コード例 #1
0
def _medianize(dset):

	num_imgs = get_nr_projs ( dset )

	# Return error if there are no images:
	if (num_imgs == 0):      
		return -1 # Error:

	# Return the only image in case of one image:
	elif (num_imgs == 1):
		return read_tomo(dset,0).astype(float32)
	
	# Do the median of all the images if there is more than one image:
	if num_imgs > 1:

		# Get first image:
		im = read_tomo(dset,0).astype(float32)
		
		# Read all the remaining files (if any) and save it in a volume:
		for i in range(1, num_imgs):                 
		
			# Read i-th image from input folder:
			#im = im + dset[i,:,:].astype(float32)   
			im = im + read_tomo(dset,i).astype(float32) 
		
		# Medianize volume along the third-dimension:
		im = im / num_imgs

		# Reshape output and return:
		return im.astype(float32)  	
コード例 #2
0
def _process(lock, int_from, int_to, infile, outfile, outshape, outtype, method, plan, logfilename):

	# Process the required subset of images:
	for i in range(int_from, int_to + 1):                 
				
		# Read input image:
		t0 = time()
		f_in = getHDF5(infile, 'r')
		if "/tomo" in f_in:
			dset = f_in['tomo']
		else: 
			dset = f_in['exchange/data']
		im = tdf.read_tomo(dset,i).astype(float32)		
		f_in.close()
		t1 = time() 

		# Perform phase retrieval (first time also PyFFTW prepares a plan):		
		if (method == 0):
			im = tiehom(im, plan).astype(float32)			
		else:
			im = phrt(im, plan, method).astype(float32)			
		t2 = time() 	
								
		# Save processed image to HDF5 file (atomic procedure - lock used):
		_write_data(lock, im, i, outfile, outshape, outtype, logfilename, t2 - t1, t1 - t0)
コード例 #3
0
def _process(lock, int_from, int_to, infile, outfile, outshape, outtype,
             method, plan, logfilename):

    # Process the required subset of images:
    for i in range(int_from, int_to + 1):

        # Read input image:
        t0 = time()
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else:
            dset = f_in['exchange/data']
        im = tdf.read_tomo(dset, i).astype(float32)
        f_in.close()
        t1 = time()

        # Perform phase retrieval (first time also PyFFTW prepares a plan):
        if (method == 0):
            im = tiehom(im, plan).astype(float32)
        elif (method == 1):
            im = tiehom2020(im, plan).astype(float32)
        else:
            im = phrt(im, plan, method).astype(float32)
        t2 = time()

        # Save processed image to HDF5 file (atomic procedure - lock used):
        _write_data(lock, im, i, outfile, outshape, outtype, logfilename,
                    t2 - t1, t1 - t0)
コード例 #4
0
def _process(lock, int_from, int_to, infile, outfile, outshape, outtype, skipflat, plan, flat_end, 
			 half_half, half_half_line, dynamic_ff, EFF, filtEFF, im_dark, rotation, interp, border, 
			 rescale_factor, logfilename):

	# Process the required subset of images:
	for i in range(int_from, int_to + 1):                 
				
		# Read input image:
		t0 = time()
		f_in = getHDF5(infile, 'r')
		if "/tomo" in f_in:
			dset = f_in['tomo']
		else: 
			dset = f_in['exchange/data']
		im = tdf.read_tomo(dset,i).astype(float32)		
		f_in.close()
		t1 = time() 		

		# Perform pre-processing (flat fielding, extended FOV, ring removal):
		if not skipflat:
			if dynamic_ff:
				# Dynamic flat fielding with downsampling = 2:
				im = dynamic_flat_fielding(im, EFF, filtEFF, 2, im_dark)
			else:
				im = flat_fielding(im, i, plan, flat_end, half_half, half_half_line, norm_sx, norm_dx)			
		t2 = time() 		

		# Rotate:
		rows, cols = im.shape
		#if (cols > rows):
		#	angle = - arctan(2.0 / cols) * (rows / 2.0) / 2.0
		#else:
		#	angle = - arctan(2.0 / rows) * (cols / 2.0) / 2.0
		#print(angle)
	
		M = cv2.getRotationMatrix2D((cols / 2, rows / 2), rotation, 1)

		if interp == 'nearest':
			interpflag = cv2.INTER_NEAREST
		elif interp == 'cubic':
			interpflag = cv2.INTER_CUBIC
		elif interp == 'lanczos':
			interpflag = cv2.INTER_LANCZOS4
		else:
			interpflag = cv2.INTER_LINEAR 

		if border == 'constant':
			borderflag = cv2.BORDER_CONSTANT
		else:
			borderflag = cv2.BORDER_REPLICATE


		im = cv2.warpAffine(im, M, (cols, rows), flags = interpflag, borderMode = borderflag)
								
		# Save processed image to HDF5 file (atomic procedure - lock used):
		_write_data(lock, im, i, outfile, outshape, outtype, rescale_factor, logfilename, t2 - t1, t1 - t0)
コード例 #5
0
def _process(lock, int_from, int_to, infile, dset_str, TIFFFormat, projorder, outpath, outprefix, logfilename):
	"""To do...

	"""							
	try:			

		f = getHDF5(infile, 'r')	
		dset = f[dset_str]
				
		# Process the required subset of images:
		for i in range(int_from, int_to + 1):                  			
					
			# Read input image:
			t0 = time.time()

			if projorder:
				im = tdf.read_tomo(dset, i)				
			else:
				im = tdf.read_sino(dset, i)		
				
			# Cast type (if required but it should never occur):
			if (((im.dtype).type is float64) or ((im.dtype).type is float16)):
				im = im.astype(float32, copy=False)
				
			if (TIFFFormat):
				fname = outpath + outprefix + '_' + str(i).zfill(4) + '.tif'
				imsave(fname, im)
			else:
				fname = outpath + outprefix + '_' + str(i).zfill(4) + '_' + str(im.shape[1]) + \
						'x' + str(im.shape[0]) + '_' + str(im.dtype) + '.raw'
				im.tofile(fname)

			t1 = time.time() 

			# Print out execution time:
			_write_log(lock, fname, logfilename, t1 - t0)
					
		f.close()
				
	except Exception: 
		
		pass					
コード例 #6
0
def main(argv):
    """To do...

	"""
    lock = Lock()

    skip_flat = True
    first_done = False
    pyfftw_cache_disable()
    pyfftw_cache_enable()
    pyfftw_set_keepalive_time(1800)

    # Get the from and to number of files to process:
    idx = int(argv[0])

    # Get full paths of input TDF and output TDF:
    infile = argv[1]
    outfile = argv[2]

    # Get the phase retrieval parameters:
    method = int(argv[3])
    param1 = double(argv[4])  # param1( e.g. regParam, or beta)
    param2 = double(argv[5])  # param2( e.g. thresh or delta)
    energy = double(argv[6])
    distance = double(argv[7])
    pixsize = double(argv[8]) / 1000.0  # pixsixe from micron to mm:
    pad = True if argv[9] == "True" else False

    # Tmp path and log file:
    tmppath = argv[10]
    if not tmppath.endswith(sep): tmppath += sep
    logfilename = argv[11]

    # Open the HDF5 file and check it contains flat files:
    skipflat = False
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo']
        if not "/flat" in f_in:
            skipflat = True
    else:
        dset = f_in['exchange/data']
        if not "/exchange/data_white" in f_in:
            skipflat = True
    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)

    # Check if the HDF5 makes sense:
    if (num_proj == 0):
        log = open(logfilename, "a")
        log.write(linesep + "\tNo projections found. Process will end.")
        log.close()
        exit()

    # Get flats and darks from cache or from file:
    if not skipflat:
        try:
            corrplan = cache2plan(infile, tmppath)
        except Exception as e:
            #print "Error(s) when reading from cache"
            corrplan = extract_flatdark(f_in, True, logfilename)
            remove(logfilename)
            plan2cache(corrplan, infile, tmppath)

    # Read projection:
    im = tdf.read_tomo(dset, idx).astype(float32)
    f_in.close()

    # Apply simple flat fielding (if applicable):
    if not skipflat:
        if (isinstance(corrplan['im_flat_after'], ndarray)
                and isinstance(corrplan['im_flat'], ndarray)
                and isinstance(corrplan['im_dark'], ndarray)
                and isinstance(corrplan['im_dark_after'], ndarray)):
            if (idx < num_proj / 2):
                im = (im - corrplan['im_dark']) / (
                    abs(corrplan['im_flat'] - corrplan['im_dark']) +
                    finfo(float32).eps)
            else:
                im = (im - corrplan['im_dark_after']) / (
                    abs(corrplan['im_flat_after'] - corrplan['im_dark_after'])
                    + finfo(float32).eps)

    # Prepare plan:
    im = im.astype(float32)
    if (method == 0):
        # Paganin 2002:
        plan = tiehom_plan(im, param1, param2, energy, distance, pixsize, pad)
        im = tiehom(im, plan).astype(float32)
    elif (method == 1):
        # Paganin 2020:
        plan = tiehom_plan2020(im, param1, param2, energy, distance, pixsize,
                               pad)
        im = tiehom2020(im, plan).astype(float32)
    else:
        plan = phrt_plan(im, energy, distance, pixsize, param2, param1, method,
                         pad)
        im = phrt(im, plan, method).astype(float32)

    # Write down reconstructed preview file (file name modified with metadata):
    im = im.astype(float32)
    outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(
        im.shape[0]) + '_' + str(nanmin(im)) + '$' + str(nanmax(im))
    im.tofile(outfile)
コード例 #7
0
def main(argv):
    """To do...

