コード例 #1
0
def get_non_crashing_cover_set(fsm: MealyMachine):
    scs = get_state_cover_set(fsm)
    non_crashing = set()
    for seq in scs:
        fsm.reset()
        output = fsm.process_input(seq)
        if (output is not None) and ("error" not in output):
            non_crashing.add(seq)
    return non_crashing
コード例 #2
0
def get_dset_outputs(fsm, dset):
    states = fsm.get_states()
    outputs = {}
    for state in states:
        mm = MealyMachine(state)
        out = []
        for dseq in dset:
            out.append(mm.process_input(dseq))
            mm.reset()
        outputs[state] = tuple(out.copy())
    return outputs
コード例 #3
0
 def setUp(self):
     s1 = MealyState('1')
     s2 = MealyState('2')
     s3 = MealyState('3')
     s1.add_edge('a', 'nice', s2)
     s1.add_edge('b', 'B', s1)
     s2.add_edge('a', 'nice', s3)
     s2.add_edge('b', 'back', s1)
     s3.add_edge('a', 'A', s3)
     s3.add_edge('b', 'back', s1)
     self.mm = MealyMachine(s1)
コード例 #4
0
    def __init__(self, fsm: MealyMachine):
        self.fsm = fsm
        self.A = fsm.get_alphabet()

        self.states = self.fsm.get_states()
        self.root = PartitionNode(self.states, self.A, self)

        self.nodes = [self.root]

        self.wanted = set([state.name for state in fsm.get_states()])
        self.closed = set()
        self.solution = set()
コード例 #5
0
ファイル: _minsepseq.py プロジェクト: TCatshoek/STMLearn
def _render(fsm: MealyMachine, filename):
    states = sorted(fsm.get_states(), key=lambda x: int(x.name.strip('s')))
    alphabet = sorted(fsm.get_alphabet())

    g = Digraph('G', filename=filename)
    g.attr(rankdir='LR')

    # Add states
    for state in states:
        g.node(state.name)

    # Add transitions:
    for state in states:
        for action, (other_state, output) in sorted(state.edges.items(), key=lambda x: x[0]):
            g.edge(state.name, other_state.name, label=f'{action}/{output}')

    g.save()
コード例 #6
0
def MakeRandomMealyMachine(n_states, A_in, A_out, minimize=True):
    states = [MealyState(f's{x + 1}') for x in range(n_states)]

    def get_reachable(start_state, states):
        to_visit = [start_state]
        visited = []

        while len(to_visit) > 0:
            cur_state = to_visit.pop()
            if cur_state not in visited:
                visited.append(cur_state)

            for action, (other_state, output) in cur_state.edges.items():
                if other_state not in visited and other_state not in to_visit:
                    to_visit.append(other_state)

        return visited, list(set(states).difference(set(visited)))

    def fix_missing(states):
        for state in states:
            for a in A_in:
                if a not in state.edges.keys():
                    state.add_edge(a, "error", state)

    reached, unreached = get_reachable(states[0], states)
    while len(unreached) > 0:
        x = random.choice(reached)
        y = random.choice(unreached)
        a = random.choice(A_in)
        o = random.choice(A_out)

        x.add_edge(a, o, y, override=True)

        reached, unreached = get_reachable(states[0], states)

    fix_missing(states)

    return _minimize(MealyMachine(states[0])) if minimize else MealyMachine(
        states[0])
コード例 #7
0
class LearnSimpleMealy(unittest.TestCase):
    def setUp(self):
        s1 = MealyState('1')
        s2 = MealyState('2')
        s3 = MealyState('3')
        s1.add_edge('a', 'nice', s2)
        s1.add_edge('b', 'B', s1)
        s2.add_edge('a', 'nice', s3)
        s2.add_edge('b', 'back', s1)
        s3.add_edge('a', 'A', s3)
        s3.add_edge('b', 'back', s1)
        self.mm = MealyMachine(s1)

    def test_lstar_wmethod(self):
        eqc = WmethodEquivalenceChecker(self.mm, m=len(self.mm.get_states()))
        teacher = Teacher(self.mm, eqc)
        learner = LStarMealyLearner(teacher)
        hyp = learner.run()
        equivalent, _ = eqc.test_equivalence(hyp)
        self.assertTrue(equivalent)
        self.assertEqual(
            len(self.mm.get_states()),
            len(hyp.get_states()),
        )

