def test_source_file(filename): s = Stream('s') with open(filename, 'r') as input_file: for line in input_file: s.append(int(line)) run() assert recent_values(s) == [1, 2, 3]
def colorCapuaFictaTest(): (n11,n12,n13,n14) = (Note(), Note(), Note(), Note()) (n21,n22,n23,n24) = (Note(), Note(), Note(), Note()) n11.duration.type = "quarter" n11.name = "D" n12.duration.type = "quarter" n12.name = "E" n13.duration.type = "quarter" n13.name = "F" n14.duration.type = "quarter" n14.name = "G" n21.name = "C" n21.duration.type = "quarter" n22.name = "C" n22.duration.type = "quarter" n23.name = "B" n23.octave = 3 n23.duration.type = "quarter" n24.name = "C" n24.duration.type = "quarter" stream1 = Stream() stream1.append([n11, n12, n13, n14]) stream2 = Stream() stream2.append([n21, n22, n23, n24]) ### Need twoStreamComparer to Work capua.evaluateWithoutFicta(stream1, stream2) assert n13.editorial.harmonicInterval.name == "d5", n13.editorial.harmonicInterval.name capua.evaluateCapuaTwoStreams(stream1, stream2) capua.colorCapuaFicta(stream1, stream2, "both") assert n13.editorial.harmonicInterval.name == "P5", n13.editorial.harmonicInterval.name assert n11.editorial.color == "yellow" assert n12.editorial.color == "yellow" assert n13.editorial.color == "green" assert n14.editorial.color == "yellow" assert n11.editorial.harmonicInterval.name == "M2" assert n21.editorial.harmonicInterval.name == "M2" assert n13.editorial.harmonicInterval.name == "P5" assert n13.editorial.misc["noFictaHarmony"] == "perfect cons" assert n13.editorial.misc["capua2FictaHarmony"] == "perfect cons" assert n13.editorial.misc["capua2FictaInterval"].name == "P5" assert n13.editorial.color == "green" assert stream1.lily.strip() == r'''\clef "treble" \color "yellow" d'4 \color "yellow" e'4 \ficta \color "green" fis'!4 \color "yellow" g'4'''
def match(self, token_stream): groups = Stream() while True: e = token_stream.peek() if self.filter_func(e): groups.append(e) next(token_stream) else: break d = token_stream.peek() if d == self.delimiter: next(token_stream) else: break return Match(True, groups=groups)
def match(self, token_stream): groups = Stream() try: for i, p in enumerate(self.pattern): token = token_stream[i] if isinstance(p, TokenType) and token.token_type == p: groups.append(token) elif isinstance(p, str) and token == Token(p): continue else: break else: token_stream.consume(self.pattern_len) return Match(True, groups=groups) except StopIteration: pass return Match(False)
def sort(lst): def flip(I, L): i = I[0] if lst[i] > lst[i+1]: lst[i], lst[i+1] = lst[i+1], lst[i] return (1) else: return (_no_value) x = Stream('x') for i in range(len(lst) - 1): signal_element(func=flip, in_stream=x, out_stream=x, name=i, I=[i], L=lst) scheduler = Stream.scheduler x.append(1) scheduler.step()
def shortest_path(D): def triangle_inequality(triple, D): i, j, k = triple if D[i][j] + D[j][k] < D[i][k]: D[i][k] = D[i][j] + D[j][k] D[k][i] = D[i][k] return(1) else: return (_no_value) x = Stream('x') size = len(D) for i in range(size): for j in range(i): for k in range(size): signal_element(func=triangle_inequality, in_stream=x, out_stream=x, name=str(i)+"_"+str(j)+"_"+str(k), triple=[i, j, k], D=D) scheduler = Stream.scheduler x.append(1) scheduler.step() return D
def test_window_agents(): scheduler = Stream.scheduler q = Stream('q') qq = Stream('qq') r = Stream('r') s = Stream('s') t = Stream('t') u = Stream('u') v = Stream('v') w = Stream('w') x = Stream('x') y = Stream('y') z = Stream('z') a = Stream('a') b = Stream('b') c = Stream('c') yy = Stream('yy') zz = Stream('zz') #---------------------------------------------------------------- # Test simple window map agent with the same window size and step size smap = map_window_f(func=sum, in_stream=r, window_size=4, step_size=4) map_window(func=sum, in_stream=r, out_stream=s, window_size=4, step_size=4) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test simple window list agent with the same window size and step size def f_map_window_list(lst): return [max(lst)] * len(lst) s_list = Stream('s list') map_window_list(func=f_map_window_list, in_stream=r, out_stream=s_list, window_size=4, step_size=4) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window map agent with different window and step sizes map_window(func=sum, in_stream=r, out_stream=t, window_size=3, step_size=2) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window map agent with a NumPy function map_window(func=np.mean, in_stream=r, out_stream=q, window_size=3, step_size=2, name='bb') #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window map agent with arguments def map_with_args(window, addend): return np.mean(window) + addend map_window(func=map_with_args, in_stream=r, out_stream=qq, window_size=3, step_size=2, addend=1) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window map agent with user-defined function and no state map_window(func=lambda v: sum(v) + 1, in_stream=r, out_stream=u, window_size=4, step_size=4) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window map agent with state def g(lst, state): return sum(lst) + state, sum(lst) + state map_window(func=g, in_stream=r, out_stream=v, window_size=4, step_size=4, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window merge agent with no state def h(list_of_windows): return sum([sum(window) for window in list_of_windows]) merge_window(func=h, in_streams=[r, w], out_stream=x, window_size=3, step_size=3) merge_stream = merge_window_f(func=h, in_streams=[r, w], window_size=3, step_size=3) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window merge agent with state def h_with_state(list_of_windows, state): return (sum([sum(window) for window in list_of_windows]) + state, state + 1) merge_window(func=h_with_state, in_streams=[r, w], out_stream=a, window_size=3, step_size=3, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window split agent with no state def splt(window): return sum(window), max(window) split_window(func=splt, in_stream=r, out_streams=[y, z], window_size=3, step_size=3) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window split agent with state def split_with_state(window, state): return (sum(window) + state, max(window) + state), state + 1 split_window(func=split_with_state, in_stream=r, out_streams=[yy, zz], window_size=3, step_size=3, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window many-to-many with state and args def func_multi_window_with_state_and_args(windows, state, cutoff): return ((max(max(windows[0]), max(windows[1]), cutoff, state), min(min(windows[0]), min(windows[1]), cutoff, state)), state + 2) multi_window(func=func_multi_window_with_state_and_args, in_streams=[r, w], out_streams=[b, c], state=0, window_size=3, step_size=3, cutoff=15) multi_window_b, multi_window_c = multi_window_f( func=func_multi_window_with_state_and_args, in_streams=[r, w], num_out_streams=2, state=0, window_size=3, step_size=3, cutoff=15) #---------------------------------------------------------------- #---------------------------------------------------------------- r.extend(list(range(16))) scheduler.step() assert recent_values(r) == [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] assert recent_values(s) == [ 0 + 1 + 2 + 3, 4 + 5 + 6 + 7, 8 + 9 + 10 + 11, 12 + 13 + 14 + 15 ] assert recent_values(smap) == recent_values(s) assert recent_values(t) == [ 0 + 1 + 2, 2 + 3 + 4, 4 + 5 + 6, 6 + 7 + 8, 8 + 9 + 10, 10 + 11 + 12, 12 + 13 + 14 ] assert recent_values(q) == [1, 3, 5, 7, 9, 11, 13] assert recent_values(qq) == [2, 4, 6, 8, 10, 12, 14] assert recent_values(u) == [ 0 + 1 + 2 + 3 + 1, 4 + 5 + 6 + 7 + 1, 8 + 9 + 10 + 11 + 1, 12 + 13 + 14 + 15 + 1 ] assert recent_values(v) == [6, 28, 66, 120] assert recent_values(w) == [] assert recent_values(x) == [] assert recent_values(merge_stream) == recent_values(x) # y is sum of windows of r with window and step size of 3 assert recent_values(y) == [3, 12, 21, 30, 39] assert recent_values(yy) == [3, 13, 23, 33, 43] # y is max of windows of r with window and step size of 3 assert recent_values(z) == [2, 5, 8, 11, 14] assert recent_values(zz) == [2, 6, 10, 14, 18] assert recent_values(a) == [] assert recent_values(b) == [] assert recent_values(c) == [] #---------------------------------------------------------------- #---------------------------------------------------------------- # Step through the scheduler #---------------------------------------------------------------- #---------------------------------------------------------------- w.extend([10, 12, 14, 16, 18]) scheduler.step() assert recent_values(r) == [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] assert recent_values(s) == [ 0 + 1 + 2 + 3, 4 + 5 + 6 + 7, 8 + 9 + 10 + 11, 12 + 13 + 14 + 15 ] assert recent_values(s_list) == [ 3, 3, 3, 3, 7, 7, 7, 7, 11, 11, 11, 11, 15, 15, 15, 15 ] assert recent_values(smap) == recent_values(s) assert recent_values(t) == [ 0 + 1 + 2, 2 + 3 + 4, 4 + 5 + 6, 6 + 7 + 8, 8 + 9 + 10, 10 + 11 + 12, 12 + 13 + 14 ] assert recent_values(q) == [1, 3, 5, 7, 9, 11, 13] assert recent_values(qq) == [2, 4, 6, 8, 10, 12, 14] assert recent_values(u) == [ 0 + 1 + 2 + 3 + 1, 4 + 5 + 6 + 7 + 1, 8 + 9 + 10 + 11 + 1, 12 + 13 + 14 + 15 + 1 ] assert recent_values(v) == [6, 28, 66, 120] assert recent_values(w) == [10, 12, 14, 16, 18] assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14)] assert recent_values(merge_stream) == recent_values(x) assert recent_values(y) == [3, 12, 21, 30, 39] assert recent_values(yy) == [3, 13, 23, 33, 43] assert recent_values(z) == [2, 5, 8, 11, 14] assert recent_values(zz) == [2, 6, 10, 14, 18] assert recent_values(a) == [39] assert recent_values(b) == [15] assert recent_values(c) == [0] #---------------------------------------------------------------- r.extend([10, -10, 21, -20]) scheduler.step() assert recent_values(s) == [6, 22, 38, 54, 1] assert recent_values(s_list) == \ [3, 3, 3, 3, 7, 7, 7, 7, 11, 11, 11, 11, 15, 15, 15, 15, 21, 21, 21, 21] assert recent_values(smap) == recent_values(s) assert recent_values(t) == [ 0 + 1 + 2, 2 + 3 + 4, 4 + 5 + 6, 6 + 7 + 8, 8 + 9 + 10, 10 + 11 + 12, 12 + 13 + 14, 14 + 15 + 10, 10 + (-10) + 21 ] assert recent_values(q) == [1, 3, 5, 7, 9, 11, 13, 13, 7] assert recent_values(qq) == [2, 4, 6, 8, 10, 12, 14, 14, 8] assert recent_values(u) == [ 0 + 1 + 2 + 3 + 1, 4 + 5 + 6 + 7 + 1, 8 + 9 + 10 + 11 + 1, 12 + 13 + 14 + 15 + 1, 10 + (-10) + 21 + (-20) + 1 ] assert recent_values(v) == [6, 28, 66, 120, 121] assert recent_values(w) == [10, 12, 14, 16, 18] assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14)] assert recent_values(merge_stream) == recent_values(x) assert recent_values(y) == [3, 12, 21, 30, 39, 15] assert recent_values(yy) == [3, 13, 23, 33, 43, 20] assert recent_values(z) == [2, 5, 8, 11, 14, 15] assert recent_values(zz) == [2, 6, 10, 14, 18, 20] assert recent_values(a) == [39] assert recent_values(b) == [15] assert recent_values(c) == [0] #---------------------------------------------------------------- w.append(20) scheduler.step() assert recent_values(s) == [6, 22, 38, 54, 1] assert recent_values(smap) == recent_values(s) assert recent_values(t) == [ 0 + 1 + 2, 2 + 3 + 4, 4 + 5 + 6, 6 + 7 + 8, 8 + 9 + 10, 10 + 11 + 12, 12 + 13 + 14, 14 + 15 + 10, 10 + (-10) + 21 ] assert recent_values(q) == [1, 3, 5, 7, 9, 11, 13, 13, 7] assert recent_values(qq) == [2, 4, 6, 8, 10, 12, 14, 14, 8] assert recent_values(u) == [ 0 + 1 + 2 + 3 + 1, 4 + 5 + 6 + 7 + 1, 8 + 9 + 10 + 11 + 1, 12 + 13 + 14 + 15 + 1, 10 + (-10) + 21 + (-20) + 1 ] assert recent_values(v) == [6, 28, 66, 120, 121] assert recent_values(w) == [10, 12, 14, 16, 18, 20] assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14), (3 + 4 + 5) + (16 + 18 + 20)] assert recent_values(merge_stream) == recent_values(x) assert recent_values(y) == [3, 12, 21, 30, 39, 15] assert recent_values(yy) == [3, 13, 23, 33, 43, 20] assert recent_values(z) == [2, 5, 8, 11, 14, 15] assert recent_values(zz) == [2, 6, 10, 14, 18, 20] assert recent_values(a) == [39, 67] assert recent_values(b) == [15, 20] assert recent_values(multi_window_b) == recent_values(b) assert recent_values(c) == [0, 2] assert recent_values(multi_window_c) == recent_values(c) #---------------------------------------------------------------- r.extend([-1, 1, 0]) scheduler.step() assert recent_values(s) == [6, 22, 38, 54, 1] assert recent_values(smap) == recent_values(s) assert recent_values(t) == [ 0 + 