	"""
    lock = Lock()

    skip_flat = True
    first_done = False
    pyfftw_cache_disable()
    pyfftw_cache_enable()
    pyfftw_set_keepalive_time(1800)

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1])

    # Get full paths of input TDF and output TDF:
    infile = argv[2]
    outfile = argv[3]

    # Get the phase retrieval parameters:
    method = int(argv[4])
    param1 = double(argv[5])  # e.g. regParam, or beta
    param2 = double(argv[6])  # e.g. thresh or delta
    energy = double(argv[7])
    distance = double(argv[8])
    pixsize = double(argv[9]) / 1000.0  # pixsixe from micron to mm:
    pad = True if argv[10] == "True" else False

    # Number of threads (actually processes) to use and logfile:
    nr_threads = int(argv[11])
    logfilename = argv[12]

    # Log infos:
    log = open(logfilename, "w")
    log.write(linesep + "\tInput TDF file: %s" % (infile))
    log.write(linesep + "\tOutput TDF file: %s" % (outfile))
    log.write(linesep + "\t--------------")
    if (method == 0):
        log.write(linesep + "\tMethod: TIE-Hom (Paganin et al., 2002)")
        log.write(linesep + "\t--------------")
        log.write(linesep + "\tDelta/Beta: %0.1f" % ((param2 / param1)))
    elif (method == 1):
        log.write(linesep +
                  "\tMethod: Generalized TIE-Hom (Paganin et al., 2020)")
        log.write(linesep + "\t--------------")
        log.write(linesep + "\tDelta/Beta: %0.1f" % ((param2 / param1)))
    else:
        log.write(linesep + "\tMethod: Projected CTF (Moosmann et al., 2011)")
        log.write(linesep + "\t--------------")
        log.write(linesep + "\tRegularization: %0.3f" % (param2))
        log.write(linesep + "\tThreshold: %0.3f" % (param1))
    log.write(linesep + "\tEnergy: %0.1f keV" % (energy))
    log.write(linesep + "\tDistance: %0.1f mm" % (distance))
    log.write(linesep + "\tPixel size: %0.3f micron" % (pixsize * 1000))
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tBrowsing input files...")
    log.close()

    # Remove a previous copy of output:
    if exists(outfile):
        remove(outfile)

    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo']
    else:
        dset = f_in['exchange/data']
    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)

    if (num_proj == 0):
        log = open(logfilename, "a")
        log.write(linesep + "\tNo projections found. Process will end.")
        log.close()
        exit()

    log = open(logfilename, "a")
    log.write(linesep + "\tInput files browsed correctly.")
    log.close()

    # Check extrema (int_to == -1 means all files):
    if ((int_to >= num_proj) or (int_to == -1)):
        int_to = num_proj - 1

    if ((int_from < 0)):
        int_from = 0

    # Prepare the plan:
    log = open(logfilename, "a")
    log.write(linesep + "\tPreparing the work plan...")
    log.close()

    im = tdf.read_tomo(dset, 0).astype(float32)

    outshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_proj)
    f_out = getHDF5(outfile, 'w')
    f_out_dset = f_out.create_dataset('exchange/data', outshape, float32)
    f_out_dset.attrs['min'] = str(amin(im[:]))
    f_out_dset.attrs['max'] = str(amax(im[:]))

    f_out_dset.attrs['version'] = '1.0'
    f_out_dset.attrs['axes'] = "y:theta:x"

    f_in.close()
    f_out.close()

    if (method == 0):
        # Paganin 2020:
        plan = tiehom_plan(im, param1, param2, energy, distance, pixsize, pad)
    elif (method == 1):
        # Paganin 2020:
        plan = tiehom_plan2020(im, param1, param2, energy, distance, pixsize,
                               pad)
    else:
        plan = phrt_plan(im, energy, distance, pixsize, param2, param1, method,
                         pad)

    # Run several threads for independent computation without waiting for threads completion:
    for num in range(nr_threads):
        start = (num_proj / nr_threads) * num
        if (num == nr_threads - 1):
            end = num_proj - 1
        else:
            end = (num_proj / nr_threads) * (num + 1) - 1
        Process(target=_process,
                args=(lock, start, end, infile, outfile, outshape, float32,
                      method, plan, logfilename)).start()
コード例 #8
0
def main(argv):
	"""To do...

	"""
	lock = Lock()

	skip_flat = True
	first_done = False	
	pyfftw_cache_disable()
	pyfftw_cache_enable()
	pyfftw_set_keepalive_time(1800)	

	# Get the from and to number of files to process:
	int_from = int(argv[0])
	int_to = int(argv[1])
	   
	# Get full paths of input TDF and output TDF:
	infile = argv[2]
	outfile = argv[3]
	
	# Get the phase retrieval parameters:
	method = int(argv[4])
	param1 = double(argv[5])   # e.g. regParam, or beta
	param2 = double(argv[6])   # e.g. thresh or delta
	energy = double(argv[7])
	distance = double(argv[8])    
	pixsize = double(argv[9]) / 1000.0 # pixsixe from micron to mm:	
	pad = True if argv[10] == "True" else False
	
	# Number of threads (actually processes) to use and logfile:
	nr_threads = int(argv[11])
	logfilename = argv[12]		

	# Log infos:
	log = open(logfilename,"w")
	log.write(linesep + "\tInput TDF file: %s" % (infile))	
	log.write(linesep + "\tOutput TDF file: %s" % (outfile))		
	log.write(linesep + "\t--------------")
	if (method == 0):
		log.write(linesep + "\tMethod: TIE-Hom (Paganin et al., 2002)")		
		log.write(linesep + "\t--------------")	
		log.write(linesep + "\tDelta/Beta: %0.1f" % ((param2/param1))	)
	#else:
	#	log.write(linesep + "\tMethod: Projected CTF (Moosmann et al., 2011)")		
	#	log.write(linesep + "\t--------------")	
	#	log.write(linesep + "\tDelta/Beta: %0.1f" % ((param2/param1))	)
	log.write(linesep + "\tEnergy: %0.1f keV" % (energy))
	log.write(linesep + "\tDistance: %0.1f mm" % (distance))
	log.write(linesep + "\tPixel size: %0.3f micron" % (pixsize*1000))
	log.write(linesep + "\t--------------")	
	log.write(linesep + "\tBrowsing input files...")	
	log.close()
	
	# Remove a previous copy of output:
	if exists(outfile):
		remove(outfile)
	
	# Open the HDF5 file:
	f_in = getHDF5(infile, 'r')
	if "/tomo" in f_in:
		dset = f_in['tomo']
	else: 
		dset = f_in['exchange/data']
	num_proj = tdf.get_nr_projs(dset)
	num_sinos = tdf.get_nr_sinos(dset)
	
	if (num_proj == 0):
		log = open(logfilename,"a")
		log.write(linesep + "\tNo projections found. Process will end.")	
		log.close()			
		exit()	
	
	log = open(logfilename,"a")
	log.write(linesep + "\tInput files browsed correctly.")	
	log.close()					

	# Check extrema (int_to == -1 means all files):
	if ( (int_to >= num_proj) or (int_to == -1) ):
		int_to = num_proj - 1

	if ( (int_from < 0) ):
		int_from = 0

	# Prepare the plan:
	log = open(logfilename,"a")
	log.write(linesep + "\tPreparing the work plan...")	
	log.close()			

	im = tdf.read_tomo(dset,0).astype(float32)	
	

	outshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_proj)			
	f_out = getHDF5(outfile, 'w')
	f_out_dset = f_out.create_dataset('exchange/data', outshape, float32) 
	f_out_dset.attrs['min'] = str(amin(im[:]))
	f_out_dset.attrs['max'] = str(amax(im[:]))
	
	f_out_dset.attrs['version'] = '1.0'
	f_out_dset.attrs['axes'] = "y:theta:x"

	f_in.close()
	f_out.close()
				
	if (method == 0):
		# Paganin's:
		plan = tiehom_plan (im, param1, param2, energy, distance, pixsize, pad)
	else:
		plan = phrt_plan (im, energy, distance, pixsize, param2, param1, method, pad)

	# Run several threads for independent computation without waiting for threads completion:
	for num in range(nr_threads):
		start = (num_proj / nr_threads)*num
		if (num == nr_threads - 1):
			end = num_proj - 1
		else:
			end = (num_proj / nr_threads)*(num + 1) - 1
		Process(target=_process, args=(lock, start, end, infile, outfile, outshape, float32, method, plan, logfilename)).start()
コード例 #9
0
def main(argv):
	"""To do...

	"""
	lock = Lock()

	skip_flat = True
	first_done = False	
	pyfftw_cache_disable()
	pyfftw_cache_enable()
	pyfftw_set_keepalive_time(1800)	

	# Get the from and to number of files to process:
	idx = int(argv[0])
	   
	# Get full paths of input TDF and output TDF:
	infile = argv[1]
	outfile = argv[2]
	
	# Get the phase retrieval parameters:
	method = int(argv[3])
	param1 = double(argv[4])   # param1( e.g. regParam, or beta)
	param2 = double(argv[5])   # param2( e.g. thresh or delta)
	energy = double(argv[6])
	distance = double(argv[7])    
	pixsize = double(argv[8]) / 1000.0 # pixsixe from micron to mm:	
	pad = True if argv[9] == "True" else False
	
	# Tmp path and log file:
	tmppath = argv[10]	
	if not tmppath.endswith(sep): tmppath += sep		
	logfilename = argv[11]		

	
	# Open the HDF5 file and check it contains flat files:
	skipflat = False
	f_in = getHDF5(infile, 'r')
	if "/tomo" in f_in:
		dset = f_in['tomo']
		if not "/flat" in f_in:
			skipflat = True
	else: 
		dset = f_in['exchange/data']
		if not "/exchange/data_white" in f_in:
			skipflat = True
	num_proj = tdf.get_nr_projs(dset)
	num_sinos = tdf.get_nr_sinos(dset)
	
	# Check if the HDF5 makes sense:
	if (num_proj == 0):
		log = open(logfilename,"a")
		log.write(linesep + "\tNo projections found. Process will end.")	
		log.close()			
		exit()		

	


