00401']).astype(np.int16)
        control['index'] = range(len(control))

        e_min = np.array(packets['NIXD0442'])
        e_max = np.array(packets['NIXD0443'])
        energy_unit = np.array(packets['NIXD0019']) + 1
        num_times = np.array(packets['NIX00089'])
        total_num_times = num_times.sum()

        cs, ck, cm = control['compression_scheme_counts_skm'][0]

        counts, counts_var = decompress(packets['NIX00268'],
                                        s=cs,
                                        k=ck,
                                        m=cm,
                                        return_variance=True)
        counts = counts.reshape(total_num_times, -1)
        counts_var = counts_var.reshape(total_num_times, -1)
        full_counts = np.zeros((total_num_times, 32))
        full_counts_var = np.zeros((total_num_times, 32))

        cids = [
            np.arange(emin, emax + 1, eunit)
            for (emin, emax, eunit) in zip(e_min, e_max, energy_unit)
        ]

        control['energy_bin_mask'] = np.full((1, 32), False, np.ubyte)
        control['energy_bin_mask'][:, cids] = True

        dl_energies = np.array([[ENERGY_CHANNELS[ch]['e_lower']
                                 for ch in chs] +
                                [ENERGY_CHANNELS[chs[-1]]['e_upper']]
                                for chs in cids][0])

        sci_energies = np.hstack(
            [[ENERGY_CHANNELS[ch]['e_lower'] for ch in range(32)],
             ENERGY_CHANNELS[31]['e_upper']])
        ind = 0
        for nt in num_times:
            e_ch_start = 0
            e_ch_end = counts.shape[1]
            if dl_energies[0] == 0:
                full_counts[ind:ind + nt, 0] = counts[ind:ind + nt, 0]
                full_counts_var[ind:ind + nt, 0] = counts_var[ind:ind + nt, 0]
                e_ch_start = 1
            if dl_energies[-1] == np.inf:
                full_counts[ind:ind + nt, -1] = counts[ind:ind + nt, -1]
                full_counts_var[ind:ind + nt, -1] = counts[ind:ind + nt, -1]
                e_ch_end -= 1

            torebin = np.where((dl_energies >= 4.0) & (dl_energies <= 150.0))
            full_counts[ind:ind + nt, 1:-1] = np.apply_along_axis(
                rebin_proportional, 1, counts[ind:ind + nt,
                                              e_ch_start:e_ch_end],
                dl_energies[torebin], sci_energies[1:-1])

            full_counts_var[ind:ind + nt, 1:-1] = np.apply_along_axis(
                rebin_proportional, 1, counts_var[ind:ind + nt,
                                                  e_ch_start:e_ch_end],
                dl_energies[torebin], sci_energies[1:-1])

            ind += nt

        if counts.sum() != full_counts.sum():
            raise ValueError(
                'Original and reformatted count totals do not match')

        delta_time = (np.array(packets['NIX00441'], np.uint16)) * 0.1 * u.s
        closing_time_offset = (np.array(packets['NIX00269'],
                                        np.uint16)) * 0.1 * u.s

        # TODO incorporate into main loop above
        centers = []
        deltas = []
        last = 0
        for i, nt in enumerate(num_times):
            edge = np.hstack([
                delta_time[last:last + nt],
                delta_time[last + nt - 1] + closing_time_offset[i]
            ])
            delta = np.diff(edge)
            center = edge[:-1] + delta / 2
            centers.append(center)
            deltas.append(delta)
            last = last + nt

        centers = np.hstack(centers)
        deltas = np.hstack(deltas)

        # Data
        data = Data()
        data['time'] = Time(scet_to_datetime(f'{int(control["time_stamp"][0])}:0')) \
            + centers
        data['timedel'] = deltas

        ts, tk, tm = control['compression_scheme_triggers_skm'][0]
        triggers, triggers_var = decompress(packets['NIX00267'],
                                            s=ts,
                                            k=tk,
                                            m=tm,
                                            return_variance=True)

        data['triggers'] = triggers
        data['triggers_err'] = np.sqrt(triggers_var)
        data['counts'] = full_counts * u.ct
        data['counts_err'] = np.sqrt(full_counts_var) * u.ct
        data['control_index'] = 0

        return cls(control=control, data=data)
コード例 #9
0
ファイル: science.py プロジェクト: i4Ds/STIX_python_PUB023
    def from_packets(cls, packets, eng_packets):
        # Control
        control = Control.from_packets(packets)
        control.remove_column('num_structures')
        control = unique(control)
        if len(control) != 1:
            raise ValueError()
        control['index'] = range(len(control))

        data = Data()
        data['control_index'] = np.full(len(packets['NIX00441']), 0)
        data['delta_time'] = (np.array(packets['NIX00441'],
                                       np.uint16)) * 0.1 * u.s
        unique_times = np.unique(data['delta_time'])

