def data_event(self, executor): self.logger.debug("Event received") if executor.terminated: self._push_to_db(executor) else: workload = '.'.join(executor.current_workload.split('.')[1:6]) if 'metrics' not in executor.metadata: executor.metadata['metrics'] = {} steady_state = True metrics = {} for metric in ('lat_ns.mean', 'iops', 'bw'): metrics[metric] = {} for io_type in ('read', 'write'): metrics[metric][io_type] = {} series = self._lookup_prior_data(executor, metric, io_type) series = self._convert_timestamps_to_samples( executor, series) steady = self._evaluate_prior_data( series, executor.steady_state_samples) self.logger.debug("Steady state for %s %s: %s" % (io_type, metric, steady)) metrics[metric][io_type]['series'] = series metrics[metric][io_type]['steady_state'] = steady treated_data = DataTreatment.data_treatment(series) metrics[metric][io_type]['slope'] = \ math.slope(treated_data['slope_data']) metrics[metric][io_type]['range'] = \ math.range_value(treated_data['range_data']) average = math.average(treated_data['average_data']) metrics[metric][io_type]['average'] = average metrics_key = '%s.%s.%s' % (workload, io_type, metric) executor.metadata['metrics'][metrics_key] = average if not steady: steady_state = False if 'report_data' not in executor.metadata: executor.metadata['report_data'] = {} if 'steady_state' not in executor.metadata: executor.metadata['steady_state'] = {} executor.metadata['report_data'][workload] = metrics executor.metadata['steady_state'][workload] = steady_state workload_name = executor.current_workload.split('.')[1] if steady_state and not workload_name.startswith('_'): executor.terminate_current_run()
def steady_state(data_series): """ This function seeks to detect steady state given on a measurement window given the data series of that measurement window following the pattern : [[x1,y1], [x2,y2], ..., [xm,ym]]. m represents the number of points recorded in the measurement window, x which represents the time, and y which represents the Volume performance variable being tested e.g. IOPS, latency... The function returns a boolean describing wether or not steady state has been reached with the data that is passed to it. """ logger = logging.getLogger('storperf.utilities.steady_state') # Pre conditioning the data to match the algorithms treated_data = DataTreatment.data_treatment(data_series) # Calculating useful values invoking dedicated functions slope_value = math.slope(treated_data['slope_data']) range_value = math.range_value(treated_data['range_data']) average_value = math.average(treated_data['average_data']) if (slope_value is not None and range_value is not None and average_value is not None): # Verification of the Steady State conditions following the SNIA # definition range_condition = abs(range_value) <= 0.20 * abs(average_value) slope_condition = abs(slope_value) <= 0.10 * abs(average_value) steady_state = range_condition and slope_condition logger.debug("Range %s <= %s?" % (abs(range_value), (0.20 * abs(average_value)))) logger.debug("Slope %s <= %s?" % (abs(slope_value), (0.10 * abs(average_value)))) logger.debug("Steady State? %s" % steady_state) else: steady_state = False return steady_state
def test_slope_0_in_x_and_y(self): expected = 1.5 actual = Slope.slope([[0.0, 0], [1, 1], [2, 3]]) self.assertEqual(expected, actual)
def test_infinte_slope(self): expected = None actual = Slope.slope([[1480623510, 1295.87], [1480623520, 1380.79]]) self.assertEqual(expected, actual)
def test_slope_0_in_y(self): expected = -0.5 actual = Slope.slope([[15.5, 1], [16.5, 0], [17.5, 0]]) self.assertEqual(expected, actual)
def test_slope_0_in_x(self): expected = 1.4 actual = Slope.slope([[0, 6.0], [1, 5], [2, 7], [3, 10]]) self.assertEqual(expected, actual)
def test_slope_negative_x_series(self): expected = 1.4 actual = Slope.slope([[-24, 6.0], [-23, 5], [-22, 7.0], [-21, 10]]) self.assertEqual(expected, actual)
def test_slope_out_of_order_series(self): expected = 1.4 actual = Slope.slope([[2, 5.0], [4, 10], [3.0, 7], [1, 6]]) self.assertEqual(expected, actual)
def test_slope_negative_y_series(self): expected = 2 actual = Slope.slope([[1.0, -2], [2, 2], [3, 2]]) self.assertEqual(expected, actual)
def test_slope_decimal_integer_mix(self): expected = 1.4 actual = Slope.slope([[1.0, 6], [2, 5.0], [3, 7], [4.0, 10]]) self.assertEqual(expected, actual)
def test_slope_decimal_series(self): expected = 1.4 actual = Slope.slope([[1.0, 6.0], [2.0, 5.0], [3.0, 7.0], [4.0, 10.0]]) self.assertEqual(expected, actual)
def test_slope_integer_series(self): expected = 1.4 actual = Slope.slope([[1, 6], [2, 5], [3, 7], [4, 10]]) self.assertEqual(expected, actual)
def test_slope_empty_series(self): expected = None actual = Slope.slope([]) self.assertEqual(expected, actual)