    def test_lstar_bruteforce(self):
        eqc = BFEquivalenceChecker(self.mm,
                                   max_depth=len(self.mm.get_states()))
        teacher = Teacher(self.mm, eqc)
        learner = LStarMealyLearner(teacher)
        hyp = learner.run()
        equivalent, _ = WmethodEquivalenceChecker(
            self.mm, m=len(self.mm.get_states())).test_equivalence(hyp)
        self.assertTrue(equivalent)
        self.assertEqual(
            len(self.mm.get_states()),
            len(hyp.get_states()),
        )
コード例 #8
0
ファイル: partition.py プロジェクト: TCatshoek/STMLearn
    def setUp(self):
        # Set up an example mealy machine
        s1 = MealyState('1')
        s2 = MealyState('2')
        s3 = MealyState('3')

        s1.add_edge('a', '1', s2)
        s1.add_edge('b', 'next', s1)
        s2.add_edge('a', '2', s3)
        s2.add_edge('b', 'next', s1)
        s3.add_edge('a', '3', s3)
        s3.add_edge('b', 'next', s1)

        self.mm = MealyMachine(s1)
コード例 #9
0
ファイル: partition.py プロジェクト: TCatshoek/STMLearn
    def setUp(self):
        # Set up an example mealy machine
        states = [MealyState(f'{i}') for i in range(100)]

        for state_a, state_b in [
                states[i:i + 2] for i in range(len(states) - 1)
        ]:
            state_a.add_edge('a', state_a.name, state_b)
            state_a.add_edge('b', 'loop', state_a)
            state_a.add_edge('c', 'loop', state_a)
            state_a.add_edge('d', 'loop', state_a)

        states[-1].add_edge('a', states[-1].name, states[0])
        states[-1].add_edge('b', 'loop', states[-1])
        states[-1].add_edge('c', 'loop', states[-1])
        states[-1].add_edge('d', 'loop', states[-1])

        self.mm = MealyMachine(states[0])
コード例 #10
0
    def build_dfa(self):
        # Gather states from S
        S = self.S

        # The rows can function as index to the 'state' objects
        state_rows = set([tuple(self._get_row(s)) for s in S])
        initial_state_row = tuple(self._get_row(tuple()))

        # Generate state names for convenience
        state_names = {
            state_row: f's{n + 1}'
            for (n, state_row) in enumerate(state_rows)
        }

        # Build the state objects and get the initial and accepting states
        states: Dict[Tuple, MealyState] = {
            state_row: MealyState(state_names[state_row])
            for state_row in state_rows
        }
        initial_state = states[initial_state_row]

        # Add the connections between states
        A = [a for (a, ) in self.A]
        # Keep track of states already visited
        visited_rows = []
        for s in S:
            s_row = tuple(self._get_row(s))
            if s_row not in visited_rows:
                for a in A:
                    sa_row = tuple(self._get_row(s + (a, )))
                    if sa_row in states.keys():
                        try:
                            cur_output = self.query(s + (a, ))
                            states[s_row].add_edge(a, cur_output,
                                                   states[sa_row])
                        except:
                            # Can't add the same edge twice
                            pass
            else:
                visited_rows.append(s_row)

        return MealyMachine(initial_state)
コード例 #11
0
ファイル: _minsepseq.py プロジェクト: TCatshoek/STMLearn
def get_dset_outputs(fsm, dset):
    states = fsm.get_states()
    outputs = {}
    for state in states:
        if isinstance(fsm, MealyMachine):
            mm = MealyMachine(state)
        elif isinstance(fsm, DFA):
            mm = DFA(state, fsm.accepting_states)

        out = []
        for dseq in dset:
            out.append(mm.process_input(dseq))
            mm.reset()
        outputs[state] = tuple(out.copy())
    return outputs
コード例 #12
0
def load_mealy_dot(
        path,
        parse_rules=industrial_mealy_parser):  # industrial_mealy_parser):
    # Parse the dot file
    context = {'nodes': [], 'edges': []}
    with open(path, 'r') as file:
        for line in file.readlines():
            _parse(parse_rules, line, context)