	# Get flats and darks from cache or from file:
	if not skipflat:
		try:
			corrplan = cache2plan(infile, tmppath)
		except Exception as e:
			#print "Error(s) when reading from cache"
			corrplan = extract_flatdark(f_in, True, logfilename)
			remove(logfilename)
			plan2cache(corrplan, infile, tmppath)

	# Read projection:
	im = tdf.read_tomo(dset,idx).astype(float32)		
	f_in.close()

	# Apply simple flat fielding (if applicable):
	if not skipflat:
		if (isinstance(corrplan['im_flat_after'], ndarray) and isinstance(corrplan['im_flat'], ndarray) and
			isinstance(corrplan['im_dark'], ndarray) and isinstance(corrplan['im_dark_after'], ndarray)) :	
			if (idx < num_proj/2):
				im = (im - corrplan['im_dark']) / (abs(corrplan['im_flat'] - corrplan['im_dark']) + finfo(float32).eps)
			else:
				im = (im - corrplan['im_dark_after']) / (abs(corrplan['im_flat_after'] - corrplan['im_dark_after']) 
					+ finfo(float32).eps)	
					
	# Prepare plan:
	im = im.astype(float32)
	if (method == 0):
		# Paganin's:
		plan = tiehom_plan (im, param1, param2, energy, distance, pixsize, pad)		
		im = tiehom(im, plan).astype(float32)	
	else:
		plan = phrt_plan (im, energy, distance, pixsize, param2, param1, method, pad)
		im = phrt(im, plan, method).astype(float32)				
	
	# Write down reconstructed preview file (file name modified with metadata):		
	im = im.astype(float32)
	outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(im.shape[0]) + '_' + str( nanmin(im)) + '$' + str( nanmax(im) )	
	im.tofile(outfile)		
コード例 #10
0
def _medianize_withprovenance(dset, provenance_dset, tomoprefix, darkorflatprefix, flagafter):	
	
	# Get minimum and max timestamps for projection
	min_t  = maxint
	max_t = -1
	
	for i in range(0, provenance_dset.shape[0]):  
		if provenance_dset["filename", i].startswith(tomoprefix):
			t = int(mktime(datetime.strptime(provenance_dset["timestamp", i], "%Y-%m-%d %H:%M:%S.%f").timetuple()))							
			if (t < min_t):
				min_t = t
			if (t > max_t):
				max_t = t	

	flag_first = False
	ct = 0	

	im = read_tomo(dset,0).astype(float32)
		
	for i in range(0, provenance_dset.shape[0]):  
		if provenance_dset["filename", i].startswith(darkorflatprefix):
			t = int(mktime(datetime.strptime(provenance_dset["timestamp", i], "%Y-%m-%d %H:%M:%S.%f").timetuple()))							

			if flagafter:
				if (t > max_t):				
				
					# Get "angle":
					name = splitext(provenance_dset["filename", i])[0]
					idx = int(name[-4:])
					idx = idx - int(provenance_dset.attrs['first_index'])
					
					# Get image and sum it to the series:
					if not flag_first:
						flag_first = True					
						im = read_tomo(dset,idx).astype(float32)
						ct = ct + 1
					else:
						im = im + read_tomo(dset,idx).astype(float32) 
						ct = ct + 1
			else:
				if (t <= min_t):					
				
					# Get "angle":
					name = splitext(provenance_dset["filename", i])[0]
					idx = int(name[-4:])
					idx = idx - int(provenance_dset.attrs['first_index'])
					
					# Get image and sum it to the series:
					if not flag_first:
						flag_first = True					
						im = read_tomo(dset,idx).astype(float32)					
					else:
						im = im + read_tomo(dset,idx).astype(float32) 
					
					ct = ct + 1
	
	
	if ( ct > 0 ):
		im = im / ct
		return im.astype(float32)  	
	
	else:		
		return -1 # Error:
コード例 #11
0
def main(argv):
    """Extract a 2D image (projection or sinogram) from the input TDF file (DataExchange HDF5) and
	creates a 32-bit RAW file to disk.

	Parameters
	----------
	argv[0] : string
		The absolute path of the input TDF.

	argv[1] : int
		The relative position of the image within the dataset.

	argv[2] : string
		One of the following options: 'tomo', 'sino', 'flat', 'dark'.

	argv[3] : string
		The absolute path of the output 32-bit RAW image file. Filename will be modified by adding 
		image width, image height, minimum and maximum value of the input TDF dataset.

	Example
	-------
	tools_extractdata "S:\\dataset.tdf" 128 tomo "R:\\proj"	

	"""
    try:
        #
        # Get input parameters:
        #
        infile = argv[0]
        index = int(argv[1])
        imtype = argv[2]
        outfile = argv[3]

        #
        # Body
        #

        # Check if file exists:
        if not os.path.exists(infile):
            #log = open(logfilename,"a")
            #log.write(os.linesep + "\tError: input TDF file not found. Process will end.")
            #log.close()
            exit()

        # Open the HDF5 file:

        f = getHDF5(infile, 'r')
        if (imtype == 'sino'):
            if "/tomo" in f:
                dset = f['tomo']
            else:
                dset = f['exchange/data']
            im = tdf.read_sino(dset, index)
        elif (imtype == 'dark'):
            if "/dark" in f:
                dset = f['dark']
            else:
                dset = f['exchange/data_dark']
            im = tdf.read_tomo(dset, index)
        elif (imtype == 'flat'):
            if "/flat" in f:
                dset = f['flat']
            else:
                dset = f['exchange/data_white']
            im = tdf.read_tomo(dset, index)
        else:
            if "/tomo" in f:
                dset = f['tomo']
            else:
                dset = f['exchange/data']
            im = tdf.read_tomo(dset, index)

        # Remove Infs e NaNs
        tmp = im[:].astype(numpy.float32)
        tmp = tmp[numpy.nonzero(numpy.isfinite(tmp))]

        # Sort the gray levels:
        tmp = numpy.sort(tmp)

        # Return as minimum the value the skip 0.30% of "black" tail and 0.05% of "white" tail:
        low_idx = int(tmp.shape[0] * 0.0030)
        high_idx = int(tmp.shape[0] * 0.9995)
        min = tmp[low_idx]
        max = tmp[high_idx]

        # Modify file name:
        outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(
            im.shape[0]) + '_' + str(min) + '$' + str(max)

        # Cast type:
        im = im.astype(float32)

        # Write RAW data to disk:
        im.tofile(outfile)

    except:

        exit()
コード例 #12
0
def dff_prepare_plan(white_dset, repetitions, dark):
    """ Prepare the Eigen Flat Fields (EFFs) and the filtered EFFs to
	be used for dynamic flat fielding.

	(Function to be called once before the actual filtering of each projection).
	
	Parameters
	----------
	white_dset : array_like
		3D matrix where each flat field image is stacked along the 3rd dimension.

	repetitions: int
		Number of iterations to consider during parallel analysis.

	dark : array_like
		Single dark image (perhaps the average of a series) to be subtracted from
		each flat field image. If the images are already dark corrected or dark
		correction is not required (e.g. due to a photon counting detector) a matrix
		of the proper shape with zeros has to be passed.

	Return value
	------------
	EFF : array_like
		Eigen flat fields stacked along the 3rd dimension.

	filtEFF : array_like
		Filtered eigen flat fields stacked along the 3rd dimension.

	Note
	----
	In this implementation all the collected white field images have to be loaded into
	memory and an internal 32-bit copy of the white fields is created. Considering also
	that the method better performs with several (i.e. hundreds) flat field images, this 
	function might raise memory errors.

	References
	----------
	V. Van Nieuwenhove, J. De Beenhouwer, F. De Carlo, L. Mancini, F. Marone, 
	and J. Sijbers, "Dynamic intensity normalization using eigen flat fields 
	in X-ray imaging", Optics Express, 23(11), 27975-27989, 2015.

	"""
    # Get dimensions of flat-field (or white-field) images:
    num_flats = get_nr_projs(white_dset) / 4
    num_rows = get_nr_sinos(white_dset)
    num_cols = get_det_size(white_dset)

    # Create local copy of white-field dataset:
    tmp_dset = zeros((num_rows * num_cols, num_flats), dtype=float32)
    avg = zeros((num_rows * num_cols), dtype=float32)

    # For all the flat images:
    for i in range(0, tmp_dset.shape[1]):

        # Read i-th flat image and dark-correct:
        tmp_dset[:, i] = read_tomo(
            white_dset,
            i).astype(float32).flatten() - dark.astype(float32).flatten()

        # Sum the image:
        avg = avg + tmp_dset[:, i]

    # Compute the mean:
    avg = avg / num_flats

    # Subtract mean white-field:
    for i in range(0, tmp_dset.shape[1]):
        tmp_dset[:, i] = tmp_dset[:, i] - avg

    # Calculate the number of Eigen Flat Fields (EFF) to use:
    V, nrEFF = _parallelAnalysis(tmp_dset, repetitions)

    # Compute the EFFs (0-th image is the average "conventional" flat field):
    EFF = zeros((num_rows, num_cols, nrEFF + 1), dtype=float32)
    EFF[:, :, 0] = avg.reshape((num_rows, num_cols))
    for i in range(0, nrEFF):
        EFF[:, :, i + 1] = dot(tmp_dset, V[:, num_flats - (i + 1)]).reshape(
            (num_rows, num_cols))

    # Filter the EFFs:
    filtEFF = zeros((num_rows, num_cols, 1 + nrEFF), dtype=float32)
    for i in range(1, 1 + nrEFF):
        filtEFF[:, :, i] = median_filter(EFF[:, :, i], 3)

    return EFF, filtEFF
コード例 #13
0
def main(argv):
    """Try to guess the center of rotation of the input CT dataset.