1 + 2, 2 + 3 + 4, 4 + 5 + 6, 6 + 7 + 8, 8 + 9 + 10, 10 + 11 + 12, 12 + 13 + 14, 14 + 15 + 10, 10 + (-10) + 21, 21 - 20 - 1, -1 + 1 + 0 ] assert recent_values(q) == [1, 3, 5, 7, 9, 11, 13, 13, 7, 0, 0] assert recent_values(qq) == [2, 4, 6, 8, 10, 12, 14, 14, 8, 1, 1] assert recent_values(u) == [7, 23, 39, 55, 2] assert recent_values(v) == [6, 28, 66, 120, 121] assert recent_values(w) == [10, 12, 14, 16, 18, 20] assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14), (3 + 4 + 5) + (16 + 18 + 20)] assert recent_values(merge_stream) == recent_values(x) assert recent_values(y) == [3, 12, 21, 30, 39, 15, 0] assert recent_values(yy) == [3, 13, 23, 33, 43, 20, 6] assert recent_values(z) == [2, 5, 8, 11, 14, 15, 21] assert recent_values(zz) == [2, 6, 10, 14, 18, 20, 27] assert recent_values(a) == [39, 67] assert recent_values(b) == [15, 20] assert recent_values(multi_window_b) == recent_values(b) assert recent_values(c) == [0, 2] assert recent_values(multi_window_c) == recent_values(c) #---------------------------------------------------------------- #---------------------------------------------------------------- # TEST WINDOW WITH STREAM ARRAY #---------------------------------------------------------------- #---------------------------------------------------------------- # Simple linear arrays x = StreamArray('x') y = StreamArray('y') #---------------------------------------------------------------- # Test window map agent with stream arrays and a NumPy function map_window(func=np.mean, in_stream=x, out_stream=y, window_size=3, step_size=3, name='window map agent for arrays') #---------------------------------------------------------------- #---------------------------------------------------------------- x.extend(np.linspace(0.0, 11.0, 12)) scheduler.step() assert np.array_equal(recent_values(x), np.linspace(0.0, 11.0, 12)) # y[0] = (0+1+2)//3.0, y[1] = (3+4+5)//3.0 assert np.array_equal(recent_values(y), np.array([1.0, 4.0, 7.0, 10.0])) x = StreamArray('x', dimension=2) y = StreamArray('y', dimension=2) z = StreamArray('z', dimension=2) a = StreamArray('a', dimension=2) b = StreamArray('b', dimension=2) c = StreamArray('c', dimension=2) d = StreamArray('d', dimension=2) p = StreamArray('p', dimension=2) q = StreamArray('q', dimension=2) r = StreamArray('r', dimension=2) s = StreamArray('s', dimension=2) t = StreamArray('t', dimension=2) #---------------------------------------------------------------- # Test window map agent with stream arrays and a NumPy function # f() and ff() differ only in the axis. def f(input_array): return np.mean(input_array, axis=0) def ff(input_array): return np.mean(input_array, axis=1) map_window(func=f, in_stream=x, out_stream=y, window_size=2, step_size=2, name='window map agent for arrays') map_window(func=ff, in_stream=x, out_stream=t, window_size=2, step_size=2, name='window map agent for arrays ff') #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window sink with stream arrays def sum_array(input_array, output_list): output_list.append(sum(input_array)) sum_array_list = [] sink_window(func=sum_array, in_stream=x, window_size=2, step_size=2, name='sum array', output_list=sum_array_list) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window map agent with state def g(lst, state): return sum(lst) + state, state + 1 map_window(func=g, in_stream=x, out_stream=z, window_size=2, step_size=2, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window merge agent with state def h_array(list_of_windows, state): return (sum([sum(window) for window in list_of_windows]) + state, state + 1) merge_window(func=h_array, in_streams=[x, a], out_stream=b, window_size=2, step_size=2, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window split agent with state def split_with_state(window, state): return [np.sum(window, axis=0)+state, np.max(window, axis=0)+state], \ state+1.0 split_window(func=split_with_state, in_stream=x, out_streams=[c, d], window_size=2, step_size=2, state=0.0) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window many-to-many with state and args def func_multi_window_with_state_and_args(windows, state, cutoff): max_value = np.maximum(np.max(windows[0], axis=0), np.max(windows[1], axis=0)) max_value = np.maximum(max_value, cutoff) + state min_value = np.minimum(np.min(windows[0], axis=0), np.min(windows[1], axis=0)) min_value = np.minimum(min_value, cutoff) + state return (max_value, min_value), state + 1 multi_window(func=func_multi_window_with_state_and_args, in_streams=[x, a], out_streams=[r, s], state=0, window_size=2, step_size=2, cutoff=10) #---------------------------------------------------------------- x.extend(np.array([[1., 5.], [7., 11.]])) a.extend(np.array([[0., 1.], [2., 3.]])) scheduler.step() # sum_array_list is the sum of x with window size, step size of 2 assert np.array_equal(sum_array_list, [np.array([1. + 7., 5. + 11.])]) # y is the mean of x with window size and step size of 2 assert np.array_equal(recent_values(x), np.array([[1., 5.], [7., 11.]])) assert np.array_equal(recent_values(y), np.array([[(1. + 7.) // 2.0, (5. + 11.) // 2.]])) assert np.array_equal(recent_values(t), np.array([[(1. + 5.) // 2.0, (7. + 11.) // 2.]])) assert np.array_equal(recent_values(z), np.array([[1. + 7., 5. + 11]])) assert np.array_equal(recent_values(b), [np.array([1. + 7. + 0. + 2., 5. + 11. + 1. + 3.])]) assert np.array_equal(recent_values(c), np.array([[8., 16.]])) assert np.array_equal(recent_values(d), np.array([[7., 11.]])) assert np.array_equal(recent_values(r), np.array([[10., 11.]])) assert np.array_equal(recent_values(s), np.array([[0., 1.]])) a.extend(np.array([[0., 1.], [1., 0.]])) scheduler.step() assert np.array_equal(recent_values(y), np.array([[(1. + 7.) / 2.0, (5. + 11.) / 2.]])) assert np.array_equal(recent_values(z), np.array([[1. + 7., 5. + 11]])) assert np.array_equal(recent_values(b), [np.array([1. + 7. + 0. + 2., 5. + 11. + 1. + 3.])]) assert np.array_equal(recent_values(c), np.array([[8., 16.]])) assert np.array_equal(recent_values(d), np.array([[7., 11.]])) assert np.array_equal(recent_values(r), np.array([[10., 11.]])) assert np.array_equal(recent_values(s), np.array([[0., 1.]])) x.extend(np.array([[14., 18.], [18., 30.], [30., 38.], [34., 42.]])) scheduler.step() assert np.array_equal(recent_values(y), np.array([[4., 8.], [16., 24.], [32., 40.]])) assert np.array_equal(recent_values(z), np.array([[8., 16.], [33., 49.], [66., 82.]])) assert np.array_equal(recent_values(c), np.array([[8., 16.], [33., 49.], [66., 82.]])) assert np.array_equal(recent_values(d), np.array([[7., 11.], [19., 31.], [36., 44.]])) assert np.array_equal(recent_values(r), np.array([[10., 11.], [19., 31.]])) assert np.array_equal(recent_values(s), np.array([[0., 1.], [1., 1.]])) print('TEST OF OP (WINDOW) IS SUCCESSFUL') return
def primes_example_2(N): """ Agent used in example 2 in which prime_stream is the sequence of primes up to the N-th prime Parameters ---------- N: int positive integer Returns: first_N, prime_stream ------- first_N: list The first N primes prime_stream: Stream Stream of prime numbers. May have more than N primes Notes ----- sieve creates a single sink agent. The sink agent has a single input stream, in_stream. The agent encapsulates stateful function f which has an initial state of 0. (Sinks have no output streams.) Let the first element of in_stream be p. This agent assumes that p is a prime number. So, the agent appends p to prime_stream. Many agents append prime numbers to prime_stream, but at most one agent can do so at a time. When the agent discovers an element of in_stream that is not a multiple of p, the agent creates a new sieve agent which takes a new stream out_stream as its input stream. out_stream consists of elements of in_stream that are not multiples of p. """ def execute_until_stop_message(v, state, function): function_state, finished_execution = state if finished_execution: return (_no_value, True) index, input_value = v if index == 1: # This value is from stop_stream # Make finished_execution become True because a message # was received on stop_stream. finished_execution = True # From now onwards, no messages are appended to the output # stream, and finished_execution remains True forever. return (_no_value, (function_state, True)) # index is 0. So, this value is from state_stream. output_value, next_function_state = function(input_value, function_state) # next_state = (next_function_state, finished_execution) return output_value, (next_function_state, finished_execution) def generate_numbers_until_stop_message(index_and_value, state): # state is initially False and switches to True if a message # is received in stop_stream. If state becomes True then it # remains True thereafter. After state becomes True no values # are appended to the output stream. # The elements of the input stream are tuples: index and # value. # index is 0 for state_stream and 1 for stop_stream. index, value = index_and_value if index == 1: # This value is from stop_stream # Make state True because a message was received on # stop_stream. # From now onwards, no messages are appended to the output # stream, and state remains True. return (_no_value, True) # index is 0. So, this value is from state_stream. if state: # Do not append values to the output stream, and state # remains True return (_no_value, state) else: # Append the next value to the output stream, and state # remains False. return (value + 1, state) def detect_finished_then_send_stop(v, state, N): length, stop = state # If stop is True then computation must stop length += 1 if length >= N and not stop: stop = True return (True, (length, stop)) else: return (_no_value, (length, stop)) def first_N_elements(in_stream, N, first_N): def first_N_elements_of_stream(v, state, N, first_N): if state < N: first_N.append(v) state += 1 return state sink(func=first_N_elements_of_stream, in_stream=in_stream, state=0, N=N, first_N=first_N) #----------------------------------------------------------------- # Define streams #----------------------------------------------------------------- state_stream = Stream(name='numbers 2, 3, 4, ...') stop_stream = Stream(name='stop!') prime_stream = Stream(name='prime numbers') first_N = [] #----------------------------------------------------------------- # Define agents #----------------------------------------------------------------- # Create agent that generates 2, 3, 4... until it receives a # message on stop_stream ## merge_asynch(func=generate_numbers_until_stop_message, ## in_streams=[state_stream, stop_stream], ## out_stream=state_stream, state=False) def g(v, state): return v + 1, state merge_asynch(func=execute_until_stop_message, in_streams=[state_stream, stop_stream], out_stream=state_stream, state=(None, False), function=g) # Create an agent that sieves state_stream to create prime_stream # which is a sequence of primes. # We do this by creating a sink agent that encapsulates a stateful # function f with an initial state of 0. Pass parameters # prime_stream and out_stream from the sink agent to its # encapsulated function f. sieve(in_stream=state_stream, prime_stream=prime_stream) # Create an agent that sends a message on stop_stream when the # length of prime_stream exceeds N. map_element(func=detect_finished_then_send_stop, in_stream=prime_stream, out_stream=stop_stream, state=(0, False), N=N) first_N_elements(in_stream=prime_stream, N=N, first_N=first_N) state_stream.append(2) return first_N, prime_stream
