コード例 #1
0
    def stl_seasonal_decomposition(self):
        if self.has_validation_error:
            return
        # Decomposition based on stl - Package: stldecompose
        org_unit_group_stl = decompose(self.series, period=12)

        fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(14, 9))
        self.series.plot(ax=ax1)
        org_unit_group_stl.trend.plot(ax=ax2)
        org_unit_group_stl.seasonal.plot(ax=ax3)
        org_unit_group_stl.resid.plot(ax=ax4)
        ax1.set_title("Vaccine Demand for {} in {}".format(
            self.vaccine, self.health_facility))
        ax2.set_title("Trend")
        ax3.set_title("Seasonality")
        ax4.set_title("Residuals")
        plt.tight_layout()
        plt.show()

        # Eliminating the seasonal component
        org_unit_group_adjusted = self.series - org_unit_group_stl.seasonal
        plt.figure(figsize=(12, 8))
        org_unit_group_adjusted.plot()
        plt.title(
            "Plot of Vaccine Demand of {} in {} without Seasonal Component".
            format(self.vaccine, self.health_facility))
        plt.show()
        #
        # Getting the seasonal component only
        # Seasonality gives structure to the data
        plt.figure(figsize=(12, 8))
        org_unit_group_stl.seasonal.plot()
        plt.title(
            "Plot of Seasonal Component of Vaccine Demand of {} in {}".format(
                self.vaccine, self.health_facility))
        plt.show()

        # Creating a forecast based on STL
        stl_fcast = forecast(org_unit_group_stl,
                             steps=12,
                             fc_func=seasonal_naive,
                             seasonal=True)

        # Plot of the forecast and the original data
        plt.figure(figsize=(12, 8))
        plt.plot(self.series, label='BCG Wastage Rate')
        plt.plot(stl_fcast, label=stl_fcast.columns[0])
        plt.title(
            "Plot of Vaccine Demand of {} in {} Next Year Forecast".format(
                self.vaccine, self.health_facility))
        plt.legend()
        plt.show()
コード例 #2
0
ファイル: AddMeal.py プロジェクト: tanihajoseph/NewMeal
    def stl(X,ts):
        print("Entering STL")
        from stldecompose import decompose, forecast
        train_size = int(len(X) * 0.90)
        test_size = len(X)-train_size
        train, test = ts[0:train_size], ts[train_size:len(X)]
        
        decomp = decompose(train, period=7)    
        fcast = forecast(decomp, steps=test_size, fc_func=naive, seasonal=True)

        #Error Calculation
        y_pred=[]
        for i in fcast.values:
            y_pred.append(i[0])
        y_true=[]
        for i in test.values:
            y_true.append(i[0])
        Ferror=mean_squared_error(y_true, y_pred)
        print("Leaving STL")
        return decomp,Ferror
コード例 #3
0
def main():
    '''
    Main function that generates the result.
    '''
    # load data
    data = pd.read_csv(args.excep_train, parse_dates=["SHIFT_DATE"])
    # create train, val, and test
    train = data[(data["SHIFT_DATE"] > "2012-12-31")
                 & (data["SHIFT_DATE"] < "2018-01-01")]
    val = data[(data["SHIFT_DATE"] > "2017-12-31")
               & (data["SHIFT_DATE"] < "2019-01-01")]

    # using only a portion of the sites
    train_clean = train[(train["SITE"] == "St Paul's Hospital") |
                        (train["SITE"] == "Mt St Joseph") |
                        (train["SITE"] == "Holy Family") |
                        (train["SITE"] == "SVH Langara") |
                        (train["SITE"] == "Brock Fahrni") |
                        (train["SITE"] == "Youville Residence")]
    train_clean = train_clean[(train_clean["JOB_FAMILY"] == "DC1000") |
                              (train_clean["JOB_FAMILY"] == "DC2A00") |
                              (train_clean["JOB_FAMILY"] == "DC2B00")]

    val_clean = val[(val["SITE"] == "St Paul's Hospital") |
                    (val["SITE"] == "Mt St Joseph") |
                    (val["SITE"] == "Holy Family") |
                    (val["SITE"] == "SVH Langara") |
                    (val["SITE"] == "Brock Fahrni") |
                    (val["SITE"] == "Youville Residence")]
    val_clean = val_clean[(val_clean["JOB_FAMILY"] == "DC1000") |
                          (val_clean["JOB_FAMILY"] == "DC2A00") |
                          (val_clean["JOB_FAMILY"] == "DC2B00")]