    Parameters
    ----------
    infile  : array_like
        HDF5 input dataset

    outfile : string
        Full path where the identified center of rotation will be written as output

	scale   : int
        If sub-pixel precision is interesting, use e.g. 2.0 to get a center of rotation 
		of .5 value. Use 1.0 if sub-pixel precision is not required

	angles  : int
        Total number of angles of the input dataset	

	proj_from : int
        Initial projections to consider for the assumed angles

	proj_to : int
        Final projections to consider for the assumed angles

	method : string
		(not implemented yet)

	tmppath : string
        Temporary path where look for cached flat/dark files
       
    """
    # Get path:
    infile = argv[0]  # The HDF5 file on the
    outfile = argv[1]  # The txt file with the proposed center
    scale = float(argv[2])
    angles = float(argv[3])
    proj_from = int(argv[4])
    proj_to = int(argv[5])
    method = argv[6]
    tmppath = argv[7]
    if not tmppath.endswith(sep): tmppath += sep

    pyfftw_cache_disable()
    pyfftw_cache_enable()
    pyfftw_set_keepalive_time(1800)

    # Create a silly temporary log:
    tmplog = tmppath + basename(infile) + str(time.time())

    # Open the HDF5 file (take into account also older TDF versions):
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo']
    else:
        dset = f_in['exchange/data']
    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)

    # Get flats and darks from cache or from file:
    try:
        corrplan = cache2plan(infile, tmppath)
    except Exception as e:
        #print "Error(s) when reading from cache"
        corrplan = extract_flatdark(f_in, True, tmplog)
        remove(tmplog)
        plan2cache(corrplan, infile, tmppath)

    # Get first and the 180 deg projections:
    im1 = tdf.read_tomo(dset, proj_from).astype(float32)

    idx = int(round((proj_to - proj_from) / angles * pi)) + proj_from
    im2 = tdf.read_tomo(dset, idx).astype(float32)

    # Apply simple flat fielding (if applicable):
    if (isinstance(corrplan['im_flat_after'], ndarray)
            and isinstance(corrplan['im_flat'], ndarray)
            and isinstance(corrplan['im_dark'], ndarray)
            and isinstance(corrplan['im_dark_after'], ndarray)):
        im1 = ((abs(im1 - corrplan['im_dark'])) /
               (abs(corrplan['im_flat'] - corrplan['im_dark']) +
                finfo(float32).eps)).astype(float32)
        im2 = ((abs(im2 - corrplan['im_dark_after'])) /
               (abs(corrplan['im_flat_after'] - corrplan['im_dark_after']) +
                finfo(float32).eps)).astype(float32)

    # Scale projections (if required) to get subpixel estimation:
    if (abs(scale - 1.0) > finfo(float32).eps):
        im1 = imresize(im1, (int(round(
            scale * im1.shape[0])), int(round(scale * im1.shape[1]))),
                       interp='bicubic',
                       mode='F')
        im2 = imresize(im2, (int(round(
            scale * im2.shape[0])), int(round(scale * im2.shape[1]))),
                       interp='bicubic',
                       mode='F')

    # Find the center (flipping left-right im2):
    cen = findcenter.usecorrelation(im1, im2[:, ::-1])
    cen = cen / scale

    # Print center to output file:
    text_file = open(outfile, "w")
    text_file.write(str(int(cen)))
    text_file.close()

    # Close input HDF5:
    f_in.close()
コード例 #14
0
def main(argv):          
	"""To do...

	Usage
	-----
	

	Parameters
	---------
		   
	Example
	--------------------------
	The following line processes the first ten TIFF files of input path 
	"/home/in" and saves the processed files to "/home/out" with the 
	application of the Boin and Haibel filter with smoothing via a Butterworth
	filter of order 4 and cutoff frequency 0.01:

	destripe /home/in /home/out 1 10 1 0.01 4    

	"""
	lock = Lock()
	rescale_factor = 10000.0 # For 16-bit floating point

	# Get the from and to number of files to process:
	int_from = int(argv[0])
	int_to = int(argv[1])
	   
	# Get paths:
	infile = argv[2]
	outfile = argv[3]	
	
	# Params for flat fielding with post flats/darks:
	flat_end = True if argv[4] == "True" else False
	half_half = True if argv[5] == "True" else False
	half_half_line = int(argv[6])

	# Flat fielding method (conventional or dynamic):
	dynamic_ff = True if argv[7] == "True" else False

	# Parameters for rotation:
	rotation = float(argv[8])
	interp = argv[9]
	border = argv[10]
	
	# Nr of threads and log file:
	nr_threads = int(argv[11])
	logfilename = argv[12]		




	# Log input parameters:
	log = open(logfilename,"w")
	log.write(linesep + "\tInput TDF file: %s" % (infile))	
	log.write(linesep + "\tOutput TDF file: %s" % (outfile))		
	log.write(linesep + "\t--------------")	
	log.write(linesep + "\tOpening input dataset...")	
	log.close()
	
	# Remove a previous copy of output:
	if exists(outfile):
		remove(outfile)
	
	# Open the HDF5 file:
	f_in = getHDF5(infile, 'r')


	if "/tomo" in f_in:
		dset = f_in['tomo']

		tomoprefix = 'tomo'
		flatprefix = 'flat'
		darkprefix = 'dark'
	else: 
		dset = f_in['exchange/data']
		if "/provenance/detector_output" in f_in:
			prov_dset = f_in['provenance/detector_output']		
	
			tomoprefix = prov_dset.attrs['tomo_prefix']
			flatprefix = prov_dset.attrs['flat_prefix']
			darkprefix = prov_dset.attrs['dark_prefix']
			
	num_proj = tdf.get_nr_projs(dset)
	num_sinos = tdf.get_nr_sinos(dset)
	
	if (num_sinos == 0):
		log = open(logfilename,"a")
		log.write(linesep + "\tNo projections found. Process will end.")	
		log.close()			
		exit()		

	# Check extrema (int_to == -1 means all files):
	if ((int_to >= num_proj) or (int_to == -1)):
		int_to = num_proj - 1

	# Prepare the work plan for flat and dark images:
	log = open(logfilename,"a")
	log.write(linesep + "\t--------------")
	log.write(linesep + "\tPreparing the work plan...")				
	log.close()

	# Extract flat and darks:
	skipflat = False
	skipdark = False

	# Following variables make sense only for dynamic flat fielding:
	EFF = -1
	filtEFF = -1
	im_dark = -1
	
	# Following variable makes sense only for conventional flat fielding:
	plan = -1

	if not dynamic_ff:
		plan = extract_flatdark(f_in, flat_end, logfilename)
		if (isscalar(plan['im_flat']) and isscalar(plan['im_flat_after'])):
			skipflat = True
		else:
			skipflat = False		
	else:
		# Dynamic flat fielding:
		if "/tomo" in f_in:				
			if "/flat" in f_in:
				flat_dset = f_in['flat']
				if "/dark" in f_in:
					im_dark = _medianize(f_in['dark'])
				else:										
					skipdark = True
			else:
				skipflat = True # Nothing to do in this case
		else: 
			if "/exchange/data_white" in f_in:
				flat_dset = f_in['/exchange/data_white']
				if "/exchange/data_dark" in f_in:
					im_dark = _medianize(f_in['/exchange/data_dark'])
				else:					
					skipdark = True
			else:
				skipflat = True # Nothing to do in this case
	
		# Prepare plan for dynamic flat fielding with 16 repetitions:
		if not skipflat:	
			EFF, filtEFF = dff_prepare_plan(flat_dset, 16, im_dark)
	
	# Get the corrected outshape (in this case it's easy):
	im = tdf.read_tomo(dset,0).astype(float32)	
	outshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_proj)			
	
	# Create the output HDF5 file:
	f_out = getHDF5(outfile, 'w')
	#f_out_dset = f_out.create_dataset('exchange/data', outshape, im.dtype)
	f_out_dset = f_out.create_dataset('exchange/data', outshape, float16) 
	f_out_dset.attrs['min'] = str(amin(im[:]))
	f_out_dset.attrs['max'] = str(amax(im[:]))
	f_out_dset.attrs['version'] = '1.0'
	f_out_dset.attrs['axes'] = "y:theta:x"
	f_out_dset.attrs['rescale_factor'] = str(rescale_factor)

	f_out.close()
	f_in.close()
		
	# Log infos:
	log = open(logfilename,"a")
	log.write(linesep + "\tWork plan prepared correctly.")	
	log.write(linesep + "\t--------------")
	log.write(linesep + "\tPerforming pre processing...")			
	log.close()	

	# Run several threads for independent computation without waiting for threads
	# completion:
	for num in range(nr_threads):
		start = (num_proj / nr_threads) * num
		if (num == nr_threads - 1):
			end = num_proj - 1
		else:
			end = (num_proj / nr_threads) * (num + 1) - 1
		Process(target=_process, args=(lock, start, end, infile, outfile, outshape, float16, skipflat, plan, 
				   flat_end, half_half, half_half_line, dynamic_ff, EFF, filtEFF, im_dark, rotation, interp, border, 
				   rescale_factor, logfilename)).start()
コード例 #15
0
def main(argv):
    """To do...