def test_list(): scheduler = Stream.scheduler n = Stream('n') o = Stream('o') p = Stream('p') q = Stream('q') r = Stream('r') s = Stream('s') t = Stream('t') u = Stream('u') v = Stream('v') w = Stream('w') x = Stream('x') y = Stream('y') z = Stream('z') #------------------------------------------------------------------- # Test simple map def simple(lst): return [2 * v for v in lst] a = map_list(func=simple, in_stream=x, out_stream=y, name='a') yy = map_list_f(simple, x) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test map with state # Function that operates on an element and state and returns an # element and state. def f(input_list, state): output_list = [[]] * len(input_list) for i in range(len(input_list)): output_list[i] = input_list[i] + state state += 2 return output_list, state b = map_list(func=f, in_stream=x, out_stream=z, state=0, name='b') zz = map_list_f(f, x, 0) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test map with call streams c = map_list(func=f, in_stream=x, out_stream=v, state=10, call_streams=[w], name='c') #------------------------------------------------------------------- #------------------------------------------------------------------- # Test sink with state def sink_with_state(input_list, output_list): # sink has no output stream. # This function only returns the next state. return output_list.extend(input_list) out_list = [] # In this simple example, out_list will be the same as the input # stream. sink_agent = sink_list(func=sink_with_state, in_stream=x, name='sink_agent', state=out_list) out_list_stream = [] # Function version of the previous agent example sink_list_f(sink_with_state, x, out_list_stream) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test merge # Function that operates on a list of lists def g(list_of_lists): return [sum(snapshot) for snapshot in zip(*list_of_lists)] d = merge_list(func=g, in_streams=[x, u], out_stream=s, name='d') ss = merge_list_f(g, [x, u]) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test split def h(input_list): return [[element + 1 for element in input_list], [element * 2 for element in input_list]] e = split_list(func=h, in_stream=x, out_streams=[r, t], name='e') rr, tt = split_list_f(h, x, num_out_streams=2) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test split with state def h_state(input_list, state): length = len(input_list) output_list_0 = [[]] * length output_list_1 = [[]] * length for i in range(length): output_list_0[i] = input_list[i] + state output_list_1[i] = input_list[i] * state state += 1 return ([output_list_0, output_list_1], state) split_list(func=h_state, in_stream=x, out_streams=[p, q], state=0) pp, qq = split_list_f(h_state, x, num_out_streams=2, state=0) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test many def f_many(list_of_lists): snapshots = zip(*list_of_lists) return [[max(snapshot) for snapshot in snapshots], [min(snapshot) for snapshot in snapshots]] multi_agent = multi_list(func=f_many, in_streams=[x, u], out_streams=[n, o], name='multi_agent') nn, oo = multi_list_f(func=f_many, in_streams=[x, u], num_out_streams=2) #------------------------------------------------------------------- #------------------------------------------------------------------- #------------------------------------------------------------------- x.extend(range(5)) scheduler.step() assert recent_values(x) == range(5) assert recent_values(y) == [0, 2, 4, 6, 8] assert recent_values(z) == [0, 3, 6, 9, 12] assert recent_values(v) == [] assert out_list == range(5) assert out_list == out_list_stream assert recent_values(s) == [] assert recent_values(r) == [1, 2, 3, 4, 5] assert recent_values(t) == [0, 2, 4, 6, 8] assert recent_values(p) == [0, 2, 4, 6, 8] assert recent_values(q) == [0, 1, 4, 9, 16] assert recent_values(n) == [] assert recent_values(o) == [] assert recent_values(y) == recent_values(yy) assert recent_values(z) == recent_values(zz) assert recent_values(s) == recent_values(ss) assert recent_values(r) == recent_values(rr) assert recent_values(t) == recent_values(tt) assert recent_values(p) == recent_values(pp) assert recent_values(q) == recent_values(qq) assert recent_values(n) == recent_values(nn) assert recent_values(o) == recent_values(oo) #------------------------------------------------------------------- #------------------------------------------------------------------- w.append(0) scheduler.step() assert recent_values(x) == range(5) assert recent_values(y) == [0, 2, 4, 6, 8] assert recent_values(z) == [0, 3, 6, 9, 12] assert recent_values(v) == [10, 13, 16, 19, 22] assert out_list == range(5) assert recent_values(s) == [] assert recent_values(r) == [1, 2, 3, 4, 5] assert recent_values(t) == [0, 2, 4, 6, 8] assert recent_values(p) == [0, 2, 4, 6, 8] assert recent_values(q) == [0, 1, 4, 9, 16] assert recent_values(n) == [] assert recent_values(o) == [] assert recent_values(y) == recent_values(yy) assert recent_values(z) == recent_values(zz) assert recent_values(s) == recent_values(ss) assert recent_values(r) == recent_values(rr) assert recent_values(t) == recent_values(tt) assert recent_values(p) == recent_values(pp) assert recent_values(q) == recent_values(qq) assert recent_values(n) == recent_values(nn) assert recent_values(o) == recent_values(oo) #------------------------------------------------------------------- #------------------------------------------------------------------- u.extend([10, 15, 18]) scheduler.step() assert recent_values(s) == [10, 16, 20] assert recent_values(n) == [10, 15, 18] assert recent_values(o) == [0, 1, 2] u.append(37) scheduler.step() assert recent_values(s) == [10, 16, 20, 40] assert recent_values(n) == [10, 15, 18, 37] assert recent_values(o) == [0, 1, 2, 3] u.extend([96, 95]) scheduler.step() assert recent_values(x) == range(5) assert recent_values(y) == [0, 2, 4, 6, 8] assert recent_values(z) == [0, 3, 6, 9, 12] assert recent_values(v) == [10, 13, 16, 19, 22] assert out_list == range(5) assert recent_values(s) == [10, 16, 20, 40, 100] assert recent_values(r) == [1, 2, 3, 4, 5] assert recent_values(t) == [0, 2, 4, 6, 8] assert recent_values(p) == [0, 2, 4, 6, 8] assert recent_values(q) == [0, 1, 4, 9, 16] assert recent_values(n) == [10, 15, 18, 37, 96] assert recent_values(o) == [0, 1, 2, 3, 4] assert recent_values(y) == recent_values(yy) assert recent_values(z) == recent_values(zz) assert recent_values(s) == recent_values(ss) assert recent_values(r) == recent_values(rr) assert recent_values(t) == recent_values(tt) assert recent_values(p) == recent_values(pp) assert recent_values(q) == recent_values(qq) assert recent_values(n) == recent_values(nn) assert recent_values(o) == recent_values(oo) #------------------------------------------------------------------ #------------------------------------------------------------------ # Test NumPy arrays: StreamArray #------------------------------------------------------------------ #------------------------------------------------------------------ # Test list map on StreamArray (dimension is 0). a_stream_array = StreamArray(name='a_stream_array') b_stream_array = StreamArray(name='b_stream_array') def f_np(input_array): return input_array + 1 a_np_agent = map_list(func=f_np, in_stream=a_stream_array, out_stream=b_stream_array, name='a_np_agent') bb_stream_array = map_array_f(f_np, a_stream_array) scheduler.step() assert np.array_equal(recent_values(b_stream_array), np.array([], dtype=np.float64)) assert np.array_equal(recent_values(b_stream_array), recent_values(bb_stream_array)) a_stream_array.extend(np.arange(5.0)) scheduler.step() assert np.array_equal(recent_values(b_stream_array), np.arange(5.0) + 1) assert np.array_equal(recent_values(b_stream_array), recent_values(bb_stream_array)) a_stream_array.extend(np.arange(5.0, 10.0, 1.0)) scheduler.step() assert np.array_equal(recent_values(b_stream_array), np.arange(10.0) + 1) assert np.array_equal(recent_values(b_stream_array), recent_values(bb_stream_array)) # Test list map with state on StreamArray (dimension is 0) c_stream_array = StreamArray(name='c_stream_array') d_stream_array = StreamArray(name='d_stream_array') def f_np_state(input_array, state): return np.cumsum(input_array) + state, np.sum(input_array) b_np_agent = map_list(func=f_np_state, in_stream=c_stream_array, out_stream=d_stream_array, state=0.0, name='b_np_agent') dd_stream_array = map_array_f(f_np_state, c_stream_array, state=0.0) scheduler.step() assert np.array_equal(recent_values(d_stream_array), np.array([], dtype=np.float64)) assert np.array_equal(recent_values(d_stream_array), recent_values(dd_stream_array)) c_stream_array.extend(np.arange(5.0)) scheduler.step() assert np.array_equal(d_stream_array.recent[:d_stream_array.stop], np.cumsum(np.arange(5.0))) assert np.array_equal(recent_values(d_stream_array), recent_values(dd_stream_array)) c_stream_array.extend(np.arange(5.0, 10.0, 1.0)) scheduler.step() assert np.array_equal(d_stream_array.recent[:d_stream_array.stop], np.cumsum(np.arange(10.0))) assert np.array_equal(recent_values(d_stream_array), recent_values(dd_stream_array)) # Test list map with positive integer dimension on StreamArray e_stream_array = StreamArray(name='e_stream_array', dimension=3) f_stream_array = StreamArray(name='f_stream_array', dimension=2) def f_np_dimension(input_array): output_array = np.zeros([len(input_array), 2]) output_array[:, 0] = input_array[:, 0] + input_array[:, 1] output_array[:, 1] = input_array[:, 2] return output_array c_np_agent = map_list(func=f_np_dimension, in_stream=e_stream_array, out_stream=f_stream_array, name='c_np_agent') e_stream_array.extend(np.array([[1.0, 2.0, 3.0]])) scheduler.step() assert np.array_equal(f_stream_array.recent[:f_stream_array.stop], np.array([[3.0, 3.0]])) e_stream_array.extend(np.array([[4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])) scheduler.step() assert np.array_equal(f_stream_array.recent[:f_stream_array.stop], np.array([[3.0, 3.0], [9.0, 6.0], [15.0, 9.0]])) # Test list map with a dimension which is a tuple of integers. g_stream_array = StreamArray(name='g_stream_array', dimension=(2, 2)) h_stream_array = StreamArray(name='h_stream_array', dimension=(2, 2)) def f_np_tuple_dimension(input_array): return input_array * 2 d_np_agent = map_list(func=f_np_tuple_dimension, in_stream=g_stream_array, out_stream=h_stream_array, name='d_np_agent') a_array = np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) g_stream_array.extend(a_array) scheduler.step() assert np.array_equal(h_stream_array.recent[:h_stream_array.stop], a_array * 2) b_array = np.array([[[9.0, 10.0], [11.0, 12.0]]]) g_stream_array.extend(b_array) scheduler.step() assert np.array_equal(h_stream_array.recent[:h_stream_array.stop], np.vstack((a_array, b_array)) * 2) # Test list map with a datatype and dimension of 0. dt_0 = np.dtype([('time', int), ('value', (float, 3))]) dt_1 = np.dtype([('time', int), ('value', float)]) i_stream_array = StreamArray(name='i_stream_array', dtype=dt_0) j_stream_array = StreamArray(name='j_stream_array', dtype=dt_1) def f_datatype(input_array): output_array = np.zeros(len(input_array), dtype=dt_1) output_array['time'] = input_array['time'] output_array['value'] = np.sum(input_array['value'], axis=1) return output_array e_np_agent = map_list(func=f_datatype, in_stream=i_stream_array, out_stream=j_stream_array, name='e_np_agent') c_array = np.array([(1, [2.0, 3.0, 4.0])], dtype=dt_0) assert j_stream_array.stop == 0 i_stream_array.extend(c_array) scheduler.step() assert np.array_equal(j_stream_array.recent[:j_stream_array.stop], f_datatype(c_array)) d_array = np.array([(10, [6.0, 7.0, 8.0]), (20, [10.0, 11.0, 12.0])], dtype=dt_0) i_stream_array.extend(d_array) scheduler.step() assert np.array_equal(j_stream_array.recent[:j_stream_array.stop], f_datatype(np.hstack((c_array, d_array)))) # Test list map with a datatype and positive integer dimension. k_stream_array = StreamArray(name='k_stream_array', dtype=dt_0, dimension=2) l_stream_array = StreamArray(name='l_stream_array', dtype=dt_1) def f_datatype_int_dimension(input_array): m = len(input_array) output_array = np.zeros(m, dtype=dt_1) for i in range(m): output_array[i]['time'] = np.max(input_array[i]['time']) output_array[i]['value'] = np.sum(input_array[i]['value']) return output_array f_np_agent = map_list(func=f_datatype_int_dimension, in_stream=k_stream_array, out_stream=l_stream_array, name='f_np_agent') e_array = np.array([[(1, [2.0, 3.0, 4.0]), (2, [5.0, 6.0, 7.0])]], dtype=dt_0) assert l_stream_array.stop == 0 k_stream_array.extend(e_array) scheduler.step() assert np.array_equal(l_stream_array.recent[:l_stream_array.stop], f_datatype_int_dimension(e_array)) f_array = np.array([[(3, [8.0, 9.0, 10.0]), (4, [11.0, 12.0, 13.0])], [(5, [-1.0, 0.0, 1.0]), (6, [-2.0, 2.0, -2.0])]], dtype=dt_0) k_stream_array.extend(f_array) scheduler.step() assert np.array_equal( l_stream_array.recent[:l_stream_array.stop], f_datatype_int_dimension(np.vstack((e_array, f_array)))) # Test list map with a datatype and a dimension which is a tuple m_stream_array = StreamArray(name='m_stream_array', dtype=dt_0, dimension=(2, 2)) n_stream_array = StreamArray(name='n_stream_array', dtype=dt_1) g_np_agent = map_list(func=f_datatype_int_dimension, in_stream=m_stream_array, out_stream=n_stream_array, name='g_np_agent') assert n_stream_array.stop == 0 g_array = np.array( [ # zeroth 2x2 array [[(1, [2.0, 3.0, 4.0]), (2, [5.0, 6.0, 7.0])], [(3, [8.0, 9.0, 10.0]), (4, [11.0, 12.0, 13.0])]], # first 2x2 array [[(5, [12.0, 13.0, 14.0]), (6, [15.0, 16.0, 17.0])], [(7, [18.0, 19.0, 20.0]), (8, [21.0, 22.0, 23.0])]] ], dtype=dt_0) m_stream_array.extend(g_array) scheduler.step() assert np.array_equal(n_stream_array.recent[:n_stream_array.stop], f_datatype_int_dimension(g_array)) h_array = np.array([[[(9, [0.0, 1.0, -1.0]), (10, [2.0, 2.0, -4.0])], [(11, [80.0, -71.0, -9.0]), (15, [0.0, 0.0, 0.0])]]], dtype=dt_0) m_stream_array.extend(h_array) scheduler.step() assert np.array_equal( n_stream_array.recent[:n_stream_array.stop], f_datatype_int_dimension(np.vstack((g_array, h_array)))) # Test list merge with StreamArray and no dimension and no data type a_in_0 = StreamArray(name='a_in_0') a_in_1 = StreamArray(name='a_in_1') a_out = StreamArray(name='a_out') def a_merge(list_of_lists): array_0, array_1 = list_of_lists return array_0 + array_1 a_s_agent = merge_list(func=a_merge, in_streams=[a_in_0, a_in_1], out_stream=a_out, name='a_s_agent') assert a_out.stop == 0 #a_in_0.extend(np.array([1.0, 2.0, 3.0])) a_in_0.extend(np.array([1.0, 2.0, 3.0])) scheduler.step() assert a_out.stop == 0 a_in_0.extend(np.array([4.0, 5.0, 6.0])) scheduler.step() assert a_out.stop == 0 a_in_1.extend(np.array([10.0, 20.0])) scheduler.step() assert np.array_equal(a_out.recent[:a_out.stop], np.array([11.0, 22.0])) a_in_1.extend(np.array([30.0, 40.0])) scheduler.step() assert np.array_equal(a_out.recent[:a_out.stop], np.array([11.0, 22.0, 33.0, 44.0])) # Test list merge with StreamArray and no dimension and data type a_in_dt_0 = StreamArray(name='a_in_dt_0', dtype=dt_0) a_in_dt_1 = StreamArray(name='a_in_dt_1', dtype=dt_0) a_out_dt = StreamArray(name='out', dtype=dt_0) def a_merge_dtype(list_of_arrays): input_array_0, input_array_1 = list_of_arrays output_array = np.zeros(len(input_array_0), dtype=dt_0) output_array['time'] = \ np.max((input_array_0['time'], input_array_1['time']), axis=0) output_array['value'] = input_array_0['value'] + input_array_1['value'] return output_array a_s_dt_agent = merge_list(func=a_merge_dtype, in_streams=[a_in_dt_0, a_in_dt_1], out_stream=a_out_dt, name='a_s_dt_agent') a_in_dt_0.extend(np.array([(1, [1.0, 2.0, 3.0])], dtype=dt_0)) scheduler.step() assert a_out_dt.stop == 0 a_in_dt_1.extend(np.array([(2, [10.0, 20.0, 30.0])], dtype=dt_0)) scheduler.step() assert np.array_equal(a_out_dt.recent[:a_out_dt.stop], np.array([(2, [11.0, 22.0, 33.0])], dtype=dt_0)) a_in_dt_0.extend( np.array([(5, [21.0, 23.0, 32.0]), (9, [27.0, 29.0, 31.0])], dtype=dt_0)) scheduler.step() assert np.array_equal(a_out_dt.recent[:a_out_dt.stop], np.array([(2, [11.0, 22.0, 33.0])], dtype=dt_0)) a_in_dt_1.extend( np.array([(6, [19.0, 17.0, 8.0]), (8, [13.0, 11.0, 9.0]), (10, [3.0, 1.0, 5.0])], dtype=dt_0)) scheduler.step() assert np.array_equal( a_out_dt.recent[:a_out_dt.stop], np.array([(2, [11.0, 22.0, 33.0]), (6, [40.0, 40.0, 40.0]), (9, [40.0, 40.0, 40.0])], dtype=dt_0)) # Test list split with StreamArray and positive integer dimension and no data type dim = 2 b_in = StreamArray(name='b_in', dimension=dim) b_out_0 = StreamArray(name='b_out_0', dimension=dim) b_out_1 = StreamArray(name='b_out_1') def b_split(array_of_arrays): length = len(array_of_arrays) output_array_0 = np.zeros(( length, dim, )) output_array_1 = np.zeros(length) for i in range(length): input_array = array_of_arrays[i] output_array_0[i] = np.array( [[np.max(input_array), np.min(input_array)]]) output_array_1[i] = np.array([np.sum(input_array)]) return output_array_0, output_array_1 b_split_agent = split_list(func=b_split, in_stream=b_in, out_streams=[b_out_0, b_out_1], name='b_split_agent') b_array_0 = np.array([[1.0, 9.0]]) b_in.extend(b_array_0) scheduler.step() assert np.array_equal(b_out_0.recent[:b_out_0.stop], np.array([[9.0, 1.0]])) assert np.array_equal(b_out_1.recent[:b_out_1.stop], np.array([10.0])) b_array_1 = np.array([[98.0, 2.0]]) b_in.extend(b_array_1) scheduler.step() assert np.array_equal(b_out_0.recent[:b_out_0.stop], np.array([[9.0, 1.0], [98.0, 2.0]])) assert np.array_equal(b_out_1.recent[:b_out_1.stop], np.array([10.0, 100.0])) b_array_3 = np.array([[10.0, 20.0], [3.0, 37.0], [55.0, 5.0]]) b_in.extend(b_array_3) scheduler.step() assert np.array_equal( b_out_0.recent[:b_out_0.stop], np.array([[9.0, 1.0], [98.0, 2.0], [20.0, 10.0], [37.0, 3.0], [55.0, 5.0]])) assert np.array_equal(b_out_1.recent[:b_out_1.stop], np.array([10.0, 100.0, 30.0, 40.0, 60.0])) # Test list many with StreamArray and no dimension and no data type c_in_0 = StreamArray(name='c_in_0') c_in_1 = StreamArray(name='c_in_1') c_out_0 = StreamArray(name='c_out_0') c_out_1 = StreamArray(name='c_out_1') def c_many(list_of_arrays): length = len(list_of_arrays) input_array_0, input_array_1 = list_of_arrays output_array_0 = np.zeros(length) output_array_1 = np.zeros(length) output_array_0 = input_array_0 + input_array_1 output_array_1 = input_array_0 - input_array_1 return [output_array_0, output_array_1] c_multi_agent = multi_list(func=c_many, in_streams=[c_in_0, c_in_1], out_streams=[c_out_0, c_out_1], name='c_multi_agent') c_array_0_0 = np.arange(3.0) * 3 c_array_1_0 = np.arange(3.0) c_in_0.extend(c_array_0_0) scheduler.step() c_in_1.extend(c_array_1_0) scheduler.step() assert np.array_equal(c_out_0.recent[:c_out_0.stop], np.array([0.0, 4.0, 8.0])) assert np.array_equal(c_out_1.recent[:c_out_1.stop], np.array([0.0, 2.0, 4.0])) c_array_0_1 = np.array([100.0]) c_array_1_1 = np.array([4.0, 5.0, 6.0]) c_in_0.extend(c_array_0_1) c_in_1.extend(c_array_1_1) scheduler.step() assert np.array_equal(c_out_0.recent[:c_out_0.stop], np.array([0.0, 4.0, 8.0, 104.0])) assert np.array_equal(c_out_1.recent[:c_out_1.stop], np.array([0.0, 2.0, 4.0, 96.0])) ## # Test list many with StreamArray and no dimension and no data type ## z_in_0 = StreamArray(name='z_in_0') ## z_in_1 = StreamArray(name='z_in_1') ## z_out_0 = StreamArray(name='z_out_0') ## z_out_1 = StreamArray(name='z_out_1') ## def execute_list_of_np_func(v, list_of_np_func): ## length = len(list_of_arrays) ## input_array_0, input_array_1 = list_of_arrays ## output_array_0 = np.zeros(length) ## output_array_1 = np.zeros(length) ## output_array_0 = input_array_0 + input_array_1 ## output_array_1 = input_array_0 - input_array_1 ## return [output_array_0, output_array_1] # Test list many with StreamArray and positive integer dimension and no data type dim = 2 d_in_0 = StreamArray(name='d_in_0', dimension=dim) d_in_1 = StreamArray(name='d_in_1', dimension=dim) d_out_0 = StreamArray(name='d_out_0', dimension=dim) d_out_1 = StreamArray(name='d_out_1') def d_many(list_of_arrays): length = len(list_of_arrays) input_array_0, input_array_1 = list_of_arrays output_array_0 = input_array_0 + input_array_1 output_array_1 = np.array([np.sum(input_array_0 + input_array_1)]) return output_array_0, output_array_1 d_multi_agent = multi_list(func=d_many, in_streams=[d_in_0, d_in_1], out_streams=[d_out_0, d_out_1], name='d_multi_agent') d_array_0_0 = np.array([[1.0, 2.0]]) d_array_1_0 = np.array([[0.0, 10.0]]) d_in_0.extend(d_array_0_0) scheduler.step() d_in_1.extend(d_array_1_0) scheduler.step() assert np.array_equal(d_out_0.recent[:d_out_0.stop], np.array([[1.0, 12.0]])) assert np.array_equal(d_out_1.recent[:d_out_1.stop], np.array([13.0])) d_array_0_1 = np.array([[4.0, 8.0]]) d_array_1_1 = np.array([[2.0, 4.0]]) d_in_0.extend(d_array_0_1) d_in_1.extend(d_array_1_1) scheduler.step() assert np.array_equal(d_out_0.recent[:d_out_0.stop], np.array([[1.0, 12.0], [6.0, 12.0]])) assert np.array_equal(d_out_1.recent[:d_out_1.stop], np.array([13.0, 18.0])) d_array_0_2 = np.array([[20.0, 30.0], [40.0, 50.0]]) d_array_1_2 = np.array([[-10.0, -20.0]]) d_in_0.extend(d_array_0_2) d_in_1.extend(d_array_1_2) scheduler.step() assert np.array_equal(d_out_0.recent[:d_out_0.stop], np.array([[1.0, 12.0], [6.0, 12.0], [10.0, 10.0]])) assert np.array_equal(d_out_1.recent[:d_out_1.stop], np.array([13.0, 18.0, 20.0])) # Test list many with StreamArray and tuple dimension and no data type dim = (2, 2) e_in_0 = StreamArray(name='e_in_0', dimension=dim) e_in_1 = StreamArray(name='e_in_1', dimension=dim) e_out_0 = StreamArray(name='e_out_0', dimension=dim) e_out_1 = StreamArray(name='e_out_1') def e_many(list_of_arrays): input_array_0, input_array_1 = list_of_arrays output_array_0 = input_array_0 + input_array_1 output_array_1 = \ np.array([np.sum(input_array_0[i]+ input_array_1[i]) for i in range(len(input_array_0))]) return output_array_0, output_array_1 e_multi_agent = multi_list(func=e_many, in_streams=[e_in_0, e_in_1], out_streams=[e_out_0, e_out_1], name='e_multi_agent') e_array_0_0 = np.array([[[10.0, 20.0], [30.0, 40.0]]]) e_in_0.extend(e_array_0_0) e_array_1_0 = np.array([[[1.0, 2.0], [3.0, 4.0]]]) e_in_1.extend(e_array_1_0) scheduler.step() assert np.array_equal(e_out_0.recent[:e_out_0.stop], np.array([[[11.0, 22.0], [33.0, 44.0]]])) assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0])) e_array_0_1 = np.array([[[11.0, 13.0], [17.0, 19.0]], [[2.0, 4.0], [6.0, 8.0]]]) e_in_0.extend(e_array_0_1) scheduler.step() assert np.array_equal(e_out_0.recent[:e_out_0.stop], np.array([[[11.0, 22.0], [33.0, 44.0]]])) assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0])) e_array_1_1 = np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) e_in_1.extend(e_array_1_1) scheduler.step() assert np.array_equal( e_out_0.recent[:e_out_0.stop], np.array([[[11.0, 22.0], [33.0, 44.0]], [[12.0, 15.0], [20.0, 23.0]], [[7.0, 10.0], [13.0, 16.0]]])) assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0, 70.0, 46.0])) e_array_1_2 = np.array([[[11.0, 12.0], [13.0, 14.0]], [[15.0, 16.0], [17.0, 18.0]]]) e_in_1.extend(e_array_1_2) scheduler.step() e_array_0_2 = np.array([[[-10.0, -11.0], [12.0, 16.0]], [[-14.0, -15.0], [-16.0, -17.0]]]) e_in_0.extend(e_array_0_2) scheduler.step() assert np.array_equal( e_out_0.recent[:e_out_0.stop], np.array([[[11.0, 22.0], [33.0, 44.0]], [[12.0, 15.0], [20.0, 23.0]], [[7.0, 10.0], [13.0, 16.0]], [[1.0, 1.0], [25.0, 30.0]], [[1.0, 1.0], [1.0, 1.0]]])) assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0, 70.0, 46.0, 57.0, 4.0])) #------------------------------------------------------------------ #------------------------------------------------------------------ # Test args and kwargs #------------------------------------------------------------------ #------------------------------------------------------------------ # Test map def map_args(lst, multiplicand): return [multiplicand * element for element in lst] in_stream_map_args_stream = Stream('in_stream_map_args_stream') out_stream_map_args_stream = Stream('out_stream_map_args_stream') out_stream_map_kwargs_stream = Stream('out_stream_map_kwargs_stream') map_args_agent = map_list(map_args, in_stream_map_args_stream, out_stream_map_args_stream, None, None, 'map_args_agent', 2) map_kwargs_agent = map_list(func=map_args, in_stream=in_stream_map_args_stream, out_stream=out_stream_map_kwargs_stream, name='map_args_agent', multiplicand=2) scheduler.step() assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \ [] assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \ [] in_stream_map_args_stream.extend(range(5)) scheduler.step() assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \ [0, 2, 4, 6, 8] assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \ [0, 2, 4, 6, 8] in_stream_map_args_stream.append(5) scheduler.step() assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \ [0, 2, 4, 6, 8, 10] assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \ [0, 2, 4, 6, 8, 10] # Test list map on StreamArray (dimension is 0). a_stream_array_args = StreamArray(name='a_stream_array_args') b_stream_array_args = StreamArray(name='b_stream_array_args') c_stream_array_args_kwargs = StreamArray(name='c_stream_array_args_kwargs') def f_np_args(input_array_args, addend): return input_array_args + addend def f_np_args_kwargs(input_array_args_kwargs, multiplicand, addend): return input_array_args_kwargs * multiplicand + addend a_np_agent_args = map_list(f_np_args, a_stream_array_args, b_stream_array_args, None, None, 'a_np_agent_args', 1) a_np_agent_args_kwargs = map_list(f_np_args_kwargs, a_stream_array_args, c_stream_array_args_kwargs, None, None, 'a_np_agent_args_kwargs', 2, addend=10) scheduler.step() assert np.array_equal( b_stream_array_args.recent[:b_stream_array_args.stop], np.array([])) assert np.array_equal( c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.stop], np.array([])) a_stream_array_args.extend(np.arange(5.0)) scheduler.step() assert np.array_equal( b_stream_array_args.recent[:b_stream_array_args.stop], np.arange(5.0) + 1) assert np.array_equal( c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.stop], np.arange(5.0) * 2 + 10) a_stream_array_args.extend(np.arange(5.0, 10.0, 1.0)) scheduler.step() assert np.array_equal( b_stream_array_args.recent[:b_stream_array_args.stop], np.arange(10.0) + 1) assert np.array_equal( c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.stop], np.arange(10.0) * 2 + 10) print 'TEST OF OP (LISTS) IS SUCCESSFUL'