    # create training dataframes
    splitting_train = train_clean.groupby(
        ["JOB_FAMILY", "SITE", "SUB_PROGRAM",
         "SHIFT_DATE"]).size().reset_index()
    splitting_train = splitting_train.rename({
        "SHIFT_DATE": "ds",
        0: "y"
    },
                                             axis=1)

    # create validation dataframes
    splitting_val = val_clean.groupby(
        ["JOB_FAMILY", "SITE", "SUB_PROGRAM",
         "SHIFT_DATE"]).size().reset_index()
    splitting_val = splitting_val.rename({"SHIFT_DATE": "ds", 0: "y"}, axis=1)

    # create timeframe data for prediction
    total_timeframe = pd.DataFrame(
        pd.date_range(start='2013-01-01', end='2017-12-31',
                      freq="D")).rename({0: "ds"}, axis=1)
    timeframe = pd.DataFrame(
        pd.date_range(start='2018-01-01', end='2018-12-31',
                      freq="D")).rename({0: "ds"}, axis=1)

    # unique combinations
    sites = train_clean["SITE"].unique()
    job_families = train_clean["JOB_FAMILY"].unique()
    sub_programs = train_clean["SUB_PROGRAM"].unique()

    # create and store predictions and true results
    models = {}
    split_data = {}
    pred_results_past = {}
    pred_results_future = {}
    true_results = {}
    for i in sites:
        for j in job_families:
            for k in sub_programs:
                temp_data_train = splitting_train[
                    (splitting_train["SITE"] == i)
                    & (splitting_train["JOB_FAMILY"] == j) &
                    (splitting_train["SUB_PROGRAM"] == k)].reset_index()
                temp_data_train = pd.merge(total_timeframe,
                                           temp_data_train,
                                           on="ds",
                                           how="outer")
                temp_data_train["y"] = temp_data_train["y"].fillna(0)

                temp_data_val = splitting_val[
                    (splitting_val["SITE"] == i)
                    & (splitting_val["JOB_FAMILY"] == j) &
                    (splitting_val["SUB_PROGRAM"] == k)].reset_index(drop=True)
                temp_data_val = pd.merge(timeframe,
                                         temp_data_val,
                                         on="ds",
                                         how="outer")
                temp_data_val["y"] = temp_data_val["y"].fillna(0)

                split_data[(i, j, k)] = temp_data_train
                true_results[(i, j, k)] = temp_data_val
                if temp_data_val["y"].sum() >= 300.0:
                    pred_results_past[(i, j,
                                       k)], models[(i, j, k)] = run_prophet(
                                           temp_data_train, total_timeframe)
                    pred_results_future[(i, j,
                                         k)] = models[(i, j,
                                                       k)].predict(timeframe)
                    print("Fitting -", i, j, k, ": Done")

    # combine predictions and true results
    combined = {}
    for i in pred_results_future:
        combined[i] = pd.merge(
            true_results[i], pred_results_future[i], on="ds",
            how="outer")[["ds", "y", "yhat", "yhat_lower", "yhat_upper"]]

    # convert to week and calculating errors weekly
    weekly = {}
    for i in combined:
        # create week column
        combined[i]["ds"] = combined[i]["ds"] - pd.DateOffset(weekday=0,
                                                              weeks=1)
        combined[i]["week"] = combined[i]["ds"].dt.week

        # store y, yhat, yhat_lower, yhat_upper
        weekly_y = combined[i].groupby("ds").y.sum().reset_index()
        weekly_yhat = combined[i].groupby("ds").yhat.sum().astype(
            int).reset_index()
        weekly_yhat_lower = combined[i].groupby("ds").yhat_lower.sum().astype(
            int).reset_index()
        weekly_yhat_upper = combined[i].groupby("ds").yhat_upper.sum().astype(
            int).reset_index()

        # replace negative prediction values with 0
        weekly_yhat = weekly_yhat.where(weekly_yhat["yhat"] >= 0, 0)
        weekly_yhat_lower = weekly_yhat_lower.where(
            weekly_yhat_lower["yhat_lower"] >= 0, 0)
        weekly_yhat_upper = weekly_yhat_upper.where(
            weekly_yhat_upper["yhat_upper"] >= 0, 0)