        # time = np.array([])
        # for dt in set(self.delta_time):
        #     i, = np.where(self.delta_time == dt)
        #     nt = sum(np.array(packets['NIX00258'])[i])
        #     time = np.append(time, np.repeat(dt, nt))
        # self.time = time

        data['rcr'] = packets['NIX00401']
        data['pixel_mask1'] = _get_pixel_mask(packets, 'NIXD0407')
        data['pixel_mask2'] = _get_pixel_mask(packets, 'NIXD0444')
        data['pixel_mask3'] = _get_pixel_mask(packets, 'NIXD0445')
        data['pixel_mask4'] = _get_pixel_mask(packets, 'NIXD0446')
        data['pixel_mask5'] = _get_pixel_mask(packets, 'NIXD0447')
        data['detector_masks'] = _get_detector_mask(packets)
        data['integration_time'] = (np.array(packets['NIX00405'])) * 0.1

        ts, tk, tm = control['compression_scheme_triggers_skm'][0]
        triggers, triggers_var = decompress(
            [packets[f'NIX00{i}'] for i in range(242, 258)],
            s=ts,
            k=tk,
            m=tm,
            return_variance=True)

        data['triggers'] = triggers.T
        data['triggers_err'] = np.sqrt(triggers_var).T

        tids = np.searchsorted(data['delta_time'], unique_times)
        data = data[tids]

        num_energy_groups = sum(packets['NIX00258'])

        # Data
        vis = np.zeros((unique_times.size, 32, 32), dtype=complex)
        vis_err = np.zeros((unique_times.size, 32, 32), dtype=complex)
        e_low = np.array(packets['NIXD0016'])
        e_high = np.array(packets['NIXD0017'])

        # TODO create energy bin mask
        control['energy_bin_mask'] = np.full((1, 32), False, np.ubyte)
        all_energies = set(np.hstack([e_low, e_high]))
        control['energy_bin_mask'][:, list(all_energies)] = True

        data['flux'] = np.array(packets['NIX00261']).reshape(
            unique_times.size, -1)
        num_detectors = packets['NIX00262'][0]
        detector_id = np.array(packets['NIX00100']).reshape(
            unique_times.size, -1, num_detectors)

        # vis[:, detector_id[0], e_low.reshape(unique_times.size, -1)[0]] = (
        #         np.array(packets['NIX00263']) + np.array(packets['NIX00264'])
        #         * 1j).reshape(unique_times.size, num_detectors, -1)

        ds, dk, dm = control['compression_scheme_counts_skm'][0]
        real, real_var = decompress(packets['NIX00263'],
                                    s=ds,
                                    k=dk,
                                    m=dm,
                                    return_variance=True)
        imaginary, imaginary_var = decompress(packets['NIX00264'],
                                              s=ds,
                                              k=dk,
                                              m=dm,
                                              return_variance=True)

        mesh = np.ix_(np.arange(unique_times.size), detector_id[0][0],
                      e_low.reshape(unique_times.size, -1)[0])
        vis[mesh] = (real + imaginary * 1j).reshape(unique_times.size,
                                                    num_detectors, -1)

        # TODO this doesn't seem correct prob need combine in a better
        vis_err[mesh] = (np.sqrt(real_var) +
                         np.sqrt(imaginary_var) * 1j).reshape(
                             unique_times.size, num_detectors, -1)

        data['visibility'] = vis
        data['visibility_err'] = vis_err

        data['time'] = Time(scet_to_datetime(f'{int(control["time_stamp"][0])}:0')) \
            + data['delta_time'] + data['integration_time'] / 2
        data['timedel'] = data['integration_time']

        return cls(control=control, data=data)
コード例 #10
0
ファイル: science.py プロジェクト: i4Ds/STIX_python_PUB023
    def from_packets(cls, packets, eng_packets):
        # Control
        ssid = packets['SSID'][0]

        control = Control.from_packets(packets)

        control.remove_column('num_structures')
        control = unique(control)

        if len(control) != 1:
            raise ValueError(
                'Creating a science product form packets from multiple products'
            )

        control['index'] = 0

        data = Data()
        data['delta_time'] = (np.array(packets['NIX00441'],
                                       np.int32)) * 0.1 * u.s
        unique_times = np.unique(data['delta_time'])