def test_kmeans_streams(): s = Stream() t = Stream() km = kmeans_stream(n_clusters=2) @map_e def g(v): return km.process_element(v) g(in_stream=s, out_stream=t) s.append(('add', [1, 2])) s.append(('add', [1, 4])) s.append(('add', [1, 0])) s.append(('add', [10, 4])) s.append(('add', [10, 0])) s.append(('add', [10, 2])) s.append('cluster') s.append('show') ## s.extend([('add', [1, 2]), ('add', [1, 4]), ('add', [1, 0]), ## ('add', [10, 4]), ('add', [10, 0]), ('add', [10, 2])]) run() print(recent_values(t))
def stop_agent_when_enough_elements(N): """ Shows how shared variables can be used to stop agents. One agent generates a sequence until stopped by another agent. Parameters ---------- N: int (positive) """ #---------------------------------------------------------------- # STEP 1. DEFINE FUNCTIONS TO BE ENCAPSULATED def generate_numbers(v, state, stop): """ This function generates the sequence 0, 1, 2, ... starting with the specified initial state. The function stops execution when stop becomes True. Parameters ---------- v: The element in the sequence, 0,1,2,.. read from the input stream. state: The last element of the sequence stop: array of length 1. This is a shared variable of the agent. """ if not stop[0]: return state, state + 1 else: return _no_value, state def call_halt(v, N, stop): if v > N: stop[0] = True #---------------------------------------------------------------- # STEP 2. CREATE STREAMS AND SHARED VARIABLES # stop is a variable shared by both agents that are created # below. It is initially False and set to True and then remains # True. stop = [False] numbers = Stream('numbers') #---------------------------------------------------------------- # STEP 3. CREATE AGENTS # Create an agent that reads and writes the same stream: numbers. # The agent executes its action when a new value appears on # numbers. The action puts the next value on numbers if stop is # False. The action has no effect (it is a skip operation) if stop # is True. map_element(func=generate_numbers, in_stream=numbers, out_stream=numbers, state=1, stop=stop) # Create an agent that sets stop to True after it reads more than # N values. N = 3 sink(func=call_halt, in_stream=numbers, N=N, stop=stop) #---------------------------------------------------------------- #STEP 4. START COMPUTATION # Get the scheduler and execute a step. scheduler = Stream.scheduler # Start the computation by putting a value into the numbers stream. numbers.append(0) scheduler.step() # The stream numbers will be 0, 1, ... up to N-1 and possibly may # contain additional values. For example, if N = 3 then numbers # could be 0, 1, 2 or 0, 1, 2, 3, 4, 5. return numbers assert list(range(N)) == recent_values(numbers)[:N]
def test_split_agents(): import numpy as np scheduler = Stream.scheduler s = Stream('s') u = Stream('u') v = Stream('v') w = Stream('w') y = Stream('y') z = Stream('z') # Test split # func operates on a single element of the single input stream and # return a list of elements, one for each output stream. def h(element): return [element+1, element*2] def h_args(element, addend, multiplier): return [element+addend, element*multiplier] in_stream_split = Stream('in_stream_split') r = Stream('r') t = Stream('t') e = split_element(func=h, in_stream=in_stream_split, out_streams=[r, t], name='e') r_split, t_split = split_element_f(function=h, in_stream=in_stream_split, num_out_streams=2, ) r_args, t_args = split_element_f( h_args, in_stream_split, 2, addend=1, multiplier=2) scheduler.step() assert recent_values(r) == [] assert recent_values(t) == [] assert recent_values(r_split) == recent_values(r) assert recent_values(t_split) == recent_values(t) assert recent_values(r_args) == recent_values(r) assert recent_values(t_args) == recent_values(t) in_stream_split.extend(range(5)) scheduler.step() assert recent_values(r) == [1, 2, 3, 4, 5] assert recent_values(t) == [0, 2, 4, 6, 8] assert recent_values(r_split) == recent_values(r) assert recent_values(t_split) == recent_values(t) assert recent_values(r_args) == recent_values(r) assert recent_values(t_args) == recent_values(t) in_stream_split.append(10) scheduler.step() assert recent_values(r) == [1, 2, 3, 4, 5, 11] assert recent_values(t) == [0, 2, 4, 6, 8, 20] in_stream_split.extend([20, 100]) scheduler.step() assert recent_values(r) == [1, 2, 3, 4, 5, 11, 21, 101] assert recent_values(t) == [0, 2, 4, 6, 8, 20, 40, 200] assert recent_values(r_split) == recent_values(r) assert recent_values(t_split) == recent_values(t) assert recent_values(r_args) == recent_values(r) assert recent_values(t_args) == recent_values(t) # Test split with kwargs def f_list(element, list_of_functions): return [f(element) for f in list_of_functions] def f_0(element): return element*2 def f_1(element): return element+10 x = Stream('x') rr = Stream('rr') tt = Stream('tt') ee = split_element(func=f_list, in_stream=x, out_streams=[rr, tt], name='ee', list_of_functions=[f_0, f_1]) x.extend(range(5)) scheduler.step() assert recent_values(rr) == [0, 2, 4, 6, 8] assert recent_values(tt) == [10, 11, 12, 13, 14] # ------------------------------------ # Test split with state # func operates on an element of the single input stream and state. # func returns a list with one element for each output stream. def h_state(element, state): return ([element+state, element*state], state+1) r_state = Stream(name='r_state') t_state = Stream(name='t_state') in_stream_split_state = Stream('in_stream_split_state') e_state = split_element( func=h_state, in_stream=in_stream_split_state, out_streams=[r_state, t_state], name='e', state=0) scheduler.step() assert recent_values(r_state) == [] assert recent_values(t_state) == [] in_stream_split_state.extend(range(5)) scheduler.step() assert recent_values(r_state) == [0, 2, 4, 6, 8] assert recent_values(t_state) == [0, 1, 4, 9, 16] in_stream_split_state.append(20) scheduler.step() assert recent_values(r_state) == [0, 2, 4, 6, 8, 25] assert recent_values(t_state) == [0, 1, 4, 9, 16, 100] in_stream_split_state.extend([44, 93]) scheduler.step() assert recent_values(r_state) == [0, 2, 4, 6, 8, 25, 50, 100] assert recent_values(t_state) == [0, 1, 4, 9, 16, 100, 264, 651] # ------------------------------------ # Test split with state and args def hh_state(element, state, increment): return ([element+state, element*state], state+increment) rr_state = Stream(name='rr_state') tt_state = Stream(name='tt_state') in_stream_split_state_funcargs = Stream('in_stream_split_state_funcargs') ee_state_agent = split_element( func=hh_state, in_stream=in_stream_split_state_funcargs, out_streams=[rr_state, tt_state], name='ee_state_agent', state=0, increment=10) scheduler.step() assert recent_values(rr_state) == [] assert recent_values(tt_state) == [] in_stream_split_state_funcargs.extend(range(5)) scheduler.step() assert recent_values(rr_state) == [0, 11, 22, 33, 44] assert recent_values(tt_state) == [0, 10, 40, 90, 160] #------------------------------------------------------------------------------------------------ # UNZIP AGENT TESTS #------------------------------------------------------------------------------------------------ s_unzip = Stream('s_unzip') u_unzip = Stream('u_unzip') x_unzip = Stream('x_unzip') # ------------------------------------ # Test unzip unzip(in_stream=s_unzip, out_streams=[x_unzip, u_unzip]) d_unzip_fn = unzip_f(s_unzip, 2) s_unzip.extend([(1,10), (2,15), (3,18)]) scheduler.step() assert recent_values(x_unzip) == [1, 2, 3] assert recent_values(u_unzip) == [10, 15, 18] assert recent_values(d_unzip_fn[0]) == x_unzip.recent[:3] assert recent_values(d_unzip_fn[1]) == u_unzip.recent[:3] s_unzip.extend([(37,96)]) scheduler.step() assert recent_values(x_unzip) == [1, 2, 3, 37] assert recent_values(u_unzip) == [10, 15, 18, 96] assert recent_values(d_unzip_fn[0]) == x_unzip.recent[:4] assert recent_values(d_unzip_fn[1]) == u_unzip.recent[:4] #------------------------------------------------------------------------------------------------ # SEPARATE AGENT TESTS #------------------------------------------------------------------------------------------------ s_separate = Stream('s separate') u_separate = Stream('u separate') x_separate = Stream('x separate') d_separate = separate( in_stream=s_separate, out_streams=[x_separate,u_separate], name='d separate') x_sep_func, u_sep_func = separate_f(s_separate, 2) s_separate.extend([(0,10), (1,15), (0,20)]) scheduler.step() assert recent_values(x_separate) == [10, 20] assert recent_values(u_separate) == [15] assert x_sep_func.recent == x_separate.recent assert u_sep_func.recent == u_separate.recent s_separate.extend([(1,96)]) scheduler.step() assert recent_values(x_separate) == [10, 20] assert recent_values(u_separate) == [15, 96] assert recent_values(x_sep_func) == recent_values(x_separate) assert recent_values(u_sep_func) == recent_values(u_separate) #------------------------------------------------------------------------------------------------ # TIMED_UNZIP TESTS #------------------------------------------------------------------------------------------------ # timed_unzip tests t_unzip = Stream() a_unzip = Stream('a_unzip') b_unzip = Stream('b_unzip') timed_unzip(t_unzip, [a_unzip, b_unzip]) t_unzip_0, t_unzip_1 = timed_unzip_f(in_stream=t_unzip, num_out_streams=2) t_unzip.extend( [(1, ["A", None]), (5, ["B", "a"]), (7, [None, "b"]), (9, ["C", "c"]), (10, [None, "d"])]) scheduler.step() assert recent_values(t_unzip_0) == [(1, 'A'), (5, 'B'), (9, 'C')] assert recent_values(t_unzip_1) == [(5, 'a'), (7, 'b'), (9, 'c'), (10, 'd')] assert recent_values(a_unzip) == recent_values(t_unzip_0) assert recent_values(b_unzip) == recent_values(t_unzip_1) #------------------------------------------------------------------------------------------------ # TEST SPLIT WITH STREAM_ARRAY #------------------------------------------------------------------------------------------------ # Test split_element with StreamArray x = StreamArray('x') y = StreamArray('y') z = StreamArray('z') def h_args(element, addend, multiplier): return [element+addend, element*multiplier] this_agent = split_element(func=h_args, in_stream=x, out_streams=[y,z], addend=1.0 , multiplier=2.0, name='this_agent') add_to_x = np.linspace(0.0, 4.0, 5) x.extend(add_to_x) scheduler.step() assert np.array_equal(recent_values(y), add_to_x+1.0) assert np.array_equal(recent_values(z), add_to_x*2.0) # Test separate with StreamArray x = StreamArray('x', dimension=2) y = StreamArray('y') z = StreamArray('z') separate(x, [y,z]) x.append(np.array([1.0, 10.0])) scheduler.step() assert np.array_equal(recent_values(z), np.array([10.0])) assert np.array_equal(recent_values(y), np.array([])) x.extend(np.array([[0.0, 2.0], [1.0, 20.0], [0.0, 4.0]])) scheduler.step() assert np.array_equal(recent_values(z), np.array([10.0, 20.0])) assert np.array_equal(recent_values(y), np.array([2.0, 4.0])) # ------------------------------------------------------ # TEST split_list # ------------------------------------------------------ x = Stream('x') y = Stream('y') z = Stream('z') def f(lst): return [v*2 for v in lst], [v*10 for v in lst] split_list(f, x, [y, z]) x.extend(range(3)) scheduler.step() assert recent_values(y) == [v*2 for v in recent_values(x)] assert recent_values(z) == [v*10 for v in recent_values(x)] x.append(100) scheduler.step() assert recent_values(y) == [v*2 for v in recent_values(x)] assert recent_values(z) == [v*10 for v in recent_values(x)] # ------------------------------------------------------ # TEST split_window # ------------------------------------------------------ def f(window): return max(window), min(window) x = Stream('x') y = Stream('y') z = Stream('z') split_window( func=f, in_stream=x, out_streams=[y, z], window_size=2, step_size=2) x.extend(range(7)) scheduler.step() assert recent_values(y) == [1, 3, 5] assert recent_values(z) == [0, 2, 4] # ------------------------------------------------------ # TEST split_tuple # ------------------------------------------------------ x = Stream('x') y = Stream('y') z = Stream('z') split_tuple(in_stream=x, out_streams=[y, z]) x.append((0, 'A')) x.extend([(1, 'B'), (2, 'C')]) scheduler.step() print 'TEST OF SPLIT IS SUCCESSFUL'
