コード例 #1
0
def testingParameters():
    """
    Create a Spliner parameters object for FISTA deconvolution.
    """
    if settings.use_fista:
        params = parameters.ParametersSplinerFISTA()
    else:
        params = parameters.ParametersSplinerSTD()

    params.setAttr("max_frame", "int", -1)
    params.setAttr("start_frame", "int", -1)

    params.setAttr("background_sigma", "float", 8.0)
    params.setAttr("camera_gain", "float", settings.camera_gain)
    params.setAttr("camera_offset", "float", settings.camera_offset)
    params.setAttr("find_max_radius", "int", 15)
    params.setAttr("iterations", "int", settings.iterations)
    params.setAttr("pixel_size", "float", settings.pixel_size)
    params.setAttr("max_z", "float", 1.0)
    params.setAttr("min_z", "float", -1.0)
    params.setAttr("no_fitting", "int", 1)

    params.setAttr("sigma", "float", 1.5)
    params.setAttr("spline", "filename", "psf.spline")
    params.setAttr("threshold", "float", 6.0)

    # FISTA.
    if settings.use_fista:
        params.setAttr("use_fista", "int", settings.use_fista)
        params.setAttr("fista_iterations", "int", 500)
        params.setAttr("fista_lambda", "float", 20.0)
        params.setAttr("fista_number_z", "int", 5)
        params.setAttr("fista_threshold", "float", 500.0)
        params.setAttr("fista_timestep", "float", 0.1)

        params.setAttr("rb_radius", "float", 10.0)
        params.setAttr("rb_sigma", "float", 1.0)

    # Standard
    else:
        params.setAttr("z_value", "float-array", [-0.6, -0.3, 0.0, 0.3, 0.6])

    # Don't do tracking.
    params.setAttr("descriptor", "string", "1")
    params.setAttr("radius", "float", "0.0")

    # Don't do drift-correction.
    params.setAttr("d_scale", "int", 2)
    params.setAttr("drift_correction", "int", 0)
    params.setAttr("frame_step", "int", 500)
    params.setAttr("z_correction", "int", 0)

    # 'peak_locations' testing.
    if hasattr(settings, "peak_locations") and (settings.peak_locations
                                                is not None):
        params.setAttr("peak_locations", "filename", settings.peak_locations)

    return params
コード例 #2
0
def analyze(movie_name, mlist_name, settings_name):
    parameters = params.ParametersSpliner().initFromFile(settings_name,
                                                         warnings=False)
    if (parameters.getAttr("use_fista", 0) != 0):
        parameters = params.ParametersSplinerFISTA().initFromFile(
            settings_name)
        finder = find_peaks_fista.SplinerFISTAFinderFitter(parameters)
    else:
        parameters = params.ParametersSplinerSTD().initFromFile(settings_name)
        finder = find_peaks_std.SplinerFinderFitter(parameters)
    std_analysis.standardAnalysis(finder, movie_name, mlist_name, parameters)
コード例 #3
0
def analyze(movie_name, mlist_name, settings_name):

    # Load parameters.
    parameters = params.ParametersSpliner().initFromFile(settings_name,
                                                         warnings=False)

    # Check for v1.0 parameters.
    if not (parameters.hasAttr("camera_gain")
            or parameters.hasAttr("camera_calibration")):
        raise Exception(
            "Camera parameters are missing. Version 1.0 parameters?")

    # Create appropriate finding and fitting object.
    if (parameters.getAttr("use_fista", 0) != 0):
        parameters = params.ParametersSplinerFISTA().initFromFile(
            settings_name)
        finder = find_peaks_fista.initFindAndFit(parameters)
    else:
        parameters = params.ParametersSplinerSTD().initFromFile(settings_name)
        finder = find_peaks_std.initFindAndFit(parameters)

    # Create appropriate reader.
    if parameters.hasAttr("camera_offset"):
        frame_reader = analysisIO.FrameReaderStd(movie_file=movie_name,
                                                 parameters=parameters)
    else:
        frame_reader = analysisIO.FrameReaderSCMOS(movie_file=movie_name,
                                                   parameters=parameters)

    # Create movie reader (uses frame reader).
    movie_reader = analysisIO.MovieReader(frame_reader=frame_reader,
                                          parameters=parameters)

    # Create localization file writer.
    data_writer = analysisIO.DataWriterHDF5(data_file=mlist_name,
                                            parameters=parameters,
                                            sa_type="Spliner")

    std_analysis.standardAnalysis(finder, movie_reader, data_writer,
                                  parameters)
コード例 #4
0
    import storm_analysis.rolling_ball_bgr.rolling_ball as rollingBall
    import storm_analysis.sa_library.datareader as datareader
    import storm_analysis.sa_library.daxwriter as daxwriter
    import storm_analysis.sa_library.parameters as params
    import storm_analysis.sa_library.writeinsight3 as writeinsight3
    import storm_analysis.wavelet_bgr.wavelet_bgr as waveletBGR

    import fista_decon_utilities_c as fdUtil

    if (len(sys.argv) != 4):
        print("usage: <movie, input> <parameters_file, input> <decon, output>")
        exit()

    # Load parameters
    parameters = params.ParametersSplinerFISTA().initFromFile(sys.argv[2])

    # Open movie and load the first frame.
    movie_data = datareader.inferReader(sys.argv[1])
    [x_size, y_size, z_size] = movie_data.filmSize()
    image = movie_data.loadAFrame(0) - parameters.getAttr("baseline")
    image = image.astype(numpy.float)

    # Do FISTA deconvolution.
    fdecon = FISTADecon(image.shape,
                        parameters.getAttr("spline"),
                        parameters.getAttr("fista_number_z"),
                        parameters.getAttr("fista_timestep"),
                        upsample=parameters.getAttr("fista_upsample"))

    if 0:
コード例 #5
0
    import storm_analysis.spliner.spline_to_psf as splineToPSF
    import storm_analysis.wavelet_bgr.wavelet_bgr as waveletBGR

    parser = argparse.ArgumentParser(description = 'FISTA deconvolution - Beck and Teboulle, SIAM J. Imaging Sciences, 2009')

    parser.add_argument('--movie', dest='movie', type=str, required=True,
                        help = "The name of the movie to deconvolve, can be .dax, .tiff or .spe format.")
    parser.add_argument('--xml', dest='settings', type=str, required=True,
                        help = "The name of the settings xml file.")
    parser.add_argument('--output', dest='output', type=str, required=True,
                        help = "The name of the .tif file to save the results in.")

    args = parser.parse_args()

    # Load parameters
    parameters = params.ParametersSplinerFISTA().initFromFile(args.settings)

    # Open movie and load the first frame.
    movie_data = datareader.inferReader(args.movie)
    [x_size, y_size, z_size] = movie_data.filmSize()
    image = (movie_data.loadAFrame(0) - parameters.getAttr("camera_offset"))/parameters.getAttr("camera_gain")
    image = image.astype(numpy.float)

    # Load spline.
    psf_object = splineToPSF.loadSpline(parameters.getAttr("spline"))
    
    # Do FISTA deconvolution.
    fdecon = FISTADecon(image.shape,
                        psf_object,
                        parameters.getAttr("fista_number_z"),
                        parameters.getAttr("fista_timestep"))