        data['rcr'] = np.array(packets['NIX00401'], np.ubyte)
        data['num_pixel_sets'] = np.array(packets['NIX00442'], np.ubyte)
        pixel_masks = _get_pixel_mask(packets, 'NIXD0407')
        pixel_masks = pixel_masks.reshape(-1, data['num_pixel_sets'][0], 12)
        if ssid == 21 and data['num_pixel_sets'][0] != 12:
            pixel_masks = np.pad(pixel_masks,
                                 ((0, 0), (0, 12 - data['num_pixel_sets'][0]),
                                  (0, 0)))
        data['pixel_masks'] = pixel_masks
        data['detector_masks'] = _get_detector_mask(packets)
        data['integration_time'] = (np.array(packets.get('NIX00405'),
                                             np.uint16)) * 0.1 * u.s

        # TODO change once FSW fixed
        ts, tk, tm = control['compression_scheme_counts_skm'][0]
        triggers, triggers_var = decompress(
            [packets.get(f'NIX00{i}') for i in range(242, 258)],
            s=ts,
            k=tk,
            m=tm,
            return_variance=True)

        data['triggers'] = triggers.T
        data['triggers_err'] = np.sqrt(triggers_var).T
        data['num_energy_groups'] = np.array(packets['NIX00258'], np.ubyte)

        tmp = dict()
        tmp['e_low'] = np.array(packets['NIXD0016'], np.ubyte)
        tmp['e_high'] = np.array(packets['NIXD0017'], np.ubyte)
        tmp['num_data_elements'] = np.array(packets['NIX00259'])
        unique_energies_low = np.unique(tmp['e_low'])
        unique_energies_high = np.unique(tmp['e_high'])

        # counts = np.array(eng_packets['NIX00260'], np.uint32)

        cs, ck, cm = control['compression_scheme_counts_skm'][0]
        counts, counts_var = decompress(packets.get('NIX00260'),
                                        s=cs,
                                        k=ck,
                                        m=cm,
                                        return_variance=True)

        counts = counts.reshape(unique_times.size, unique_energies_low.size,
                                data['detector_masks'][0].sum(),
                                data['num_pixel_sets'][0].sum())

        counts_var = counts_var.reshape(unique_times.size,
                                        unique_energies_low.size,
                                        data['detector_masks'][0].sum(),
                                        data['num_pixel_sets'][0].sum())
        # t x e x d x p -> t x d x p x e
        counts = counts.transpose((0, 2, 3, 1))
        counts_var = np.sqrt(counts_var.transpose((0, 2, 3, 1)))
        if ssid == 21:
            out_counts = np.zeros((unique_times.size, 32, 12, 32))
            out_var = np.zeros((unique_times.size, 32, 12, 32))
        elif ssid == 22:
            out_counts = np.zeros((unique_times.size, 32, 4, 32))
            out_var = np.zeros((unique_times.size, 32, 4, 32))

        # energy_index = 0
        # count_index = 0
        # for i, time in enumerate(unique_times):
        #     inds = np.where(data['delta_time'] == time)
        #     cur_num_energies = data['num_energy_groups'][inds].astype(int).sum()
        #     low = np.unique(tmp['e_low'][energy_index:energy_index+cur_num_energies])
        #     high = np.unique(tmp['e_high'][energy_index:energy_index + cur_num_energies])
        #     cur_num_energies = low.size
        #     num_counts = tmp['num_data_elements'][energy_index:energy_index+cur_num_energies].sum()
        #     cur_counts = counts[count_index:count_index+num_counts]
        #     count_index += num_counts
        #     pids = data[inds[0][0]]['pixel_masks']
        #     dids = np.where(data[inds[0][0]]['detector_masks'] == True)
        #     cids = np.full(32, False)
        #     cids[low] = True
        #
        #     if ssid == 21:
        #         cur_counts = cur_counts.reshape(cur_num_energies, dids[0].size, pids.sum())
        #     elif ssid == 22:
        #         cur_counts = cur_counts.reshape(cur_num_energies, dids[0].size, 4)
        #
        dl_energies = np.array([
            [ENERGY_CHANNELS[lch]['e_lower'], ENERGY_CHANNELS[hch]['e_upper']]
            for lch, hch in zip(unique_energies_low, unique_energies_high)
        ]).reshape(-1)
        dl_energies = np.unique(dl_energies)
        sci_energies = np.hstack(
            [[ENERGY_CHANNELS[ch]['e_lower'] for ch in range(32)],
             ENERGY_CHANNELS[31]['e_upper']])