	Usage
	-----
	

	Parameters
	---------
		   
	Example
	--------------------------
	The following line processes the first ten TIFF files of input path 
	"/home/in" and saves the processed files to "/home/out" with the 
	application of the Boin and Haibel filter with smoothing via a Butterworth
	filter of order 4 and cutoff frequency 0.01:

	destripe /home/in /home/out 1 10 1 0.01 4    

	"""
    lock = Lock()
    rescale_factor = 10000.0  # For 16-bit floating point

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1])

    # Get paths:
    infile = argv[2]
    outfile = argv[3]

    # Params for flat fielding with post flats/darks:
    flat_end = True if argv[4] == "True" else False
    half_half = True if argv[5] == "True" else False
    half_half_line = int(argv[6])

    # Flat fielding method (conventional or dynamic):
    dynamic_ff = True if argv[7] == "True" else False

    # Parameters for rotation:
    rotation = float(argv[8])
    interp = argv[9]
    border = argv[10]

    # Nr of threads and log file:
    nr_threads = int(argv[11])
    logfilename = argv[12]

    # Log input parameters:
    log = open(logfilename, "w")
    log.write(linesep + "\tInput TDF file: %s" % (infile))
    log.write(linesep + "\tOutput TDF file: %s" % (outfile))
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tOpening input dataset...")
    log.close()

    # Remove a previous copy of output:
    if exists(outfile):
        remove(outfile)

    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')

    if "/tomo" in f_in:
        dset = f_in['tomo']

        tomoprefix = 'tomo'
        flatprefix = 'flat'
        darkprefix = 'dark'
    else:
        dset = f_in['exchange/data']
        if "/provenance/detector_output" in f_in:
            prov_dset = f_in['provenance/detector_output']

            tomoprefix = prov_dset.attrs['tomo_prefix']
            flatprefix = prov_dset.attrs['flat_prefix']
            darkprefix = prov_dset.attrs['dark_prefix']

    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)

    if (num_sinos == 0):
        log = open(logfilename, "a")
        log.write(linesep + "\tNo projections found. Process will end.")
        log.close()
        exit()

    # Check extrema (int_to == -1 means all files):
    if ((int_to >= num_proj) or (int_to == -1)):
        int_to = num_proj - 1

    # Prepare the work plan for flat and dark images:
    log = open(logfilename, "a")
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPreparing the work plan...")
    log.close()

    # Extract flat and darks:
    skipflat = False
    skipdark = False

    # Following variables make sense only for dynamic flat fielding:
    EFF = -1
    filtEFF = -1
    im_dark = -1

    # Following variable makes sense only for conventional flat fielding:
    plan = -1

    if not dynamic_ff:
        plan = extract_flatdark(f_in, flat_end, logfilename)
        if (isscalar(plan['im_flat']) and isscalar(plan['im_flat_after'])):
            skipflat = True
        else:
            skipflat = False
    else:
        # Dynamic flat fielding:
        if "/tomo" in f_in:
            if "/flat" in f_in:
                flat_dset = f_in['flat']
                if "/dark" in f_in:
                    im_dark = _medianize(f_in['dark'])
                else:
                    skipdark = True
            else:
                skipflat = True  # Nothing to do in this case
        else:
            if "/exchange/data_white" in f_in:
                flat_dset = f_in['/exchange/data_white']
                if "/exchange/data_dark" in f_in:
                    im_dark = _medianize(f_in['/exchange/data_dark'])
                else:
                    skipdark = True
            else:
                skipflat = True  # Nothing to do in this case

        # Prepare plan for dynamic flat fielding with 16 repetitions:
        if not skipflat:
            EFF, filtEFF = dff_prepare_plan(flat_dset, 16, im_dark)

    # Get the corrected outshape (in this case it's easy):
    im = tdf.read_tomo(dset, 0).astype(float32)
    outshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_proj)

    # Create the output HDF5 file:
    f_out = getHDF5(outfile, 'w')
    #f_out_dset = f_out.create_dataset('exchange/data', outshape, im.dtype)
    f_out_dset = f_out.create_dataset('exchange/data', outshape, float16)
    f_out_dset.attrs['min'] = str(amin(im[:]))
    f_out_dset.attrs['max'] = str(amax(im[:]))
    f_out_dset.attrs['version'] = '1.0'
    f_out_dset.attrs['axes'] = "y:theta:x"
    f_out_dset.attrs['rescale_factor'] = str(rescale_factor)

    f_out.close()
    f_in.close()

    # Log infos:
    log = open(logfilename, "a")
    log.write(linesep + "\tWork plan prepared correctly.")
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPerforming pre processing...")
    log.close()

    # Run several threads for independent computation without waiting for threads
    # completion:
    for num in range(nr_threads):
        start = (num_proj / nr_threads) * num
        if (num == nr_threads - 1):
            end = num_proj - 1
        else:
            end = (num_proj / nr_threads) * (num + 1) - 1
        Process(target=_process,
                args=(lock, start, end, infile, outfile, outshape, float16,
                      skipflat, plan, flat_end, half_half, half_half_line,
                      dynamic_ff, EFF, filtEFF, im_dark, rotation, interp,
                      border, rescale_factor, logfilename)).start()
コード例 #16
0
def main(argv):
    """Try to guess the amount of overlap in the case of extended FOV CT.

    Parameters
    ----------
    infile  : array_like
        HDF5 input dataset

    outfile : string
        Full path where the identified overlap will be written as output

	scale   : int
        If sub-pixel precision is interesting, use e.g. 2.0 to get an overlap 
		of .5 value. Use 1.0 if sub-pixel precision is not required

	tmppath : int
        Temporary path where look for cached flat/dark files
       
    """

    # Get path:
    infile = argv[0]  # The HDF5 file on the SSD
    outfile = argv[1]  # The txt file with the proposed center
    scale = float(argv[2])
    tmppath = argv[3]
    if not tmppath.endswith(sep): tmppath += sep

    # Create a silly temporary log:
    tmplog = tmppath + basename(infile) + str(time.time())

    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo']
    else:
        dset = f_in['exchange/data']
    num_proj = tdf.get_nr_projs(dset)

    # Get first and 180 deg projections:
    im1 = tdf.read_tomo(dset, 0).astype(float32)
    im2 = tdf.read_tomo(dset, num_proj / 2).astype(float32)

    # Get flats and darks from cache or from file:
    try:
        corrplan = cache2plan(infile, tmppath)
    except Exception as e:
        #print "Error(s) when reading from cache"
        corrplan = extract_flatdark(f_in, True, tmplog)
        remove(tmplog)
        plan2cache(corrplan, infile, tmppath)

    # Apply simple flat fielding (if applicable):
    if (isinstance(corrplan['im_flat_after'], ndarray)
            and isinstance(corrplan['im_flat'], ndarray)
            and isinstance(corrplan['im_dark'], ndarray)
            and isinstance(corrplan['im_dark_after'], ndarray)):
        im1 = ((abs(im1 - corrplan['im_dark'])) /
               (abs(corrplan['im_flat'] - corrplan['im_dark']) +
                finfo(float32).eps)).astype(float32)
        im2 = ((abs(im2 - corrplan['im_dark_after'])) /
               (abs(corrplan['im_flat_after'] - corrplan['im_dark_after']) +
                finfo(float32).eps)).astype(float32)

    # Scale projections (if required) to get subpixel estimation:
    if (abs(scale - 1.0) > finfo(float32).eps):
        im1 = imresize(im1, (int(round(
            scale * im1.shape[0])), int(round(scale * im1.shape[1]))),
                       interp='bicubic',
                       mode='F')
        im2 = imresize(im2, (int(round(
            scale * im2.shape[0])), int(round(scale * im2.shape[1]))),
                       interp='bicubic',
                       mode='F')

    # Find the center (flipping left-right im2): DISTINGUISH BETWEEN AIR ON THE RIGHT AND ON THE LEFT??????
    cen = findcenter.usecorrelation(im1, im2[:, ::-1])
    cen = (cen / scale) * 2.0

    # Print center to output file:
    text_file = open(outfile, "w")
    text_file.write(str(int(abs(cen))))
    text_file.close()

    # Close input HDF5:
    f_in.close()
コード例 #17
0
def dff_prepare_plan(white_dset, repetitions, dark):
	""" Prepare the Eigen Flat Fields (EFFs) and the filtered EFFs to
	be used for dynamic flat fielding.

	(Function to be called once before the actual filtering of each projection).
	
	Parameters
	----------
	white_dset : array_like
		3D matrix where each flat field image is stacked along the 3rd dimension.

	repetitions: int
		Number of iterations to consider during parallel analysis.

	dark : array_like
		Single dark image (perhaps the average of a series) to be subtracted from
		each flat field image. If the images are already dark corrected or dark
		correction is not required (e.g. due to a photon counting detector) a matrix
		of the proper shape with zeros has to be passed.

	Return value
	------------
	EFF : array_like
		Eigen flat fields stacked along the 3rd dimension.

	filtEFF : array_like
		Filtered eigen flat fields stacked along the 3rd dimension.

	Note
	----
	In this implementation all the collected white field images have to be loaded into
	memory and an internal 32-bit copy of the white fields is created. Considering also
	that the method better performs with several (i.e. hundreds) flat field images, this 
	function might raise memory errors.

	References
	----------
	V. Van Nieuwenhove, J. De Beenhouwer, F. De Carlo, L. Mancini, F. Marone, 
	and J. Sijbers, "Dynamic intensity normalization using eigen flat fields 
	in X-ray imaging", Optics Express, 23(11), 27975-27989, 2015.

	"""	
	# Get dimensions of flat-field (or white-field) images:
	num_flats = get_nr_projs(white_dset)/4
	num_rows  = get_nr_sinos(white_dset)
	num_cols  = get_det_size(white_dset)
		
	# Create local copy of white-field dataset:
	tmp_dset = zeros((num_rows * num_cols, num_flats), dtype=float32)
	avg      = zeros((num_rows * num_cols), dtype=float32)
					
	# For all the flat images:
	for i in range(0, tmp_dset.shape[1]):                 
		
		# Read i-th flat image and dark-correct:
		tmp_dset[:,i] =  read_tomo(white_dset,i).astype(float32).flatten()	- dark.astype(float32).flatten()
					
		# Sum the image:
		avg = avg + tmp_dset[:,i]

	# Compute the mean:
	avg = avg / num_flats

	# Subtract mean white-field:
	for i in range(0, tmp_dset.shape[1]): 
		tmp_dset[:,i] = tmp_dset[:,i] - avg
			
	# Calculate the number of Eigen Flat Fields (EFF) to use:
	V, nrEFF = _parallelAnalysis(tmp_dset, repetitions)

	# Compute the EFFs (0-th image is the average "conventional" flat field):
	EFF  = zeros((num_rows, num_cols, nrEFF + 1), dtype=float32)
	EFF[:,:,0] = avg.reshape((num_rows, num_cols))			
	for i in range(0, nrEFF): 		
		EFF[:,:,i + 1] = dot(tmp_dset, V[:,num_flats - (i + 1)]).reshape((num_rows, num_cols))	
		
	# Filter the EFFs:
	filtEFF = zeros((num_rows, num_cols, 1 + nrEFF), dtype=float32)
	for i in range(1, 1 + nrEFF):		
		filtEFF[:,:,i] = median_filter(EFF[:,:,i], 3)		

	return EFF, filtEFF
コード例 #18
0
def main(argv):
    """To do...