        # merge weekly results
        weekly[i] = pd.concat([
            weekly_y, weekly_yhat["yhat"], weekly_yhat_lower["yhat_lower"],
            weekly_yhat_upper["yhat_upper"]
        ],
                              axis=1)

        # create columns "year", "site", "job_family", "sub_program"
        length = weekly[i].shape[0]
        weekly[i]["week"] = weekly[i]["ds"].dt.weekofyear
        weekly[i]["site"] = np.repeat(i[0], length)
        weekly[i]["job_family"] = np.repeat(i[1], length)
        weekly[i]["sub_program"] = np.repeat(i[2], length)

    # model residuals
    for i in weekly:
        forecasted = pred_results_past[i]
        actual = split_data[i]

        error = actual["y"] - forecasted["yhat"]
        obs = total_timeframe.copy()
        obs["error"] = error
        obs = obs.set_index("ds")

        decomp = decompose(obs, period=365)
        weekly_fcast = forecast(decomp,
                                steps=365,
                                fc_func=drift,
                                seasonal=True)
        weekly_fcast["week"] = weekly_fcast.index - pd.DateOffset(weekday=0,
                                                                  weeks=1)
        weekly_fcast = weekly_fcast.groupby("week").sum()

        resid_fcast = weekly_fcast.reset_index()["drift+seasonal"]
        weekly_yhat = (weekly[i]["yhat"] + resid_fcast).round(0)
        weekly_yhat_lower = (weekly[i]["yhat_lower"] + resid_fcast).round(0)
        weekly_yhat_upper = (weekly[i]["yhat_upper"] + resid_fcast).round(0)

        weekly[i]["yhat"] = weekly_yhat.where(weekly_yhat >= 0, 0)
        weekly[i]["yhat_lower"] = weekly_yhat_lower.where(
            weekly_yhat_lower >= 0, 0)
        weekly[i]["yhat_upper"] = weekly_yhat_upper.where(
            weekly_yhat_upper >= 0, 0)

    # create data/predictions folder if it doesn't exist
    predictions_path = "../data/predictions/"
    if not os.path.exists(predictions_path):
        os.mkdir(predictions_path)

    # export to "data/predictions/" directory
    total_data = pd.DataFrame()
    for i in weekly:
        total_data = pd.concat([total_data, weekly[i]], axis=0)
    total_data.to_csv(predictions_path + "exception_predictions.csv")
コード例 #4
0
def ValuePredictor(to_predict_list):
    to_predict = np.array(to_predict_list).reshape(1, 2)
    meal_name = to_predict[0][0]
    for i in range(len(Meals)):
        if Meals[i] == meal_name:
            break

    Mid = int(totalMeals[i])
    week = to_predict[0][1]
    week = int(week)
    Ingredients = RawNames[0].unique().tolist()

    present = 0
    Raw = []

    try:
        #If STL model is better
        for s in STL:
            if (Mid == s):
                from stldecompose import decompose, forecast
                FName = "flaskinventory\models\STL" + str(Mid) + ".xml"
                model = jl.load(FName)
                fore = forecast(model,
                                steps=week,
                                fc_func=naive,
                                seasonal=True)
                Pred = []
                for j in fore.values:
                    Pred.append(j[0])
                RawMat = Quantity.loc[Mid]
                for p in range(0, len(Pred)):
                    qt = 'Week%s' % p
                    qt = []
                    for q in range(1, len(RawMat) + 1):
                        rw = int(round(Pred[p] * RawMat[q]))
                        qt.append(rw)
                    Raw.append(qt)
                break

        #If ETS model is better
        for e in ETS:
            if (Mid == e):
                FName = "flaskinventory\models\ETS" + str(Mid) + ".xml"
                model = jl.load(FName)
                Pred = []
                Pred = model.forecast(week)
                Pred = Pred.tolist()
                print("Type", type(Pred))
                RawMat = Quantity.loc[Mid]
                for p in range(0, len(Pred)):
                    qt = 'Week%s' % p
                    qt = []
                    #for q in range(0,len(RawMat))
                    for q in range(1, len(RawMat) + 1):
                        rw = round(Pred[p] * RawMat[q])
                        qt.append(rw)
                    Raw.append(qt)
                break

