コード例 #1
0
 def test_is_output_clique(self, dim):
     """Test that the output subgraph is a valid clique, in this case the maximum clique
     in a lollipop graph"""
     graph = nx.lollipop_graph(dim, dim)
     subgraph = list(range(2 * dim))  # subgraph is the entire graph
     resized = clique.shrink(subgraph, graph)
     assert clique.is_clique(graph.subgraph(resized))
     assert resized == list(range(dim))
コード例 #2
0
    def test_c_1_swap_to_clique(self, dim):
        """Tests that :math:`c_1` set gives a valid clique after swapping """
        A = nx.complete_graph(dim)
        A.remove_edge(0, 1)
        S = list(range(1, dim))
        c1 = clique.c_1(S, A)
        swap_nodes = c1[0]
        S.remove(swap_nodes[0])
        S.append(swap_nodes[1])

        assert clique.is_clique(A.subgraph(S))
コード例 #3
0
for s in samples:
    uniform = list(np.random.choice(24, 8,
                                    replace=False))  # generates uniform sample
    GBS_dens.append(nx.density(TA_graph.subgraph(s)))
    u_dens.append(nx.density(TA_graph.subgraph(uniform)))

print("GBS mean density = {:.4f}".format(np.mean(GBS_dens)))
print("Uniform mean density = {:.4f}".format(np.mean(u_dens)))

##############################################################################
# Those look like great GBS samples 💪! To obtain cliques, we shrink the samples by greedily
# removing nodes with low degree until a clique is found.

shrunk = [clique.shrink(s, TA_graph) for s in samples]
print(clique.is_clique(TA_graph.subgraph(shrunk[0])))

##############################################################################
# Let's take a look at some of these cliques. What are the clique sizes in the first ten samples?
# What is the average clique size? How about the largest and smallest clique size?

clique_sizes = [len(s) for s in shrunk]
print("First ten clique sizes = ", clique_sizes[:10])
print("Average clique size = {:.3f}".format(np.mean(clique_sizes)))
print("Maximum clique size = ", np.max(clique_sizes))
print("Minimum clique size = ", np.min(clique_sizes))

##############################################################################
# Even in the first few samples, we've already identified larger cliques than the 4-node clique
# we studied before. Awesome! Indeed, this simple shrinking strategy gives cliques with average
# size of roughly five. We can enlarge these cliques by searching for larger cliques in their
コード例 #4
0
 def test_no_false_positives(self, dim):
     """Tests that non-cliques are labelled as such"""
     g = nx.empty_graph(dim)
     assert not clique.is_clique(g)
コード例 #5
0
 def test_no_false_negatives(self, dim):
     """Tests that cliques are labelled as such"""
     g = nx.complete_graph(dim)
     assert clique.is_clique(g)