def stream_test(): # Numpy type for testing stream array. txyz_dtype = np.dtype([('time', 'int'), ('data', '3float')]) #-------------------------------------------- # Testing StreamArray with positive dimension s = StreamArray(name='s', dimension=3) # Each element of s is a numpy array with with 3 elements # Initially s is empty. So s.stop == 0 assert s.stop == 0 # If num_in_memory is not specified in the declaration for # s, the default value, DEFAULT_NUM_IN_MEMORY, is used. # The length of s.recent is twice num_in_memory assert len(s.recent) == 2 * DEFAULT_NUM_IN_MEMORY # Append a numpy array with 3 zeros to s s.append(np.zeros(3)) assert (s.stop == 1) # Thus s.recent[:s.stop] is an array with 1 row and 3 columns. assert (np.array_equal(s.recent[:s.stop], np.array([[0.0, 0.0, 0.0]]))) # Extend s by an array with 2 rows and 3 columns. The number of # columns must equal the dimension of the stream array. s.extend(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])) # s.stop is incremented to account for the addition of two elements. assert s.stop == 3 # s.recent[:s.stop] includes all the elements added to s. # Thus s.recent[:s.stop] is an array with 3 rows and 3 columns. assert (np.array_equal( s.recent[:s.stop], np.array([[0.0, 0.0, 0.0], [1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]))) # Extend s by an array with 1 row and 3 columns. The number of # columns must equal the dimension of the stream array. s.extend(np.array([[7.0, 8.0, 9.0]])) # s.stop is incremented to account for the addition of a single row. assert s.stop == 4 # Thus s.recent[:s.stop] is an array with 4 rows and 3 columns. assert np.array_equal( s.recent[:s.stop], np.array([[0.0, 0.0, 0.0], [1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])) # Note the difference between EXTENDING s with an array consisting # of 1 row and 3 columns, versus APPENDING a rank-1 array consisting # of 3 elements, as in the following example. s.append(np.array([10.0, 11.0, 12.0])) # s.stop is incremented to account for the addition of a single row. assert s.stop == 5 # Thus s.recent[:s.stop] is an array with 5 rows and 3 columns. assert np.array_equal( s.recent[:s.stop], np.array([[0.0, 0.0, 0.0], [1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0]])) #--------------------------------------------------------------- # Testing StreamArray with zero dimension and user-defined dtype t = StreamArray(name='t', dimension=0, dtype=txyz_dtype) # Each element of t is an object of dtype txyz_dtype # t[i]['time'] is an int. # t[i]['data'] is a 3-tuple consisting of 3 floats. # Nothing has been appended to t, and so t.stop == 0. assert (t.stop == 0) # Append an object with 'time' = 1, and 'data' = [0.0, 1.0, 2.0]. t.append(np.array((1, [0.0, 1.0, 2.0]), dtype=txyz_dtype)) # Increase t.stop to account for the element that has just been # added to t. assert t.stop == 1 # t.recent[:t.stop] contains all elements appended to t. assert t.recent[:t.stop] == np.array([(1, [0.0, 1.0, 2.0])], dtype=txyz_dtype) assert t.recent[0]['time'] == np.array(1) assert np.array_equal(t.recent[0]['data'], np.array([0., 1., 2.])) # Append another element to t. t.append(np.array((2, [11.0, 12.0, 13.0]), dtype=txyz_dtype)) # Increase t.stop to account for the element that has just been # added to t. assert (t.stop == 2) # t.recent[:t.stop] contains all elements appended to t. a = np.array([(1, [0.0, 1.0, 2.0]), (2, [11.0, 12.0, 13.0])], dtype=txyz_dtype) assert np.array_equal(t.recent[:t.stop], a) # Extend t by a list of 2 elements each of which consists of # zeroes of txyz_dtype t.extend(np.zeros(2, dtype=txyz_dtype)) # Increase t.stop to account for the element that has just been # added to t. assert (t.stop == 4) # t.recent[:t.stop] contains all elements appended to t. a = np.array([(1, [0.0, 1.0, 2.0]), (2, [11.0, 12.0, 13.0]), (0, [0.0, 0.0, 0.0]), (0, [0.0, 0.0, 0.0])], dtype=txyz_dtype) assert np.array_equal(t.recent[:t.stop], a) #--------------------------------------------------------------- # Testing simple Stream u = Stream('u') v = Stream('v') # Add elements 0, 1, 2, 3 to stream u. u.extend(list(range(4))) # Increase u.stop to account for the element that has just been # added to u. assert u.stop == 4 # u.recent[:t.stop] contains all elements appended to u. assert u.recent[:u.stop] == [0, 1, 2, 3] # No change to v. assert v.stop == 0 # Append element 10 to v and then append the list [40, 50] v.append(10) v.append([40, 50]) # Increase v.stop by 2 to account for the 2 new elements appended # to v. assert v.stop == 2 # v.recent[:v.stop] contains all elements appended to v. assert v.recent[:v.stop] == [10, [40, 50]] # Extend stream v v.extend([60, 70, 80]) # Increase v.stop by 3 to account for the 3 new elements appended # to v. assert v.stop == 5 # v.recent[:v.stop] contains all elements appended to v. assert v.recent[:v.stop] == [10, [40, 50], 60, 70, 80] #------------------------------------------ # Test helper functions: get_contents_after_column_value() # Also test StreamArray y = StreamArray(name='y', dimension=0, dtype=txyz_dtype, num_in_memory=64) # y[i]['time'] is a time (int). # y[i]['data'] is 3-tuple usually with directional data # for x, y, z. # y.recent length is twice num_in_memory assert len(y.recent) == 128 # y has no elements, so y.stop == 0 assert y.stop == 0 # Test data for StreamArray with user-defined data type. test_data = np.zeros(128, dtype=txyz_dtype) assert len(test_data) == 128 # Put random numbers for test_data[i]['time'] and # test_data[i]['data'][xyx] for xyz in [0, 1, 2] for i in range(len(test_data)): test_data[i]['time'] = random.randint(0, 1000) for j in range(3): test_data[i]['data'][j] = random.randint(2000, 9999) # ordered_test_data has time in increasing order. ordered_test_data = np.copy(test_data) for i in range(len(ordered_test_data)): ordered_test_data[i]['time'] = i y.extend(ordered_test_data[:60]) # extending y does not change length of y.recent assert (len(y.recent) == 128) # y.stop increases to accommodate the extension of y by 60. assert (y.stop == 60) # y.recent[:y.stop] now contains all the values put into y. assert np.array_equal(y.recent[:y.stop], ordered_test_data[:60]) assert np.array_equal( y.get_contents_after_column_value(column_number=0, value=50), ordered_test_data[50:60]) assert np.array_equal(y.get_contents_after_time(start_time=50), ordered_test_data[50:60]) assert (y.get_index_for_column_value(column_number=0, value=50) == 50) yz = StreamArray(name='yz', dimension=0, dtype=txyz_dtype, num_in_memory=64) c = np.array((1, [0., 1., 2.]), dtype=txyz_dtype) yz.append(c) assert np.array_equal(yz.recent[:yz.stop], np.array([(1, [0., 1., 2.])], dtype=txyz_dtype)) d = np.array([(2, [3., 4., 5.]), (3, [6., 7., 8.])], dtype=txyz_dtype) yz.extend(d) assert np.array_equal( yz.recent[:yz.stop], np.array([(1, [0., 1., 2.]), (2, [3., 4., 5.]), (3, [6., 7., 8.])], dtype=txyz_dtype)) #------------------------------------------ # TESTING regular Stream class x = Stream(name='x', num_in_memory=8) # The length of x.recent is twice num_in_memory assert (len(x.recent) == 16) # No values have been appended to stream x; so x.stop == 0 assert (x.stop == 0) # Test append x.append(10) # Appending values to x does not change len(x.recent) assert (len(x.recent) == 16) # x.stop increases to accomodate the value appended. assert (x.stop == 1) # x.recent[:x.stop] includes the latest append assert (x.recent[:x.stop] == [10]) x.append(20) assert (len(x.recent) == 16) # x.stop increases to accomodate the value appended. assert (x.stop == 2) # x.recent[:x.stop] includes the latest append assert (x.recent[:2] == [10, 20]) # Test extend x.extend([30, 40]) assert (len(x.recent) == 16) # x.stop increases to accomodate the values extended. assert (x.stop == 4) # x.recent[:x.stop] includes the latest extend assert (x.recent[:x.stop] == [10, 20, 30, 40]) # Checking extension with the empty list. x.extend([]) assert (len(x.recent) == 16) # extending a stream with the empty list does not change # the stream. assert (x.stop == 4) assert (x.recent[:4] == [10, 20, 30, 40]) # Checking extending a stream with a singleton list x.extend([50]) assert (len(x.recent) == 16) assert (x.stop == 5) assert (x.recent[:5] == [10, 20, 30, 40, 50]) # Check registering a reader. # Register a reader called 'a' for stream x starting # to read from x[3] onwards. x.register_reader('a', 3) # Register a reader called 'b' for stream x starting # to read from x[4] onwards. x.register_reader('b', 4) # x.start is a dict which identifies the readers of x # and where they are starting to read from. assert (x.start == {'a': 3, 'b': 4}) x.extend([1, 2, 3, 4, 5]) assert (len(x.recent) == 16) assert (x.stop == 10) assert (x.recent[:10] == [10, 20, 30, 40, 50, 1, 2, 3, 4, 5]) assert (x.start == {'a': 3, 'b': 4}) x.register_reader('a', 7) x.register_reader('b', 7) assert (x.start == {'a': 7, 'b': 7}) #------------------------------------------ # Test helper functions assert (x.get_last_n(n=2) == [4, 5]) v = StreamArray(dimension=(3, 4), dtype=int) v.append(np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])) a = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) np.array_equal(v.recent[:v.stop], np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]])) v.extend( np.array([[[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]], [[24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35]]])) np.array_equal( v.recent[:v.stop], np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]], [[24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35]]])) u = StreamArray(name='u', dimension=2, dtype=int) a = np.array([0, 1]) u.append(a) np.array_equal(u.recent[:u.stop], np.array([[0, 1]])) u.extend(np.array([[2, 3], [4, 5], [6, 7]])) np.array_equal(u.recent[:u.stop], np.array([[0, 1], [2, 3], [4, 5], [6, 7]])) t = StreamArray('t') t.append(np.array(1.0)) t.extend(np.array([2.0, 3.0])) np.array_equal(t.recent[:t.stop], np.array([1.0, 2.0, 3.0]))
def test_timed_mix_agents(): scheduler = Stream.scheduler x = Stream('x') y = Stream('y') z = Stream('z') timed_mix([x, y], z) x.append((0, 'a')) scheduler.step() assert recent_values(z) == [(0, (0, 'a'))] x.append((1, 'b')) scheduler.step() assert recent_values(z) == [(0, (0, 'a')), (1, (0, 'b'))] y.append((2, 'A')) scheduler.step() assert recent_values(z) == \ [(0, (0, 'a')), (1, (0, 'b')), (2, (1, 'A'))] y.append((5, 'B')) scheduler.step() assert recent_values(z) == \ [(0, (0, 'a')), (1, (0, 'b')), (2, (1, 'A')), (5, (1, 'B'))] x.append((3, 'c')) scheduler.step() assert recent_values(z) == \ [(0, (0, 'a')), (1, (0, 'b')), (2, (1, 'A')), (5, (1, 'B'))] x.append((4, 'd')) scheduler.step() assert recent_values(z) == \ [(0, (0, 'a')), (1, (0, 'b')), (2, (1, 'A')), (5, (1, 'B'))] x.append((8, 'e')) scheduler.step() assert recent_values(z) == \ [(0, (0, 'a')), (1, (0, 'b')), (2, (1, 'A')), (5, (1, 'B')), (8, (0, 'e'))]