    except Exception as e:
        print("Exception", e)
        Prediction = "No prediction"
        RawMaterials = "No raw materials prediction"

    else:
        #Calculation of Cycle, safety stock and reorder point
        sumi = 0

        for i in range(0, len(Pred)):
            sumi = Pred[i] + sumi

        Predicted = int(round(sumi))
        Raw = np.array(Raw)
        res = np.sum(Raw, 0)
        #Raw=pd.DataFrame
        Prediction = Predicted
        RawMaterials = res

        leadTime = [1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 3, 3, 1, 1]
        len(leadTime)

        maxlead = max(leadTime)
        #print(maxlead)

        avglead = mean(leadTime)
        avglead = round(avglead, 1)
        #print(avglead)

        RawSafe = Raw.transpose()
        p = len(RawSafe)
        #print(len(RawSafe))
        SafetyStock = []
        t = []
        R = []
        ReorderPoint = []

        for j in range(0, p):
            maxt = 0
            avgt = 0
            Safety = 0
            ld = 0
            Reorder = 0
            t = RawSafe[j]
            maxt = max(t)
            avgt = round(mean(t), 2)
            Safety = round(((maxt * maxlead) - (avgt * avglead)), 2)
            SafetyStock.append(Safety)
            ld = round((leadTime[j] * avgt), 2)
            Reorder = round((ld + Safety), 2)
            ReorderPoint.append(Reorder)

    return Prediction, RawMaterials, SafetyStock, ReorderPoint, Ingredients, Pred, Mid, week
コード例 #5
0
def stl(k):
    from stldecompose import decompose, forecast
    ar=new_tab.loc[(k)].values
    #print(len(ar))
    a=[]
    for i in range(len(ar)):
        a.append(ar[i][0])
    
    def timeseries_df():
        index = pd.date_range(start="01-01-2017", periods=len(a), freq='W-SAT')
        ts = pd.DataFrame(a, index=index, columns=['num_orders'])
        ts['num_orders']=a
        return ts
    
    
    ts = timeseries_df()
    #print(ts)
    #print(ts.index)
    X = ts.values
    train_size = int(len(X) * 0.60)
    test_size = len(X)-train_size
    #print(test_size," ", train_size)
    #training, testing = ts[0:train_size], ts[train_size:len(X)]
    train, test = ts[0:train_size], ts[train_size:len(X)]
    #print(train)
    #print(test)
    #print('Observations: %d' % (len(X)))
    #print('Training Observations: %d' % (len(train)))
    #print('Testing Observations: %d' % (len(test)))

    trend=['add','add','mul','mul']
    seasonal=['add','mul','add','mul']
    
    
    #print(test)
    
    decomp = decompose(train, period=7)
    #print(decomp)
    #print(type(decomp))
    #s=sm.tsa.seasonal_decompose(train)
    
    #print("trend")
    #print(decomp.trend)
    #print(decomp.resid)
    
    #print("season")
    #print(decomp.seasonal)
    
    fcast = forecast(decomp, steps=test_size, fc_func=naive, seasonal=True)
    #print(fcast)
    y_pred=[]
    for i in fcast.values:
        y_pred.append(i[0])
    #print(y_pred)
    y_true=[]
    for i in test.values:
        y_true.append(i[0])
    #print(y_true)
    Ferror=mean_squared_error(y_true, y_pred)
    
    return decomp,Ferror,test_size
コード例 #6
0
  print("Finished STL")
  modelETS,errorETS,testlenETS=ets(i)
  error=min(errorSTL,errorETS)
  if(error==errorSTL):
      FinalModel=modelSTL
      FModel='STL'
      print("STL")
  elif(error==errorETS):
      FinalModel=modelETS
      FModel='ETS'
      print("ETS")
    
  from stldecompose import decompose, forecast
  Pred=[]
  if(FModel=='STL'):
      forecast=forecast(FinalModel, steps=testlenSTL, fc_func=naive, seasonal=True)
      globals()['STL%s' % i] = FinalModel
      print('STL%s' % i)
      STL.append(i)
      joblib.dump(FinalModel, 'STL'+ str(i) +'.xml', compress=1)
      files.download('STL'+ str(i) +'.xml')

      for j in forecast.values:
          Pred.append(j[0])

