コード例 #1
0
def CollapseStream(axis=0, name="collapse-image"):
    ''' This stream collapses 2D images to 1D images
        by averaging along an axis.

        **Stream Inputs**
            image : 2d np.ndarray
                the 2D image
            mask : 2d np.ndarray
                optional mask
    '''
    def collapse(image, mask=None, axis=0):
        if mask is None:
            # normalization is number of pixels in dimension
            # if no mask
            # TODO : Fix
            # norm = img.shape[
            norm = 1
        else:
            norm = np.sum(mask, axis=axis)
        cll = np.sum(image, axis=axis)
        res = cll / norm
        return dict(line=res, axis=axis)

    sin = sc.Stream(stream_name=name)

    sout = scs.map(collapse, axis=axis)
    return sin, sout
コード例 #2
0
def PCAStream(Nimgs=100, n_components=16):
    '''
        This runs principle component analysis on the last Nimgs

        **Stream Inputs**
            image : 2d np.ndarray
                the nth image

        **Stream Outputs**
            components : 2d np.ndarray
                the components

        Returns
        -------
            sin : Stream instance
                the input stream

            sout : Stream instance
                the output stream
    '''
    sin = sc.Stream(stream_name="PCA Stream")
    sout = sin.sliding_window(Nimgs)
    sout = scs.select(sin, ('image', 'data'))
    sout = scs.squash(sin)
    sout = scs.map(sout, PCA_fit, n_components=n_components)

    return sin, sout
コード例 #3
0
def QPHIMapStream(bins=(800, 360)):
    ''' Transform the scattering image into a q, phi map.

        Parameters
        ----------
            bins : 2 tuple, optional
                the number of bins to divide into

        **Stream Inputs**
            img : 2d np.ndarray
                the image

            mask : 2d np.ndarray, optional
                the mask

            origin : 2 tuple
                the beam center in the image

            qmap : 2d np.ndarray
                the qmap of the image

        **Stream Outputs**
            sqphi : 2d np.ndarray
                the sqphi map

            qs : 1d np.ndarray
                the q values

            phis : 1d np.ndarray
                the phi values

        Returns
        -------
            sin : Stream instance
                the input stream (see Stream Inputs)

            sout : Stream instance
                the output stream (see Stream Outputs)

        Examples
        --------
        >>> bins = (3, 4)
        >>> sin, sout = QPHIMapStream(bins=bins)
        >>> L = sout.sink_to_list()
        >>> mask = None
        >>> img = np.random.random((10, 10))
        >>> origin = (3, 3)
        >>> sdoc = StreamDoc(kwargs=dict(image=img,
        ...                  origin=origin,
        ...                  mask=mask))
        >>> sin.emit(sdoc)
    '''
    sin = sc.Stream(stream_name="QPHI map Stream")
    sout = scs.map(qphiavg, sin, bins=bins)
    sout = scs.add_attributes(sout, stream_name="qphiavg")

    return sin, sout
コード例 #4
0
def ThumbStream(blur=None, crop=None, resize=None):
    ''' Thumbnail stream

        **Stream Inputs**
            image : 2d np.ndarray
                the image

        **Stream Outputs**
            sin : Stream instance
                the stream input

            sout : Stream instance
                the stream output

        Parameters
        ----------
            blur : float, optional
                the sigma of the Gaussian kernel to convolve image with
                for smoothing
                default is None, no smoothing

            crop : 4 tuple of int, optional
                the boundaries to crop by
                default is None, no cropping

            resize : int, optional
                the factor to resize by
                for example resize=2 performs 2x2 binning of the image

        Stream Inputs
        -------------
            image : 2d np.ndarray
                the image