	"""
    # Get the zero-order index of the sinogram to pre-process:
    idx = int(argv[0])

    # Get paths:
    infile = argv[1]
    outfile = argv[2]

    # Normalization parameters:
    norm_sx = int(argv[3])
    norm_dx = int(argv[4])

    # Params for flat fielding with post flats/darks:
    flat_end = True if argv[5] == "True" else False
    half_half = True if argv[6] == "True" else False
    half_half_line = int(argv[7])

    # Flat fielding method (conventional or dynamic):
    dynamic_ff = True if argv[8] == "True" else False

    # Parameters for rotation:
    rotation = float(argv[9])
    interp = argv[10]
    border = argv[11]

    # Tmp path and log file:
    tmppath = argv[12]
    if not tmppath.endswith(sep): tmppath += sep
    logfilename = argv[13]

    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')

    try:
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else:
            dset = f_in['exchange/data']

    except:
        log = open(logfilename, "a")
        log.write(linesep + "\tError reading input dataset. Process will end.")
        log.close()
        exit()

    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)

    # Check if the HDF5 makes sense:
    if (num_sinos == 0):
        log = open(logfilename, "a")
        log.write(linesep + "\tNo projections found. Process will end.")
        log.close()
        exit()

    # Get flat and darks from cache or from file:
    skipflat = False
    skipdark = False
    if not dynamic_ff:
        try:
            corrplan = cache2plan(infile, tmppath)
        except Exception as e:
            #print "Error(s) when reading from cache"
            corrplan = extract_flatdark(f_in, flat_end, logfilename)
            if (isscalar(corrplan['im_flat'])
                    and isscalar(corrplan['im_flat_after'])):
                skipflat = True
            else:
                plan2cache(corrplan, infile, tmppath)
    else:
        # Dynamic flat fielding:
        if "/tomo" in f_in:
            if "/flat" in f_in:
                flat_dset = f_in['flat']
                if "/dark" in f_in:
                    im_dark = _medianize(f_in['dark'])
                else:
                    skipdark = True
            else:
                skipflat = True  # Nothing to do in this case
        else:
            if "/exchange/data_white" in f_in:
                flat_dset = f_in['/exchange/data_white']
                if "/exchange/data_dark" in f_in:
                    im_dark = _medianize(f_in['/exchange/data_dark'])
                else:
                    skipdark = True
            else:
                skipflat = True  # Nothing to do in this case

        # Prepare plan for dynamic flat fielding with 16 repetitions:
        if not skipflat:
            EFF, filtEFF = dff_prepare_plan(flat_dset, 16, im_dark)

    # Read input image:
    im = tdf.read_tomo(dset, idx).astype(float32)
    f_in.close()

    # Perform pre-processing (flat fielding, extended FOV, ring removal):
    if not skipflat:
        if dynamic_ff:
            # Dynamic flat fielding with downsampling = 2:
            im = dynamic_flat_fielding(im, EFF, filtEFF, 2, im_dark)
        else:
            im = flat_fielding(im, idx, corrplan, flat_end, half_half,
                               half_half_line, norm_sx, norm_dx)

    # Rotate:
    rows, cols = im.shape
    M = cv2.getRotationMatrix2D((cols / 2, rows / 2), rotation, 1)

    if interp == 'nearest':
        interpflag = cv2.INTER_NEAREST
    elif interp == 'cubic':
        interpflag = cv2.INTER_CUBIC
    elif interp == 'lanczos':
        interpflag = cv2.INTER_LANCZOS4
    else:
        interpflag = cv2.INTER_LINEAR

    if border == 'constant':
        borderflag = cv2.BORDER_CONSTANT
    else:
        borderflag = cv2.BORDER_REPLICATE

    im = cv2.warpAffine(im,
                        M, (cols, rows),
                        flags=interpflag,
                        borderMode=borderflag)

    # Write down reconstructed preview file (file name modified with metadata):
    im = im.astype(float32)
    outfile2 = outfile + '_' + str(im.shape[1]) + 'x' + str(
        im.shape[0]) + '_' + str(nanmin(im)) + '$' + str(
            nanmax(im)) + '_after.raw'
    im.tofile(outfile2)
コード例 #19
0
ファイル: exec_gdei.py プロジェクト: ElettraSciComp/STP-Core
def main(argv):
    """To do...

	Usage
	-----
	

	Parameters
	---------
		   
	Example
	--------------------------    

	"""
    lock = Lock()

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1])

    # Get paths:
    infile_1 = argv[2]
    infile_2 = argv[3]
    infile_3 = argv[4]

    outfile_abs = argv[5]
    outfile_ref = argv[6]
    outfile_sca = argv[7]

    # Normalization parameters:
    norm_sx = int(argv[8])
    norm_dx = int(argv[9])

    # Params for flat fielding with post flats/darks:
    flat_end = True if argv[10] == "True" else False
    half_half = True if argv[11] == "True" else False
    half_half_line = int(argv[12])

    # Params for extended FOV:
    ext_fov = True if argv[13] == "True" else False
    ext_fov_rot_right = argv[14]
    if ext_fov_rot_right == "True":
        ext_fov_rot_right = True
        if (ext_fov):
            norm_sx = 0
    else:
        ext_fov_rot_right = False
        if (ext_fov):
            norm_dx = 0
    ext_fov_overlap = int(argv[15])

    ext_fov_normalize = True if argv[16] == "True" else False
    ext_fov_average = True if argv[17] == "True" else False

    # Method and parameters coded into a string:
    ringrem = argv[18]

    # Flat fielding method (conventional or dynamic):
    dynamic_ff = True if argv[19] == "True" else False

    # Shift parameters:
    shiftVert_1 = int(argv[20])
    shiftHoriz_1 = int(argv[21])
    shiftVert_2 = int(argv[22])
    shiftHoriz_2 = int(argv[23])
    shiftVert_3 = int(argv[24])
    shiftHoriz_3 = int(argv[25])

    # DEI coefficients:
    r1 = float(argv[26])
    r2 = float(argv[27])
    r3 = float(argv[28])
    d1 = float(argv[29])
    d2 = float(argv[30])
    d3 = float(argv[31])
    dd1 = float(argv[32])
    dd2 = float(argv[33])
    dd3 = float(argv[34])

    # Nr of threads and log file:
    nr_threads = int(argv[35])
    logfilename = argv[36]

    # Log input parameters:
    log = open(logfilename, "w")
    log.write(linesep + "\tInput TDF file #1: %s" % (infile_1))
    log.write(linesep + "\tInput TDF file #2: %s" % (infile_2))
    log.write(linesep + "\tInput TDF file #3: %s" % (infile_3))
    log.write(linesep + "\tOutput TDF file for Absorption: %s" % (outfile_abs))
    log.write(linesep + "\tOutput TDF file for Refraction: %s" % (outfile_ref))
    log.write(linesep + "\tOutput TDF file for Scattering: %s" % (outfile_sca))
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tOpening input dataset...")
    log.close()

    # Remove a previous copy of output:
    #if exists(outfile):
    #	remove(outfile)

    # Open the HDF5 files:
    f_in_1 = getHDF5(infile_1, 'r')
    f_in_2 = getHDF5(infile_2, 'r')
    f_in_3 = getHDF5(infile_3, 'r')

    if "/tomo" in f_in_1:
        dset_1 = f_in_1['tomo']

        tomoprefix_1 = 'tomo'
        flatprefix_1 = 'flat'
        darkprefix_1 = 'dark'
    else:
        dset_1 = f_in_1['exchange/data']
        if "/provenance/detector_output" in f_in_1:
            prov_dset_1 = f_in_1['provenance/detector_output']

            tomoprefix_1 = prov_dset_1.attrs['tomo_prefix']
            flatprefix_1 = prov_dset_1.attrs['flat_prefix']
            darkprefix_1 = prov_dset_1.attrs['dark_prefix']

    if "/tomo" in f_in_2:
        dset_2 = f_in_2['tomo']

        tomoprefix_2 = 'tomo'
        flatprefix_2 = 'flat'
        darkprefix_2 = 'dark'
    else:
        dset_2 = f_in_2['exchange/data']
        if "/provenance/detector_output" in f_in_2:
            prov_dset_2 = f_in_2['provenance/detector_output']

            tomoprefix_2 = prov_dset_2.attrs['tomo_prefix']
            flatprefix_2 = prov_dset_2.attrs['flat_prefix']
            darkprefix_2 = prov_dset_2.attrs['dark_prefix']

    if "/tomo" in f_in_3:
        dset_3 = f_in_3['tomo']

        tomoprefix_3 = 'tomo'
        flatprefix_3 = 'flat'
        darkprefix_3 = 'dark'
    else:
        dset_3 = f_in_3['exchange/data']
        if "/provenance/detector_output" in f_in_3:
            prov_dset_3 = f_in_1['provenance/detector_output']

            tomoprefix_3 = prov_dset_3.attrs['tomo_prefix']
            flatprefix_3 = prov_dset_3.attrs['flat_prefix']
            darkprefix_3 = prov_dset_3.attrs['dark_prefix']

    # Assuming that what works for the dataset #1 works for the other two:
    num_proj = tdf.get_nr_projs(dset_1)
    num_sinos = tdf.get_nr_sinos(dset_1)

    if (num_sinos == 0):
        log = open(logfilename, "a")
        log.write(linesep + "\tNo projections found. Process will end.")
        log.close()
        exit()