  elif(FModel=='ETS'):
      Pred=FinalModel.forecast(testlenETS)
      globals()['ETS%s' % i] = FinalModel
      print('ETS%s' % i)
      ETS.append(i)
      joblib.dump(FinalModel, 'ETS'+ str(i) +'.xml', compress=1)
コード例 #7
0
def ValuePredictor():

    if request.method == "POST":
        Mid = request.form["Meal_ID"]
        Mid = int(Mid)
        week = request.form["Week"]
        week = int(week)

    meal_info = pd.read_csv(
        r'C:/Users/jtani/inventory/flask-inventory/static/meal_info.csv')
    Quantity = pd.read_csv(
        r'C:/Users/jtani/inventory/flask-inventory/static/QuantityRequired - Sheet1.csv'
    )

    totalMeals = meal_info['meal_id'].unique()
    #len(totalMeals)
    STL = [
        1885, 1993, 2139, 2631, 1248, 1778, 1062, 2707, 2640, 2306, 2826, 1754,
        1902, 1311, 1803, 1525, 2304, 1878, 1216, 1247, 1770, 1198, 1438, 2494,
        1847, 2760, 2492, 1543, 2664, 2569, 1571, 2956
    ]
    ETS = [
        2539, 1207, 1230, 2322, 2290, 1727, 1109, 2126, 1971, 1558, 2581, 1962,
        1445, 2444, 2867, 2704, 2577, 2490, 2104
    ]
    Quantity = Quantity.set_index('meal_id')

    present = 0
    Raw = []

    try:
        for s in STL:
            if (Mid == s):
                from stldecompose import decompose, forecast
                FName = "C:/Users/jtani/inventory/flask-inventory/models/STL" + str(
                    Mid) + ".xml"
                #print(FName)
                print("hi")
                model = jl.load(FName)
                print("hi")
                #print(model)
                fore = forecast(model,
                                steps=week,
                                fc_func=naive,
                                seasonal=True)
                Pred = []
                for j in fore.values:
                    Pred.append(j[0])
                print("hi")
                RawMat = Quantity.loc[Mid]
                print("hi")
                #print(RawMat)
                for p in range(0, len(Pred)):
                    qt = 'Week%s' % p
                    qt = []
                for q in range(0, len(RawMat)):
                    rw = int(round(Pred[p] * RawMat[q]))
                    qt.append(rw)
                Raw.append(qt)
                break
        for e in ETS:
            if (Mid == e):
                FName = "C:/Users/jtani/inventory/flask-inventory/models/ETS" + str(
                    Mid) + ".xml"
                model = jl.load(FName)
                Pred = []
                Pred = model.forecast(week)
                RawMat = Quantity.loc[Mid]
                for p in range(0, len(Pred)):
                    qt = 'Week%s' % p
                    qt = []
                for q in range(0, len(RawMat)):
                    rw = int(round(Pred[p] * RawMat[q]))
                    qt.append(rw)
                Raw.append(qt)
                break
    except Exception as e:
        print("Exception", e)
        Prediction = "Eneter a"
        RawMaterials = "raw"
    else:

        for i in range(0, len(Pred)):
            sumi = Pred[i] + sumi
        Predicted = int(round(sumi))
        #print(Predicted)
        #print(Raw)
        Raw = np.array(Raw)

        res = np.sum(Raw, 0)
        #print(len(Raw))
        Raw = pd.DataFrame

        #print(res)

        Prediction = Predicted
        RawMaterials = res

    return Prediction, RawMaterials
    return render_template("MealPrediction.html")
コード例 #8
0
def home():
    cur = db.connection.cursor()
    cur.execute("SELECT * FROM quant")
    Quantity = pd.DataFrame(cur)
    cur.execute("SELECT * FROM meal_info")
    mealInfo = pd.DataFrame(cur)
    cur.execute("SELECT * FROM raw_materials")
    RawNames = pd.DataFrame(cur)
    cur.execute("select meal_id from meal_info where model='ETS'")
    ETS = pd.DataFrame(cur)
    ETS = ETS[0].unique().tolist()
    cur.execute("select meal_id from meal_info where model='STL'")
    STL = pd.DataFrame(cur)
    STL = STL[0].unique().tolist()
    print("ETS", ETS)
    print("STL", STL)

    totalMeals = mealInfo[0].unique()
    Quantity = Quantity.set_index(0)