        # If there is any onboard summing of energy channels rebin back to standard sci channels
        if (unique_energies_high - unique_energies_low).sum() > 0:
            rebinned_counts = np.zeros((*counts.shape[:-1], 32))
            rebinned_counts_var = np.zeros((*counts_var.shape[:-1], 32))
            e_ch_start = 0
            e_ch_end = counts.shape[-1]
            if dl_energies[0] == 0.0:
                rebinned_counts[..., 0] = counts[..., 0]
                rebinned_counts_var[..., 0] = counts_var[..., 0]
                e_ch_start += 1
            elif dl_energies[-1] == np.inf:
                rebinned_counts[..., -1] = counts[..., -1]
                rebinned_counts_var[..., -1] = counts_var[..., -1]
                e_ch_end -= 1

            torebin = np.where((dl_energies >= 4.0) & (dl_energies <= 150.0))
            rebinned_counts[..., 1:-1] = np.apply_along_axis(
                rebin_proportional, -1,
                counts[...,
                       e_ch_start:e_ch_end].reshape(-1, e_ch_end - e_ch_start),
                dl_energies[torebin], sci_energies[1:-1]).reshape(
                    (*counts.shape[:-1], 30))

            rebinned_counts_var[..., 1:-1] = np.apply_along_axis(
                rebin_proportional, -1,
                counts_var[..., e_ch_start:e_ch_end].reshape(
                    -1, e_ch_end - e_ch_start), dl_energies[torebin],
                sci_energies[1:-1]).reshape((*counts_var.shape[:-1], 30))

            energy_indices = np.full(32, True)
            energy_indices[[0, -1]] = False

            ix = np.ix_(np.full(unique_times.size, True),
                        data['detector_masks'][0].astype(bool),
                        np.ones(data['num_pixel_sets'][0], dtype=bool),
                        np.full(32, True))

            out_counts[ix] = rebinned_counts
            out_var[ix] = rebinned_counts_var
        else:
            energy_indices = np.full(32, False)
            energy_indices[unique_energies_low.min(
            ):unique_energies_high.max() + 1] = True

            ix = np.ix_(np.full(unique_times.size,
                                True), data['detector_masks'][0].astype(bool),
                        np.ones(data['num_pixel_sets'][0], dtype=bool),
                        energy_indices)

            out_counts[ix] = counts
            out_var[ix] = counts_var

        #     if (high - low).sum() > 0:
        #         raise NotImplementedError()
        #         #full_counts = rebin_proportional(dl_energies, cur_counts, sci_energies)
        #
        #     dids2 = data[inds[0][0]]['detector_masks']
        #     cids2 = np.full(32, False)
        #     cids2[low] = True
        #     tids2 = time == unique_times
        #
        #     if ssid == 21:
        #         out_counts[np.ix_(tids2, cids2, dids2, pids)] = cur_counts
        #     elif ssid == 22:
        #         out_counts[np.ix_(tids2, cids2, dids2)] = cur_counts

        if counts.sum() != out_counts.sum():
            import ipdb
            ipdb.set_trace()
            raise ValueError(
                'Original and reformatted count totals do not match')

        control['energy_bin_mask'] = np.full((1, 32), False, np.ubyte)
        all_energies = set(np.hstack([tmp['e_low'], tmp['e_high']]))
        control['energy_bin_mask'][:, list(all_energies)] = True
        # time x energy x detector x pixel
        # counts = np.array(
        #     eng_packets['NIX00260'], np.uint16).reshape(unique_times.size, num_energies,
        #                                                 num_detectors, num_pixels)
        # time x channel x detector x pixel need to transpose to time x detector x pixel x channel

        sub_index = np.searchsorted(data['delta_time'], unique_times)
        data = data[sub_index]

        data['time'] = Time(scet_to_datetime(f'{int(control["time_stamp"][0])}:0')) \
            + data['delta_time'] + data['integration_time'] / 2
        data['timedel'] = data['integration_time']
        data['counts'] = out_counts * u.ct
        data['counts_err'] = out_var * u.ct
        data['control_index'] = control['index'][0]
        data.remove_columns(['delta_time', 'integration_time'])

        data = data['time', 'timedel', 'rcr', 'pixel_masks', 'detector_masks',
                    'num_pixel_sets', 'num_energy_groups', 'triggers',
                    'triggers_err', 'counts', 'counts_err']
        data['control_index'] = 0

        return cls(control=control, data=data)
コード例 #11
0
ファイル: science.py プロジェクト: i4Ds/STIX_python_PUB023
    def from_packets(cls, packets, eng_packets):
        control = Control.from_packets(packets)

        control.remove_column('num_structures')
        control = unique(control)