    # Check extrema (int_to == -1 means all files):
    if ((int_to >= num_sinos) or (int_to == -1)):
        int_to = num_sinos - 1

    # Prepare the work plan for flat and dark images:
    log = open(logfilename, "a")
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPreparing the work plan...")
    log.close()

    # Extract flat and darks:
    skipflat_1 = False
    skipdark_1 = False
    skipflat_2 = False
    skipdark_2 = False
    skipflat_3 = False
    skipdark_3 = False

    # Following variables make sense only for dynamic flat fielding:
    EFF_1 = -1
    filtEFF_1 = -1
    im_dark_1 = -1

    EFF_2 = -1
    filtEFF_2 = -1
    im_dark_2 = -1

    EFF_3 = -1
    filtEFF_3 = -1
    im_dark_3 = -1

    # Following variable makes sense only for conventional flat fielding:
    plan_1 = -1
    plan_2 = -1
    plan_3 = -1

    if not dynamic_ff:
        plan_1 = extract_flatdark(f_in_1, flat_end, logfilename)
        if (isscalar(plan_1['im_flat']) and isscalar(plan_1['im_flat_after'])):
            skipflat_1 = True
        else:
            skipflat_1 = False

        plan_2 = extract_flatdark(f_in_2, flat_end, logfilename)
        if (isscalar(plan_2['im_flat']) and isscalar(plan_2['im_flat_after'])):
            skipflat_2 = True
        else:
            skipflat_2 = False

        plan_3 = extract_flatdark(f_in_3, flat_end, logfilename)
        if (isscalar(plan_3['im_flat']) and isscalar(plan_3['im_flat_after'])):
            skipflat_3 = True
        else:
            skipflat_3 = False

    else:
        # Dynamic flat fielding:
        if "/tomo" in f_in_1:
            if "/flat" in f_in_1:
                flat_dset_1 = f_in_1['flat']
                if "/dark" in f_in_1:
                    im_dark_1 = _medianize(f_in_1['dark'])
                else:
                    skipdark_1 = True
            else:
                skipflat_1 = True  # Nothing to do in this case
        else:
            if "/exchange/data_white" in f_in_1:
                flat_dset_1 = f_in_1['/exchange/data_white']
                if "/exchange/data_dark" in f_in_1:
                    im_dark_1 = _medianize(f_in_1['/exchange/data_dark'])
                else:
                    skipdark_1 = True
            else:
                skipflat_1 = True  # Nothing to do in this case

        # Prepare plan for dynamic flat fielding with 16 repetitions:
        if not skipflat_1:
            EFF_1, filtEFF_1 = dff_prepare_plan(flat_dset_1, 16, im_dark_1)

        # Dynamic flat fielding:
        if "/tomo" in f_in_2:
            if "/flat" in f_in_2:
                flat_dset_2 = f_in_2['flat']
                if "/dark" in f_in_2:
                    im_dark_2 = _medianize(f_in_2['dark'])
                else:
                    skipdark_2 = True
            else:
                skipflat_2 = True  # Nothing to do in this case
        else:
            if "/exchange/data_white" in f_in_2:
                flat_dset_2 = f_in_2['/exchange/data_white']
                if "/exchange/data_dark" in f_in_2:
                    im_dark_2 = _medianize(f_in_2['/exchange/data_dark'])
                else:
                    skipdark_2 = True
            else:
                skipflat_2 = True  # Nothing to do in this case

        # Prepare plan for dynamic flat fielding with 16 repetitions:
        if not skipflat_2:
            EFF_2, filtEFF_2 = dff_prepare_plan(flat_dset_2, 16, im_dark_2)

        # Dynamic flat fielding:
        if "/tomo" in f_in_3:
            if "/flat" in f_in_3:
                flat_dset_3 = f_in_3['flat']
                if "/dark" in f_in_3:
                    im_dark_3 = _medianize(f_in_3['dark'])
                else:
                    skipdark_3 = True
            else:
                skipflat_3 = True  # Nothing to do in this case
        else:
            if "/exchange/data_white" in f_in_3:
                flat_dset_3 = f_in_3['/exchange/data_white']
                if "/exchange/data_dark" in f_in_3:
                    im_dark_3 = _medianize(f_in_3['/exchange/data_dark'])
                else:
                    skipdark_3 = True
            else:
                skipflat_3 = True  # Nothing to do in this case

        # Prepare plan for dynamic flat fielding with 16 repetitions:
        if not skipflat_3:
            EFF_3, filtEFF_3 = dff_prepare_plan(flat_dset_3, 16, im_dark_3)

    # Outfile shape can be determined only after first processing in ext FOV mode:
    if (ext_fov):

        # Read input sino:
        idx = num_sinos / 2
        im = tdf.read_sino(dset_1, idx).astype(float32)
        im = extfov_correction(im, ext_fov_rot_right, ext_fov_overlap,
                               ext_fov_normalize, ext_fov_average)

        # Get the corrected outshape:
        outshape = tdf.get_dset_shape(im.shape[1], num_sinos, im.shape[0])

    else:
        # Get the corrected outshape (in this case it's easy):
        im = tdf.read_tomo(dset_1, 0).astype(float32)
        outshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_proj)

    f_in_1.close()
    f_in_2.close()
    f_in_3.close()

    # Create the output HDF5 files:
    f_out_abs = getHDF5(outfile_abs, 'w')
    f_out_dset_abs = f_out_abs.create_dataset('exchange/data', outshape,
                                              float32)
    f_out_dset_abs.attrs['min'] = str(finfo(float32).max)
    f_out_dset_abs.attrs['max'] = str(finfo(float32).min)
    f_out_dset_abs.attrs['version'] = '1.0'
    f_out_dset_abs.attrs['axes'] = "y:theta:x"
    f_out_abs.close()

    f_out_ref = getHDF5(outfile_ref, 'w')
    f_out_dset_ref = f_out_ref.create_dataset('exchange/data', outshape,
                                              float32)
    f_out_dset_ref.attrs['min'] = str(finfo(float32).max)
    f_out_dset_ref.attrs['max'] = str(finfo(float32).min)
    f_out_dset_ref.attrs['version'] = '1.0'
    f_out_dset_ref.attrs['axes'] = "y:theta:x"
    f_out_ref.close()

    f_out_sca = getHDF5(outfile_sca, 'w')
    f_out_dset_sca = f_out_sca.create_dataset('exchange/data', outshape,
                                              float32)
    f_out_dset_sca.attrs['min'] = str(finfo(float32).max)
    f_out_dset_sca.attrs['max'] = str(finfo(float32).min)
    f_out_dset_sca.attrs['version'] = '1.0'
    f_out_dset_sca.attrs['axes'] = "y:theta:x"
    f_out_sca.close()

    # Log infos:
    log = open(logfilename, "a")
    log.write(linesep + "\tWork plan prepared correctly.")
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPerforming GDEI...")
    log.close()

    # Run several threads for independent computation without waiting for threads
    # completion:
    for num in range(nr_threads):
        start = (num_sinos / nr_threads) * num
        if (num == nr_threads - 1):
            end = num_sinos - 1
        else:
            end = (num_sinos / nr_threads) * (num + 1) - 1
        Process(
            target=_process,
            args=(lock, start, end, num_sinos, infile_1, infile_2, infile_3,
                  outfile_abs, outfile_ref, outfile_sca, r1, r2, r3, d1, d2,
                  d3, dd1, dd2, dd3, shiftVert_1, shiftHoriz_1, shiftVert_2,
                  shiftHoriz_2, shiftVert_3, shiftHoriz_3, outshape, float32,
                  skipflat_1, skipflat_2, skipflat_3, plan_1, plan_2, plan_3,
                  norm_sx, norm_dx, flat_end, half_half, half_half_line,
                  ext_fov, ext_fov_rot_right, ext_fov_overlap,
                  ext_fov_normalize, ext_fov_average, ringrem, dynamic_ff,
                  EFF_1, EFF_2, EFF_3, filtEFF_1, filtEFF_2, filtEFF_3,
                  im_dark_1, im_dark_2, im_dark_3, logfilename)).start()
コード例 #20
0
def _process(lock, int_from, int_to, infile, outfile, outshape, outtype,
             skipflat, plan, flat_end, half_half, half_half_line, dynamic_ff,
             EFF, filtEFF, im_dark, rotation, interp, border, rescale_factor,
             logfilename):

    # Process the required subset of images:
    for i in range(int_from, int_to + 1):

        # Read input image:
        t0 = time()
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else:
            dset = f_in['exchange/data']
        im = tdf.read_tomo(dset, i).astype(float32)
        f_in.close()
        t1 = time()

        # Perform pre-processing (flat fielding, extended FOV, ring removal):
        if not skipflat:
            if dynamic_ff:
                # Dynamic flat fielding with downsampling = 2:
                im = dynamic_flat_fielding(im, EFF, filtEFF, 2, im_dark)
            else:
                im = flat_fielding(im, i, plan, flat_end, half_half,
                                   half_half_line, norm_sx, norm_dx)
        t2 = time()

        # Rotate:
        rows, cols = im.shape
        #if (cols > rows):
        #	angle = - arctan(2.0 / cols) * (rows / 2.0) / 2.0
        #else:
        #	angle = - arctan(2.0 / rows) * (cols / 2.0) / 2.0
        #print(angle)

        M = cv2.getRotationMatrix2D((cols / 2, rows / 2), rotation, 1)

        if interp == 'nearest':
            interpflag = cv2.INTER_NEAREST
        elif interp == 'cubic':
            interpflag = cv2.INTER_CUBIC
        elif interp == 'lanczos':
            interpflag = cv2.INTER_LANCZOS4
        else:
            interpflag = cv2.INTER_LINEAR

        if border == 'constant':
            borderflag = cv2.BORDER_CONSTANT
        else:
            borderflag = cv2.BORDER_REPLICATE

        im = cv2.warpAffine(im,
                            M, (cols, rows),
                            flags=interpflag,
                            borderMode=borderflag)

        # Save processed image to HDF5 file (atomic procedure - lock used):
        _write_data(lock, im, i, outfile, outshape, outtype, rescale_factor,
                    logfilename, t2 - t1, t1 - t0)
コード例 #21
0
def main(argv):          
	"""Try to guess the amount of overlap in the case of extended FOV CT.