    for meal in totalMeals:
        Mid = meal
        Mid = int(Mid)
        week = 10
        week = int(week)
        Ingredients = RawNames[0].unique().tolist()

        present = 0
        Raw = []

        try:
            for s in STL:
                if (Mid == s):
                    from stldecompose import decompose, forecast
                    FName = "flaskinventory\models\STL" + str(Mid) + ".xml"
                    model = jl.load(FName)
                    fore = forecast(model,
                                    steps=week,
                                    fc_func=naive,
                                    seasonal=True)
                    Pred = []
                    for j in fore.values:
                        Pred.append(j[0])
                    RawMat = Quantity.loc[Mid]
                    for p in range(0, len(Pred)):
                        qt = 'Week%s' % p
                        qt = []
                        for q in range(1, len(RawMat) + 1):
                            rw = int(round(Pred[p] * RawMat[q]))
                            qt.append(rw)
                        Raw.append(qt)
                    break

            for e in ETS:
                if (Mid == e):
                    FName = "flaskinventory\models\ETS" + str(Mid) + ".xml"
                    model = jl.load(FName)
                    Pred = []
                    Pred = model.forecast(week)
                    RawMat = Quantity.loc[Mid]
                    for p in range(0, len(Pred)):
                        qt = 'Week%s' % p
                        qt = []
                        for q in range(1, len(RawMat) + 1):
                            rw = int(round(Pred[p] * RawMat[q]))
                            qt.append(rw)
                        Raw.append(qt)
                    break

        except Exception as e:
            print("Exception", e)
            Prediction = "No prediction"
            RawMaterials = "No raw materials prediction"

        else:
            sumi = 0

            for i in range(0, len(Pred)):
                sumi = Pred[i] + sumi

            Predicted = int(round(sumi))
            Raw = np.array(Raw)
            res = np.sum(Raw, 0)
            Prediction = Predicted
            RawMaterials = res.tolist()

            leadTime = [1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 3, 3, 1, 1]
            len(leadTime)

            maxlead = max(leadTime)

            avglead = mean(leadTime)
            avglead = round(avglead, 1)

            RawSafe = Raw.transpose()
            p = len(RawSafe)
            SafetyStock = []
            t = []
            R = []
            ReorderPoint = []

            for j in range(0, p):
                maxt = 0
                avgt = 0
                Safety = 0
                ld = 0
                Reorder = 0
                t = RawSafe[j]
                maxt = max(t)
                avgt = round(mean(t), 2)
                Safety = round(((maxt * maxlead) - (avgt * avglead)), 2)
                SafetyStock.append(Safety)
                ld = round((leadTime[j] * avgt), 2)
                Reorder = round((ld + Safety), 2)
                ReorderPoint.append(Reorder)
            print('Done')

        #Adding cycle stock to DB
        #cur.execute("call sysproc.admin_cmd('reorg table QKX97621.CYCLESTOCK')")
        cur.execute("SELECT * FROM cyclestock WHERE meal_id = ?", (Mid, ))

        df = pd.DataFrame(cur)
        if df.empty:
            print("Does not exist")
            cur.execute("insert into cyclestock (meal_id) values (?)", (Mid, ))
        else:
            print('Meal ID already added!')

        for i in range(len(Ingredients)):
            try:
                q = "update cyclestock set " + Ingredients[
                    i] + " = ? where meal_id=?"
                cur.execute(q, (
                    RawMaterials[i],
                    Mid,
                ))
            except:
                q1 = "ALTER TABLE cyclestock ADD " + Ingredients[i] + " INTEGER"
                cur.execute(q1)
                q2 = "update cyclestock set " + Ingredients[
                    i] + " = ? where meal_id=?"
                cur.execute(q2, (
                    RawMaterials[i],
                    Mid,
                ))
        cur.execute("SELECT * FROM cyclestock WHERE meal_id = ?", (Mid, ))
        df2 = pd.DataFrame(cur)

        #Adding safety stock
        #cur.execute("call sysproc.admin_cmd('reorg table QKX97621.SAFETYSTOCK')")
        cur.execute("SELECT * FROM safetystock WHERE meal_id = ?", (Mid, ))

        df = pd.DataFrame(cur)
        if df.empty:
            print("Does not exist")
            cur.execute("insert into safetystock (meal_id) values (?)",
                        (Mid, ))
        else:
            print('Meal ID already added!')