    # Build the mealy graph
    nodes = {name: MealyState(name) for (name, _) in context['nodes']}
    for (frm, to), edge_properties in context['edges']:
        input, output = edge_properties['label'].strip('"').split('/')
        nodes[frm].add_edge(input, output, nodes[to])

    if 'start' in context:
        startnode = nodes[context['start']]
    else:
        startnode = nodes["0"]

    return MealyMachine(startnode)
コード例 #13
0
    def construct_hypothesis(self):
        # Keep track of the initial state
        initial_state = self.S[()]

        # Keep track of the amount of states, so we can sift again if
        # the sifting process created a new state
        n = len(list(self.S.items()))
        items_added = True

        # Todo: figure out a neater way to handle missing states during sifting than to just redo the whole thing
        while items_added:
            # Add transitions
            for access_seq, cur_state in list(self.S.items()):
                for a in self.A:
                    next_state = self.sift(access_seq + a)
                    output = self.query(access_seq + a)
                    cur_state.add_edge(a[0], output, next_state, override=True)

            # Check if no new state was added
            n2 = len((self.S.items()))

            items_added = n != n2
            # print("items added", items_added)

            n = n2

        # Add spanning tree transitions
        for access_seq, state in self.S.items():
            if len(access_seq) > 0:
                ancestor_acc_seq = access_seq[0:-1]
                ancestor_state = self.S[ancestor_acc_seq]
                a = access_seq[-1]
                output = self.query(ancestor_acc_seq + (a,))
                ancestor_state.add_edge(a, output, state, override=True)

        # Find accepting states
        # accepting_states = [state for access_seq, state in self.S.items() if self.query(access_seq)]

        return MealyMachine(initial_state)
コード例 #14
0
def _minimize(mm: MealyMachine):
    dset = get_distinguishing_set(mm)
    dset_outputs = get_dset_outputs(mm, dset)

    # Find non-unique states:
    state_map = {}
    for state, outputs in dset_outputs.items():
        if outputs not in state_map:
            state_map[outputs] = [state]
        else:
            state_map[outputs].append(state)

    for outputs, states in state_map.items():
        if len(states) > 1:
            og_state = states[0]
            rest_states = states[1:]

            states = mm.get_states()
            for state in states:
                for action, (other_state, output) in state.edges.items():
                    if other_state in rest_states:
                        state.edges[action] = og_state, output

    return mm
コード例 #15
0
    states = fsm.get_states()
    alphabet = fsm.get_alphabet()


if __name__ == "__main__":
    s1 = MealyState('1')
    s2 = MealyState('2')
    s3 = MealyState('3')
    s4 = MealyState('4')
    s5 = MealyState('5')

    s1.add_edge('a', 'nice', s2)
    s1.add_edge('b', 'nice', s3)

    s2.add_edge('a', 'nice!', s4)
    s2.add_edge('b', 'back', s1)

    s3.add_edge('a', 'nice', s4)
    s3.add_edge('b', 'back', s1)

    s4.add_edge('a', 'nice', s5)
    s4.add_edge('b', 'nice', s5)

    s5.add_edge('a', 'loop', s5)
    s5.add_edge('b', 'loop', s5)

    mm = MealyMachine(s1)

    mm.render_graph(tempfile.mktemp('.gv'))

    print(get_state_cover_set(mm))
コード例 #16
0
from stmlearn.equivalencecheckers import WmethodEquivalenceChecker
from stmlearn.learners import TTTMealyLearner
from stmlearn.suls import MealyState, MealyMachine
from stmlearn.teachers import Teacher

# Set up an example mealy machine
s1 = MealyState('1')
s2 = MealyState('2')
s3 = MealyState('3')

s1.add_edge('a', 'nice', s2)
s1.add_edge('b', 'B', s1)
s2.add_edge('a', 'nice', s3)
s2.add_edge('b', 'back', s1)
s3.add_edge('a', 'A', s3)
s3.add_edge('b', 'back', s1)

mm = MealyMachine(s1)

# Use the W method equivalence checker
eqc = WmethodEquivalenceChecker(mm, m=len(mm.get_states()))

teacher = Teacher(mm, eqc)

# We are learning a mealy machine
learner = TTTMealyLearner(teacher)

hyp = learner.run()

hyp.render_graph(tempfile.mktemp('.gv'))
learner.DTree.render_graph(tempfile.mktemp('.gv'))