        if len(control) != 1:
            raise ValueError(
                'Creating a science product form packets from multiple products'
            )

        control['index'] = 0

        data = Data()
        data['start_time'] = (np.array(packets.get('NIX00404'),
                                       np.uint16)) * 0.1 * u.s
        data['rcr'] = np.array(packets.get('NIX00401')[0], np.ubyte)
        data['integration_time'] = (np.array(
            packets.get('NIX00405')[0], np.int16)) * 0.1 * u.s
        data['pixel_masks'] = _get_pixel_mask(packets, 'NIXD0407')
        data['detector_masks'] = _get_detector_mask(packets)
        data['triggers'] = np.array(
            [packets.get(f'NIX00{i}') for i in range(408, 424)], np.int64).T
        data['num_samples'] = np.array(packets.get('NIX00406'), np.int16)

        num_detectors = 32
        num_energies = 32
        num_pixels = 12

        # Data
        tmp = dict()
        tmp['pixel_id'] = np.array(packets.get('NIXD0158'), np.ubyte)
        tmp['detector_id'] = np.array(packets.get('NIXD0153'), np.ubyte)
        tmp['channel'] = np.array(packets.get('NIXD0154'), np.ubyte)
        tmp['continuation_bits'] = packets.get('NIXD0159', np.ubyte)

        control['energy_bin_mask'] = np.full((1, 32), False, np.ubyte)
        all_energies = set(tmp['channel'])
        control['energy_bin_mask'][:, list(all_energies)] = True

        # Find contiguous time indices
        unique_times = np.unique(data['start_time'])
        time_indices = np.searchsorted(unique_times, data['start_time'])

        # Create full count array 0s are not send down, if cb = 0 1 count, for cb 1 just extract
        # and for cb 2 extract and sum
        raw_counts = packets.get('NIX00065')
        counts_1d = []
        raw_count_index = 0
        for cb in tmp['continuation_bits']:
            if cb == 0:
                counts_1d.append(1)
            elif cb == 1:
                cur_count = raw_counts[raw_count_index]
                counts_1d.append(cur_count)
                raw_count_index += cb
            elif cb == 2:
                cur_count = raw_counts[raw_count_index:(raw_count_index + cb)]
                combined_count = int.from_bytes(
                    (cur_count[0] + 1).to_bytes(2, 'big') +
                    cur_count[1].to_bytes(1, 'big'), 'big')
                counts_1d.append(combined_count)
                raw_count_index += cb
            else:
                raise ValueError(
                    f'Continuation bits value of {cb} not allowed (0, 1, 2)')
        counts_1d = np.array(counts_1d, np.uint16)
        # raw_counts = counts_1d

        end_inds = np.cumsum(data['num_samples'])
        start_inds = np.hstack([0, end_inds[:-1]])
        dd = [(tmp['pixel_id'][s:e], tmp['detector_id'][s:e],
               tmp['channel'][s:e], counts_1d[s:e])
              for s, e in zip(start_inds.astype(int), end_inds)]

        counts = np.zeros(
            (len(unique_times), num_detectors, num_pixels, num_energies),
            np.uint32)
        for i, (pid, did, cid, cc) in enumerate(dd):
            counts[time_indices[i], did, pid, cid] = cc

        # Create final count array with 4 dimensions: unique times, 32 det, 32 energies, 12 pixels

        # for i in range(self.num_samples):
        #     tid = np.argwhere(self.raw_counts == unique_times)

        # start_index = 0
        # for i, time_index in enumerate(time_indices):
        #     end_index = np.uint32(start_index + np.sum(data['num_samples'][time_index]))
        #
        #     for did, cid, pid in zip(tmp['detector_id'], tmp['channel'], tmp['pixel_id']):
        #         index_1d = ((tmp['detector_id'] == did) & (tmp['channel'] == cid)
        #                     & (tmp['pixel_id'] == pid))
        #         cur_count = counts_1d[start_index:end_index][index_1d[start_index:end_index]]
        #         # If we have a count assign it other wise do nothing as 0
        #         if cur_count:
        #             counts[i, did, cid, pid] = cur_count[0]
        #
        #     start_index = end_index

        sub_index = np.searchsorted(data['start_time'], unique_times)
        data = data[sub_index]
        data['time'] = Time(scet_to_datetime(f'{int(control["time_stamp"][0])}:0'))\
            + data['start_time'] + data['integration_time']/2
        data['timedel'] = data['integration_time']
        data['counts'] = counts * u.ct
        data['control_index'] = control['index'][0]

        data.remove_columns(['start_time', 'integration_time', 'num_samples'])

        return cls(control=control, data=data)