def test_some_merge_agents(): import numpy as np scheduler = Stream.scheduler #---------------------------------------------------- # Declare streams s = Stream('s') t = Stream('t') u = Stream('u') v_stream = Stream('v') x = Stream('x') #---------------------------------------------------- # Define functions def g(lst): return sum(lst) def g_args(lst, multiplier): return sum(lst) * multiplier def general_f(lst, f): return f(lst) def fff(lst, f, addend): return f(lst, addend) def hhh(lst, addend): return sum(lst) + addend #---------------------------------------------------- # Define agents d = zip_map(func=sum, in_streams=[x, u], out_stream=s, name='d') def magnitude(vector): return math.sqrt(sum([w * w for w in vector])) ssssss = Stream() ddd = zip_map(func=magnitude, in_streams=[x, u], out_stream=ssssss) zipxu = zip_stream_f([x, u]) zip_map_xu = zip_map_f(sum, [x, u]) zip_map_xu_merge = Stream('zip map xu merge') zip_map(sum, [x, u], zip_map_xu_merge) zip_map_g_args = zip_map_f(g_args, [x, u], multiplier=2) dd = zip_map(func=general_f, in_streams=[x, u], out_stream=t, name='dd', f=np.mean) zip_map_ss = zip_map_f(np.mean, [x, u]) dddd = zip_map(func=fff, in_streams=[x, u], out_stream=v_stream, name='dddd', f=hhh, addend=10) #---------------------------------------------------- #---------------------------------------------------- # Append values to stream x.extend(list(range(3))) u.extend([10, 15, 18]) scheduler.step() assert recent_values(s) == [10, 16, 20] assert recent_values(zip_map_g_args) == [2 * v for v in recent_values(s)] assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18)] assert recent_values(t) == [5, 8, 10] assert recent_values(zip_map_ss) == [5.0, 8.0, 10.0] assert recent_values(v_stream) == [20, 26, 30] assert recent_values(zip_map_xu) == s.recent[:s.stop] assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge) #---------------------------------------------------- u.append(37) x.extend(list(range(3, 5, 1))) scheduler.step() assert recent_values(s) == [10, 16, 20, 40] assert recent_values(zip_map_g_args) == [2 * v for v in recent_values(s)] assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18), (3, 37)] assert recent_values(t) == [5, 8, 10, 20] assert recent_values(v_stream) == [20, 26, 30, 50] assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge) assert recent_values(ssssss) == [ 10.0, 15.033296378372908, 18.110770276274835, 37.12142238654117 ] #---------------------------------------------------- u.extend([96, 95]) scheduler.step() assert recent_values(s) == [10, 16, 20, 40, 100] assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18), (3, 37), (4, 96)] assert recent_values(t) == [5, 8, 10, 20, 50] assert recent_values(v_stream) == [20, 26, 30, 50, 110] assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge) #---------------------------------------------------- # TEST MERGE_ASYNCH AND MIX #---------------------------------------------------- x = Stream('x') y = Stream('y') z = Stream('z') w = Stream('w') def g_asynch(pair): index, value = pair if index == 0: return value * 10 elif index == 1: return value * 2 else: raise Exception() merge_asynch(func=lambda v: v, in_streams=[x, y], out_stream=z) merge_asynch(func=g_asynch, in_streams=[x, y], out_stream=w) mix_z = mix_f([x, y]) scheduler.step() assert recent_values(z) == [] assert recent_values(mix_z) == [] assert recent_values(w) == [] x.append(10) scheduler.step() assert recent_values(z) == [(0, 10)] assert recent_values(mix_z) == recent_values(z) assert recent_values(w) == [100] y.append('A') scheduler.step() assert recent_values(z) == [(0, 10), (1, 'A')] assert recent_values(mix_z) == recent_values(z) assert recent_values(w) == [100, 'AA'] y.append('B') scheduler.step() assert recent_values(z) == [(0, 10), (1, 'A'), (1, 'B')] assert recent_values(mix_z) == recent_values(z) assert recent_values(w) == [100, 'AA', 'BB'] x.append(20) scheduler.step() assert recent_values(z) == [(0, 10), (1, 'A'), (1, 'B'), (0, 20)] assert recent_values(z) == recent_values(mix_z) assert recent_values(w) == [100, 'AA', 'BB', 200] fahrenheit = Stream('fahrenheit') celsius = Stream('celsius') def fahrenheit_and_celsius(pair): index, value = pair if index == 0: return (value - 32.0) / 1.8 elif index == 1: return value else: raise Exception() fahrenheit_stream = Stream('fahrenheit temperatures') celsius_stream = Stream('celsius temperatures') centigrade_stream = Stream('centigrade temperatures') merge_asynch(func=fahrenheit_and_celsius, in_streams=[fahrenheit_stream, celsius_stream], out_stream=centigrade_stream) fahrenheit_stream.append(32) scheduler.step() assert recent_values(centigrade_stream) == [0.0] fahrenheit_stream.append(50) scheduler.step() assert recent_values(centigrade_stream) == [0.0, 10.0] fahrenheit_stream.append(68) scheduler.step() assert recent_values(centigrade_stream) == [0.0, 10.0, 20.0] celsius_stream.append(-10.0) scheduler.step() assert recent_values(centigrade_stream) == [0.0, 10.0, 20.0, -10.0] #---------------------------------------------------- # TEST BLEND #---------------------------------------------------- x = Stream('x') y = Stream('y') z = Stream('z') z_addend = Stream('z_addend') def double(v): return 2 * v def double_add(v, addend): return 2 * v + addend blend(func=double, in_streams=[x, y], out_stream=z) blend(func=double, in_streams=[x, y], out_stream=z_addend) blend_z = blend_f(double, [x, y]) blend_add_z = blend_f(double_add, [x, y], addend=10) x.append(1) scheduler.step() assert recent_values(z) == [2] assert recent_values(blend_z) == recent_values(z) assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)] x.extend(list(range(2, 4))) scheduler.step() assert recent_values(z) == [2, 4, 6] assert recent_values(blend_z) == recent_values(z) assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)] y.extend(list(range(100, 102))) scheduler.step() assert recent_values(z) == [2, 4, 6, 200, 202] assert recent_values(blend_z) == recent_values(z) assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)] x.extend([10, 20]) scheduler.step() assert recent_values(z) == [2, 4, 6, 200, 202, 20, 40] assert recent_values(blend_z) == recent_values(z) assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)] #---------------------------------------------------- # TEST MANY #---------------------------------------------------- # func operates on a list with one element for each input stream. # func returns a list with one element for each output stream. def f_many(lst): return [sum(lst), sum(lst) + 1] u_stream = Stream(name='u_stream') v_stream = Stream(name='v_stream') w_stream = Stream(name='w_stream') x_stream = Stream(name='x_stream') multi_agent = multi_element(func=f_many, in_streams=[u_stream, v_stream], out_streams=[w_stream, x_stream], name='multi_agent') ww_stream, xx_stream = multi_element_f(func=f_many, in_streams=[u_stream, v_stream], num_out_streams=2) u_stream.extend(list(range(5))) v_stream.extend(list(range(0, 40, 4))) scheduler.step() assert recent_values(w_stream) == [0, 5, 10, 15, 20] assert recent_values(x_stream) == [1, 6, 11, 16, 21] assert recent_values(ww_stream) == recent_values(w_stream) assert recent_values(xx_stream) == recent_values(x_stream) # ------------------------------------ # Test many with args and kwargs # func operates on a list with one element for each input stream. # func returns a list with one element for each output stream. def f_multi_args_kwargs(lst, multiplicand, addend): return sum(lst) * multiplicand, sum(lst) + addend u_args_kwargs_stream = Stream(name='u_args_kwargs_stream') v_args_kwargs_stream = Stream(name='v_args_kwargs_stream') w_args_kwargs_stream = Stream(name='w_args_kwargs_stream') x_args_kwargs_stream = Stream(name='x_args_kwargs_stream') multi_args_kwargs_agent = multi_element( func=f_multi_args_kwargs, in_streams=[u_args_kwargs_stream, v_args_kwargs_stream], out_streams=[w_args_kwargs_stream, x_args_kwargs_stream], name='multi_args_kwargs_agent', multiplicand=2, addend=10) ww_args_kwargs_stream, xx_args_kwargs_stream = multi_element_f( func=f_multi_args_kwargs, in_streams=[u_args_kwargs_stream, v_args_kwargs_stream], num_out_streams=2, multiplicand=2, addend=10) assert (recent_values(ww_args_kwargs_stream) == recent_values( w_args_kwargs_stream)) assert (recent_values(xx_args_kwargs_stream) == recent_values( x_args_kwargs_stream)) u_args_kwargs_stream.extend(list(range(5))) v_args_kwargs_stream.extend(list(range(0, 40, 4))) scheduler.step() assert recent_values(w_args_kwargs_stream) == [0, 10, 20, 30, 40] assert recent_values(x_args_kwargs_stream) == [10, 15, 20, 25, 30] assert (recent_values(ww_args_kwargs_stream) == recent_values( w_args_kwargs_stream)) assert (recent_values(xx_args_kwargs_stream) == recent_values( x_args_kwargs_stream)) u_args_kwargs_stream.append(100) v_args_kwargs_stream.extend(list(range(40, 80, 4))) scheduler.step() assert recent_values(w_args_kwargs_stream) == \ [0, 10, 20, 30, 40, 240] assert recent_values(x_args_kwargs_stream) == \ [10, 15, 20, 25, 30, 130] assert (recent_values(ww_args_kwargs_stream) == recent_values( w_args_kwargs_stream)) assert (recent_values(xx_args_kwargs_stream) == recent_values( x_args_kwargs_stream)) u_args_kwargs_stream.extend([200, 300]) scheduler.step() v_args_kwargs_stream.append(100) scheduler.step() assert recent_values(w_args_kwargs_stream) == \ [0, 10, 20, 30, 40, 240, 448, 656] assert recent_values(x_args_kwargs_stream) == \ [10, 15, 20, 25, 30, 130, 234, 338] assert (recent_values(ww_args_kwargs_stream) == recent_values( w_args_kwargs_stream)) assert (recent_values(xx_args_kwargs_stream) == recent_values( x_args_kwargs_stream)) #---------------------------------------------------- #---------------------------------------------------- # TEST STREAM ARRAY #---------------------------------------------------- #---------------------------------------------------- #---------------------------------------------------- # Test zip_map with StreamArray #---------------------------------------------------- x = StreamArray('x') y = StreamArray('y') z = StreamArray('z') a = StreamArray('a') def sum_array_axis_0(a_list_of_arrays): return np.sum(a_list_of_arrays, axis=0) merge_list(func=sum_array_axis_0, in_streams=[x, y], out_stream=z) def mean_array_axis_0(a_list_of_arrays): return np.mean(a_list_of_arrays, axis=0) zip_map_list(func=mean_array_axis_0, in_streams=[x, y], out_stream=a) x.extend(np.linspace(0.0, 9.0, 10)) scheduler.step() y.extend(np.linspace(0.0, 4.0, 5)) scheduler.step() expected_array = np.sum( [np.linspace(0.0, 4.0, 5), np.linspace(0.0, 4.0, 5)], axis=0) assert isinstance(z, StreamArray) assert np.array_equal(recent_values(z), expected_array) expected_means = np.linspace(0.0, 4.0, 5) assert np.array_equal(recent_values(a), expected_means) #---------------------------------------------------- # Test blend with StreamArray #---------------------------------------------------- x = StreamArray('x') y = StreamArray('y') z = StreamArray('z') a = StreamArray('a') def double(v): return 2 * v def double_add(v, addend): return 2 * v + addend ## blend(func=double, in_streams=[x, y], out_stream=z) ## blend(func=double_add, in_streams=[x, y], out_stream=a, addend=10.0) ## x.append(np.array(1.0)) ## scheduler.step() ## assert np.array_equal(recent_values(z), np.array([2.0])) ## assert np.array_equal(recent_values(a), recent_values(z)+10.0) ## x.extend(np.linspace(2.0, 3.0, 2)) ## scheduler.step() ## assert np.array_equal(recent_values(z), np.array([2., 4., 6.])) ## assert np.array_equal(recent_values(a), recent_values(z)+10.0) ## y.extend(np.linspace(100.0, 101.0, 2)) ## scheduler.step() ## assert np.array_equal(recent_values(z), [2., 4., 6., 200., 202.]) ## assert np.array_equal(recent_values(a), recent_values(z)+10.0) ## x.extend([10., 20.]) ## scheduler.step() ## assert np.array_equal(recent_values(z), [2., 4., 6., 200., 202., 20., 40.]) ## assert np.array_equal(recent_values(a), recent_values(z)+10.0) #---------------------------------------------------- # Test merge_asynch with StreamArray #---------------------------------------------------- x = StreamArray('x') y = StreamArray('y') dt_0 = np.dtype([('time', int), ('value', float)]) z = StreamArray('z', dimension=2) merge_asynch(func=lambda v: v, in_streams=[x, y], out_stream=z) scheduler.step() assert np.array_equal(recent_values(z), np.empty(shape=(0, 2))) x.append(np.array(10.0)) scheduler.step() assert np.array_equal(recent_values(z), np.array([(0, 10.0)])) y.append(np.array(1.0)) scheduler.step() assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.0)]) y.append(np.array(2.0)) scheduler.step() assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.0), (1, 2.0)]) x.append(np.array(20.0)) scheduler.step() assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.), (1, 2.), (0, 20.)]) #---------------------------------------------------------------- # Test window merge agent with no state r = Stream('r') w = Stream('w') x = Stream('x') a = Stream('a') def h(list_of_windows): return sum([sum(window) for window in list_of_windows]) merge_window(func=h, in_streams=[r, w], out_stream=x, window_size=3, step_size=3) merge_stream = merge_window_f(func=h, in_streams=[r, w], window_size=3, step_size=3) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window merge agent with state def h_with_state(list_of_windows, state): return (sum([sum(window) for window in list_of_windows]) + state, state + 