    Parameters
    ----------
    infile  : array_like
        HDF5 input dataset

    outfile : string
        Full path where the identified overlap will be written as output

	scale   : int
        If sub-pixel precision is interesting, use e.g. 2.0 to get an overlap 
		of .5 value. Use 1.0 if sub-pixel precision is not required

	tmppath : int
        Temporary path where look for cached flat/dark files
       
    """ 	
	   
	# Get path:
	infile  = argv[0]  # The HDF5 file on the SSD
	outfile  = argv[1]  # The txt file with the proposed center
	scale  = float(argv[2])
	tmppath = argv[3]	
	if not tmppath.endswith(sep): tmppath += sep	

	# Create a silly temporary log:
	tmplog  = tmppath + basename(infile) + str(time.time())	
			

	# Open the HDF5 file:
	f_in = getHDF5( infile, 'r' )
	if "/tomo" in f_in:
		dset = f_in['tomo']
	else: 
		dset = f_in['exchange/data']
	num_proj = tdf.get_nr_projs(dset)

	
	# Get first and 180 deg projections: 	
	im1 = tdf.read_tomo(dset,0).astype(float32)
	im2 = tdf.read_tomo(dset,num_proj/2).astype(float32)

	
	# Get flats and darks from cache or from file:
	try:
		corrplan = cache2plan(infile, tmppath)
	except Exception as e:
		#print "Error(s) when reading from cache"
		corrplan = extract_flatdark(f_in, True, tmplog)
		remove(tmplog)
		plan2cache(corrplan, infile, tmppath)

	# Apply simple flat fielding (if applicable):
	if (isinstance(corrplan['im_flat_after'], ndarray) and isinstance(corrplan['im_flat'], ndarray) and
		isinstance(corrplan['im_dark'], ndarray) and isinstance(corrplan['im_dark_after'], ndarray)) :		
		im1 = ((abs(im1 - corrplan['im_dark'])) / (abs(corrplan['im_flat'] - corrplan['im_dark'])  + finfo(float32).eps)).astype(float32)	
		im2 = ((abs(im2 - corrplan['im_dark_after'])) / (abs(corrplan['im_flat_after'] - corrplan['im_dark_after'])  + finfo(float32).eps)).astype(float32)		


	# Scale projections (if required) to get subpixel estimation:
	if ( abs(scale - 1.0) > finfo(float32).eps ):	
		im1 = imresize(im1, (int(round(scale*im1.shape[0])), int(round(scale*im1.shape[1]))), interp='bicubic', mode='F');	
		im2 = imresize(im2, (int(round(scale*im2.shape[0])), int(round(scale*im2.shape[1]))), interp='bicubic', mode='F');

			
	# Find the center (flipping left-right im2): DISTINGUISH BETWEEN AIR ON THE RIGHT AND ON THE LEFT??????
	cen = findcenter.usecorrelation(im1, im2[ :,::-1])
	cen = (cen / scale)*2.0	
	
	# Print center to output file:
	text_file = open(outfile, "w")
	text_file.write(str(int(abs(cen))))
	text_file.close()
	
	# Close input HDF5:
	f_in.close()
コード例 #22
0
def main(argv):          
	"""Try to guess the center of rotation of the input CT dataset.

    Parameters
    ----------
    infile  : array_like
        HDF5 input dataset

    outfile : string
        Full path where the identified center of rotation will be written as output

	scale   : int
        If sub-pixel precision is interesting, use e.g. 2.0 to get a center of rotation 
		of .5 value. Use 1.0 if sub-pixel precision is not required

	angles  : int
        Total number of angles of the input dataset	

	proj_from : int
        Initial projections to consider for the assumed angles

	proj_to : int
        Final projections to consider for the assumed angles

	method : string
		(not implemented yet)

	tmppath : string
        Temporary path where look for cached flat/dark files
       
    """ 	   
	# Get path:
	infile  = argv[0]          # The HDF5 file on the
	outfile = argv[1]          # The txt file with the proposed center
	scale   = float(argv[2])
	angles  = float(argv[3])
	proj_from  = int(argv[4])
	proj_to  = int(argv[5])
	method  = argv[6]
	tmppath = argv[7]	
	if not tmppath.endswith(sep): tmppath += sep	

	pyfftw_cache_disable()
	pyfftw_cache_enable()
	pyfftw_set_keepalive_time(1800)	

	# Create a silly temporary log:
	tmplog  = tmppath + basename(infile) + str(time.time())
			
	# Open the HDF5 file (take into account also older TDF versions):
	f_in = getHDF5( infile, 'r' )
	if "/tomo" in f_in:
		dset = f_in['tomo']
	else: 
		dset = f_in['exchange/data']
	num_proj = tdf.get_nr_projs(dset)	
	num_sinos = tdf.get_nr_sinos(dset)	

	# Get flats and darks from cache or from file:
	try:
		corrplan = cache2plan(infile, tmppath)
	except Exception as e:
		#print "Error(s) when reading from cache"
		corrplan = extract_flatdark(f_in, True, tmplog)
		remove(tmplog)
		plan2cache(corrplan, infile, tmppath)

	# Get first and the 180 deg projections: 	
	im1 = tdf.read_tomo(dset,proj_from).astype(float32)	

	idx = int(round( (proj_to - proj_from)/angles * pi)) + proj_from
	im2 = tdf.read_tomo(dset,idx).astype(float32)		

	# Apply simple flat fielding (if applicable):
	if (isinstance(corrplan['im_flat_after'], ndarray) and isinstance(corrplan['im_flat'], ndarray) and
		isinstance(corrplan['im_dark'], ndarray) and isinstance(corrplan['im_dark_after'], ndarray)) :		
		im1 = ((abs(im1 - corrplan['im_dark'])) / (abs(corrplan['im_flat'] - corrplan['im_dark']) 
			+ finfo(float32).eps)).astype(float32)	
		im2 = ((abs(im2 - corrplan['im_dark_after'])) / (abs(corrplan['im_flat_after'] - corrplan['im_dark_after']) 
			+ finfo(float32).eps)).astype(float32)	

	# Scale projections (if required) to get subpixel estimation:
	if ( abs(scale - 1.0) > finfo(float32).eps ):	
		im1 = imresize(im1, (int(round(scale*im1.shape[0])), int(round(scale*im1.shape[1]))), interp='bicubic', mode='F');	
		im2 = imresize(im2, (int(round(scale*im2.shape[0])), int(round(scale*im2.shape[1]))), interp='bicubic', mode='F');	

	# Find the center (flipping left-right im2):
	cen = findcenter.usecorrelation(im1, im2[ :,::-1])
	cen = cen / scale
	
	# Print center to output file:
	text_file = open(outfile, "w")
	text_file.write(str(int(cen)))
	text_file.close()
	
	# Close input HDF5:
	f_in.close()
コード例 #23
0
def main(argv):    
	"""Extract a 2D image (projection or sinogram) from the input TDF file (DataExchange HDF5) and
	creates a 32-bit RAW file to disk.

	Parameters
	----------
	argv[0] : string
		The absolute path of the input TDF.

	argv[1] : int
		The relative position of the image within the dataset.

	argv[2] : string
		One of the following options: 'tomo', 'sino', 'flat', 'dark'.

	argv[3] : string
		The absolute path of the output 32-bit RAW image file. Filename will be modified by adding 
		image width, image height, minimum and maximum value of the input TDF dataset.

	Example
	-------
	tools_extractdata "S:\\dataset.tdf" 128 tomo "R:\\proj"	

	"""
	try:
		#
		# Get input parameters:
		#
		infile   = argv[0]
		index    = int(argv[1]) 
		imtype   = argv[2]
		outfile  = argv[3]		
	
		#
		# Body
		#	
	
		# Check if file exists:
		if not os.path.exists(infile):		
			#log = open(logfilename,"a")
			#log.write(os.linesep + "\tError: input TDF file not found. Process will end.")				
			#log.close()			
			exit()	

		# Open the HDF5 file:

		f = getHDF5( infile, 'r' )
		if (imtype == 'sino'):
			if "/tomo" in f:
				dset = f['tomo']	
			else: 
				dset = f['exchange/data']
			im = tdf.read_sino( dset, index )	
		elif (imtype == 'dark'):
			if "/dark" in f:
				dset = f['dark']	
			else: 
				dset = f['exchange/data_dark']	
			im = tdf.read_tomo( dset, index )
		elif (imtype == 'flat'):
			if "/flat" in f:
				dset = f['flat']	
			else: 
				dset = f['exchange/data_white']	
			im = tdf.read_tomo( dset, index )
		else:
			if "/tomo" in f:
				dset = f['tomo']	
			else: 
				dset = f['exchange/data']	
			im = tdf.read_tomo( dset, index )
				
		# Remove Infs e NaNs
		tmp = im[:].astype(numpy.float32)
		tmp = tmp[numpy.nonzero(numpy.isfinite(tmp))]	

		# Sort the gray levels:
		tmp = numpy.sort(tmp)
	
		# Return as minimum the value the skip 0.30% of "black" tail and 0.05% of "white" tail:
		low_idx  = int(tmp.shape[0] * 0.0030)
		high_idx = int(tmp.shape[0] * 0.9995)
		min = tmp[low_idx]
		max = tmp[high_idx]
		
		# Modify file name:
		outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(im.shape[0]) + '_' + str(min) + '$' + str(max)	
		
		# Cast type:
		im = im.astype(float32)

		# Write RAW data to disk:
		im.tofile(outfile)			
	
	except:				
		
		exit()