        for i in range(len(Ingredients)):
            try:
                q = "update safetystock set " + Ingredients[
                    i] + " = ? where meal_id=?"
                cur.execute(q, (
                    SafetyStock[i],
                    Mid,
                ))
            except:
                q1 = "ALTER TABLE safetystock ADD " + Ingredients[
                    i] + " INTEGER"
                cur.execute(q1)
                q2 = "update safetystock set " + Ingredients[
                    i] + " = ? where meal_id=?"
                cur.execute(q2, (
                    RawMaterials[i],
                    Mid,
                ))
        cur.execute("SELECT * FROM safetystock WHERE meal_id = ?", (Mid, ))
        df2 = pd.DataFrame(cur)

        #Adding reorder point
        #cur.execute("call sysproc.admin_cmd('reorg table QKX97621.REORDERPOINT')")
        cur.execute("SELECT * FROM reorderpoint WHERE meal_id = ?", (Mid, ))

        df = pd.DataFrame(cur)
        if df.empty:
            print("Does not exist")
            cur.execute("insert into reorderpoint (meal_id) values (?)",
                        (Mid, ))
        else:
            print('Meal ID already added!')

        for i in range(len(Ingredients)):
            try:
                q = "update reorderpoint set " + Ingredients[
                    i] + " = ? where meal_id=?"
                cur.execute(q, (
                    ReorderPoint[i],
                    Mid,
                ))
            except:
                q1 = "ALTER TABLE reorderpoint ADD " + Ingredients[
                    i] + " INTEGER"
                cur.execute(q1)
                q2 = "update reorderpoint set " + Ingredients[
                    i] + " = ? where meal_id=?"
                cur.execute(q2, (
                    ReorderPoint[i],
                    Mid,
                ))
        cur.execute("SELECT * FROM reorderpoint WHERE meal_id = ?", (Mid, ))
        df2 = pd.DataFrame(cur)

    return 'Stock prediction Done!'
コード例 #9
0
# nottem_stl.resid.plot(ax = ax4)
# ax1.set_title("Nottem")
# ax2.set_title("Trend")
# ax3.set_title("Seasonality")
# ax4.set_title("Residuals")
# plt.tight_layout()

# Eliminating the seasonal component
# nottem_adjusted = nottemts - nottem_stl.seasonal
# plt.figure(figsize=(12,8))
# nottem_adjusted.plot()

# Getting the seasonal component only
# Seasonality gives structure to the data
# plt.figure(figsize=(12,8))
# nottem_stl.seasonal.plot()

stl_fcast = forecast(nottem_stl,
                     steps=12,
                     fc_func=seasonal_naive,
                     seasonal=True)

stl_fcast.head()

# Plot of the forecast and the original data
plt.figure(figsize=(12, 8))
plt.plot(nottemts, label='Nottem')
plt.plot(stl_fcast, label=stl_fcast.columns[0])
plt.legend()

input("Press enter to exit ;)")
コード例 #10
0
            # code for minimizing errors (model residuals)
            forecasted = models[i].predict(timeframe_future)
            actual = data_individual[i]

            # get residuals
            error = actual["y"] - forecasted["yhat"]
            obs = timeframe_past.copy()
            obs["error"] = error
            obs = obs.set_index("ds")

            # model residuals
            period = int((np.max(timeframe_future) -
                          np.min(timeframe_future)).dt.days) + 1
            decomp = decompose(obs, period=period)
            weekly_fcast = forecast(decomp,
                                    steps=period,
                                    fc_func=drift,
                                    seasonal=True)
            weekly_fcast["week"] = weekly_fcast.index - pd.DateOffset(
                weekday=0, weeks=1)
            weekly_fcast = weekly_fcast.groupby("week").sum()

            # replace weekly data
            resid_fcast = weekly_fcast.reset_index()["drift+seasonal"]
            weekly_yhat = (weekly[i]["yhat"] + resid_fcast).round(0)
            weekly_yhat_lower = (weekly[i]["yhat_lower"] +
                                 resid_fcast).round(0)
            weekly_yhat_upper = (weekly[i]["yhat_upper"] +
                                 resid_fcast).round(0)

            # replace negatives with 0s
            weekly[i]["yhat"] = weekly_yhat.where(weekly_yhat >= 0, 0)