1) merge_window(func=h_with_state, in_streams=[r, w], out_stream=a, window_size=3, step_size=3, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- r.extend(list(range(16))) scheduler.step() assert recent_values(r) == list(range(16)) assert recent_values(x) == [] assert recent_values(merge_stream) == recent_values(x) assert recent_values(a) == [] w.extend([10, 12, 14, 16, 18]) scheduler.step() assert recent_values(r) == list(range(16)) assert recent_values(w) == [10, 12, 14, 16, 18] assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14)] assert recent_values(a) == [39] #---------------------------------------------------------------- r.extend([10, -10, 21, -20]) scheduler.step() assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14)] assert recent_values(a) == [39] #---------------------------------------------------------------- w.append(20) scheduler.step() assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14), (3 + 4 + 5) + (16 + 18 + 20)] assert recent_values(a) == [39, 67] #---------------------------------------------------------------- r.extend([-1, 1, 0]) scheduler.step() assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14), (3 + 4 + 5) + (16 + 18 + 20)] assert recent_values(a) == [39, 67] #---------------------------------------------------------------- # TEST MERGE_WINDOW WITH STREAM ARRAY #---------------------------------------------------------------- x = StreamArray('x', dimension=2) b = StreamArray('b', dimension=2) a = StreamArray('a', dimension=2) #---------------------------------------------------------------- # Test window merge agent with state def h_array(list_of_windows, state): return (sum([sum(window) for window in list_of_windows]) + state, state + 1) merge_window(func=h_array, in_streams=[x, a], out_stream=b, window_size=2, step_size=2, state=0) #---------------------------------------------------------------- x.extend(np.array([[1., 5.], [7., 11.]])) a.extend(np.array([[0., 1.], [2., 3.]])) scheduler.step() np.array_equal(recent_values(b), np.empty(shape=(0, 2))) a.extend(np.array([[0., 1.], [1., 0.]])) scheduler.step() np.array_equal(recent_values(b), np.empty(shape=(0, 2))) x.extend(np.array([[14., 18.], [18., 30.], [30., 38.], [34., 42.]])) scheduler.step() #------------------------------------------------------------------- # TEST MERGE_LIST #------------------------------------------------------------------- # Function g operates on a list of lists, one list for each input # stream, to return a single list for the output stream. x = Stream('x list merge') u = Stream('u list merge') s = Stream('s list merge') def g(list_of_lists): return [sum(snapshot) for snapshot in list(zip(*list_of_lists))] d = merge_list(func=g, in_streams=[x, u], out_stream=s, name='d') ss = merge_list_f(g, [x, u]) x.extend(list(range(4))) u.extend(list(range(10, 20, 2))) scheduler.step() assert recent_values(x) == [0, 1, 2, 3] assert recent_values(u) == [10, 12, 14, 16, 18] assert recent_values(s) == [10, 13, 16, 19] x = StreamArray() y = StreamArray() z = StreamArray(dtype='bool') def f(two_lists): return np.array(two_lists[0]) > np.array(two_lists[1]) merge_list(f, [x, y], z) x.extend(np.array([3.0, 5.0, 7.0])) y.extend(np.array([4.0, 3.0, 10.0])) run()
def test_element_simple(): m = Stream('m') n = Stream('n') o = Stream('o') q = Stream('q') r = Stream('r') s = Stream('s') t = Stream('t') u = Stream('u') v = Stream('v') w = Stream('w') x = Stream('x') y = Stream('y') z = Stream('z') #---------------------------------------------------------------- # Test simple map using map_element # func operates on an element of the input stream and returns an element of # the output stream. def double(v): return 2 * v a = map_element(func=double, in_stream=x, out_stream=y, name='a') ymap = map_element_f(func=double, in_stream=x) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test filtering def filtering(v): return v <= 2 # yfilter is a stream consisting of those elements in stream x with # values greater than 2. # The elements of stream x that satisfy the boolean, filtering(), are # filtered out. yfilter = filter_element_f(func=filtering, in_stream=x) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test map with state using map_element # func operates on an element of the input stream and state and returns an # element of the output stream and the new state. def f(x, state): return x + state, state + 2 b = map_element(func=f, in_stream=x, out_stream=z, state=0, name='b') bmap = map_element_f(func=f, in_stream=x, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test map with call streams # The agent executes a state transition when a value is added to call_streams. c = map_element(func=f, in_stream=x, out_stream=v, state=10, call_streams=[w], name='c') #---------------------------------------------------------------- #---------------------------------------------------------------- # Test _no_value # func returns _no_value to indicate that no value # is placed on the output stream. def f_no_value(v): """ Filters out odd values """ if v % 2: # v is odd. So filter it out. return _no_value else: # v is even. So, keep it in the output stream. return v no_value_stream = Stream(name='no_value_stream') no_value_agent = map_element(func=f_no_value, in_stream=x, out_stream=no_value_stream, name='no_value_agent') no_value_map = map_element_f(func=f_no_value, in_stream=x) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test _multivalue # func returns _multivalue(output_list) to indicate that # the list of elements in output_list should be placed in the # output stream. def f_multivalue(v): if v % 2: return _no_value else: return _multivalue([v, v * 2]) multivalue_stream = Stream('multivalue_stream') multivalue_agent = map_element(func=f_multivalue, in_stream=x, out_stream=multivalue_stream, name='multivalue_agent') multivalue_map = map_element_f(func=f_multivalue, in_stream=x) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test map_element with args def function_with_args(x, multiplicand, addition): return x * multiplicand + addition ## EXPLANATION FOR agent BELOW ## agent_test_args = map_element( ## func=function_with_args, in_stream = x, out_stream=r, ## state=None, call_streams=None, name='agent_test_args', ## multiplicand=2, addition=10) agent_test_args = map_element(function_with_args, x, r, None, None, 'agent_test_args', 2, 10) stream_test_args = map_element_f(function_with_args, x, None, 2, 10) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test map_element with kwargs agent_test_kwargs = map_element(func=function_with_args, in_stream=x, out_stream=u, state=None, call_streams=None, name='agent_test_kwargs', multiplicand=2, addition=10) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test map_element with state and kwargs # func operates on an element of the input stream and state and returns an # element of the output stream and the new state. def f_map_args_kwargs(u, state, multiplicand, addend): return u * multiplicand + addend + state, state + 2 agent_test_kwargs_and_state = map_element( func=f_map_args_kwargs, in_stream=x, out_stream=s, state=0, name='agent_test_kwargs_and_state', multiplicand=2, addend=10) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test map_element with state and args aa_map_args_agent = map_element(f_map_args_kwargs, x, t, 0, None, 'aa_map_args_agent', 2, 10) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test filter_element def is_even_number(v): return not v % 2 filter_element(func=is_even_number, in_stream=x, out_stream=q) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test filter_element with state def less_than_n(v, state): return v <= state, state + 1 x0 = Stream('x0') q0 = Stream('q0') # state[i] = i # Discard elements in x0 where x0[i] <= state[i] filter_element(func=less_than_n, in_stream=x0, out_stream=q0, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test filter_element_stream # p is a stream consisting of odd-numbered elements of x # Even-numbered elements are filtered out. p = filter_element_f(is_even_number, x) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test cycles in the module connection graph filter_element(func=lambda v: v >= 5, in_stream=o, out_stream=n) map_element(func=lambda v: v + 2, in_stream=n, out_stream=o) #---------------------------------------------------------------- #---------------------------------------------------------------- # PUT VALUES INTO STREAMS #---------------------------------------------------------------- # FIRST STEP x.extend(range(3)) x0.extend([0, 1, 3, 3, 6, 8]) n.append(0) scheduler = Stream.scheduler scheduler.step() assert recent_values(x) == [0, 1, 2] assert recent_values(y) == [0, 2, 4] assert recent_values(q0) == [3, 6, 8] assert recent_values(ymap) == recent_values(y) assert recent_values(yfilter) == [] assert recent_values(z) == [0, 3, 6] assert recent_values(bmap) == recent_values(z) assert recent_values(v) == [] assert recent_values(no_value_stream) == [0, 2] assert recent_values(no_value_map) == recent_values(no_value_stream) assert recent_values(multivalue_stream) == [0, 0, 2, 4] assert recent_values(multivalue_map) == recent_values(multivalue_stream) assert recent_values(r) == [10, 12, 14] assert recent_values(stream_test_args) == recent_values(r) assert recent_values(u) == recent_values(r) assert recent_values(s) == [10, 14, 18] assert recent_values(s) == recent_values(t) assert recent_values(q) == [1] assert recent_values(q) == recent_values(p) assert recent_values(n) == [0, 2, 4] assert recent_values(o) == [2, 4, 6] #---------------------------------------------------------------- #---------------------------------------------------------------- x.extend(range(3, 5, 1)) scheduler.step() assert recent_values(x) == [0, 1, 2, 3, 4] assert recent_values(y) == [0, 2, 4, 6, 8] assert recent_values(ymap) == recent_values(y) assert recent_values(yfilter) == [3, 4] assert recent_values(z) == [0, 3, 6, 9, 12] assert recent_values(bmap) == recent_values(z) assert recent_values(no_value_stream) == [0, 2, 4] assert recent_values(no_value_map) == recent_values(no_value_stream) assert recent_values(multivalue_stream) == [0, 0, 2, 4, 4, 8] assert recent_values(multivalue_map) == recent_values(multivalue_stream) assert recent_values(r) == [10, 12, 14, 16, 18] assert recent_values(stream_test_args) == recent_values(r) assert recent_values(u) == recent_values(r) assert recent_values(s) == [10, 14, 18, 22, 26] assert recent_values(s) == recent_values(t) assert recent_values(q) == [1, 3] assert recent_values(q) == recent_values(p) #---------------------------------------------------------------- #---------------------------------------------------------------- w.append(0) scheduler.step() assert recent_values(x) == [0, 1, 2, 3, 4] assert recent_values(y) == [0, 2, 4, 6, 8] assert recent_values(ymap) == recent_values(y) assert recent_values(yfilter) == [3, 4] assert recent_values(z) == [0, 3, 6, 9, 12] assert recent_values(bmap) == recent_values(z) assert recent_values(v) == [10, 13, 16, 19, 22] assert recent_values(no_value_stream) == [0, 2, 4] assert recent_values(no_value_map) == recent_values(no_value_stream) assert recent_values(multivalue_stream) == [0, 0, 2, 4, 4, 8] assert recent_values(multivalue_map) == recent_values(multivalue_stream) assert recent_values(r) == [10, 12, 14, 16, 18] assert recent_values(stream_test_args) == recent_values(r) assert recent_values(u) == recent_values(r) assert recent_values(s) == [10, 14, 18, 22, 26] assert recent_values(s) == recent_values(t) assert recent_values(q) == [1, 3] assert recent_values(q) == recent_values(p) #---------------------------------------------------------------- #------------------------------------------------------------------------------------------------ # ELEMENT AGENT TESTS FOR STREAM ARRAY #------------------------------------------------------------------------------------------------ import numpy as np m = StreamArray('m') n = StreamArray('n') o = StreamArray('o') map_element(func=np.sin, in_stream=m, out_stream=n) filter_element(func=lambda v: v <= 0.5, in_stream=n, out_stream=o) input_array = np.linspace(0.0, 2 * np.pi, 20) m.extend(input_array) scheduler.step() expected_output = np.sin(input_array) assert np.array_equal(recent_values(n), expected_output) expected_output = expected_output[expected_output > 0.5] assert np.array_equal(recent_values(o), expected_output) return