        Returns
        -------
            sin :
                the stream input

            sout :
                the stream output
    '''
    # TODO add flags to actually process into thumbs
    sin = sc.Stream(stream_name="Thumbnail Stream")
    sout = scs.add_attributes(sin, stream_name="thumb")
    # s1 = sin.add_attributes(stream_name="ThumbStream")
    sout = scs.map(_blur, sout, sigma=blur, remote=True)
    sout = scs.map(_crop, sout, crop=crop, remote=True)
    sout = scs.map(_resize, sout, resize=resize, remote=True)
    # change the key from image to thumb
    sout = scs.select(sout, ('image', 'thumb'))

    return sin, sout
コード例 #5
0
ファイル: kafka.py プロジェクト: navikt/dataverk
    def _read_kafka_accumulated(self, max_mesgs, strategy):
        data = {}
        mesg_count = 0
        stream = streamz.Stream()
        acc = stream.accumulate(strategy, start=data)

        for message in self._consumer:
            mesg = self._parse_kafka_message(message)
            mesg_count += 1
            stream.emit(mesg)
            if self._is_requested_messages_read(message, max_mesgs,
                                                mesg_count):
                break
        return data
コード例 #6
0
    def __init__(self, model, fields, parameters, dt, t=0, tmax=None,
                 id=None, hook=null_hook,
                 scheme=schemes.RODASPR,
                 time_stepping=True, **kwargs):

        def intersection_kwargs(kwargs, function):
            """Inspect the function signature to identify the relevant keys
            in a dictionary of named parameters.
            """
            func_signature = inspect.signature(function)
            func_parameters = func_signature.parameters
            kwargs = {key: value
                      for key, value
                      in kwargs.items() if key in func_parameters}
            return kwargs
        kwargs["time_stepping"] = time_stepping
        self.id = str(uuid1())[:6] if not id else id
        self.model = model
        self.parameters = parameters
        self.fields = model.fields_template(**fields)
        self.t = t
        self.user_dt = self.dt = dt
        self.tmax = tmax
        self.i = 0
        self._stream = streamz.Stream()
        self._pprocesses = []

        self._scheme = scheme(model,
                              **intersection_kwargs(kwargs,
                                                    scheme.__init__))
        if (time_stepping and
            self._scheme not in [schemes.RODASPR,
                                 schemes.ROS3PRL,
                                 schemes.ROS3PRw]):
            self._scheme = schemes.time_stepping(
                self._scheme,
                **intersection_kwargs(kwargs,
                                      schemes.time_stepping))
        self.status = 'created'

        self._total_running = 0
        self._last_running = 0
        self._created_timestamp = pendulum.now()
        self._started_timestamp = None
        self._last_timestamp = None
        self._actual_timestamp = pendulum.now()
        self._hook = hook
        self._container = None
        self._iterator = self.compute()
コード例 #7
0
ファイル: dataframe.py プロジェクト: yuvipanda/hubtraf
def accumulate_to_df(logfile, accumulate_func):
    """
    Run an accumulator against a logfile, and return output in a dataframe
    """
    stream = streamz.Stream()

    with open(logfile) as infile, io.StringIO() as outfile:
        stream.map(json.loads).accumulate(
            accumulate_func, returns_state=True,
            start={}).sink(lambda e: outfile.write(json.dumps(e) + '\n'))
        for l in infile:
            stream.emit(l)
        outfile.seek(0)
        dataframe = pd.read_json(outfile, lines=True)
    dataframe.set_index('timestamp', inplace=True)
    return dataframe
コード例 #8
0
def PeakFindingStream(name='peakfind'):
    ''' Find peaks in 1d line data.

        **Stream Inputs**
            sqx : 1d np.ndarray
                the x domain of the curve

            sqy : 1d np.ndarray
                the y domain of the curve

        **Stream Outputs**
            model: lmfit.Model instance
                The model for the fit

            y_origin:

            inds_peak: list
               the peak indices

            xdata:

            ratio:

            ydata:

            wdata:

            bkgd:

            variance:

            variance_mean:

            peaksx:

            peaksy:

        Parameters
        ----------
        name : str, optional
            name of stream
    '''
    sin = sc.Stream(stream_name="Peak Finder")
    # pkfind stream
    sout = scs.map(call_peak, scs.select(sin, 'sqy', 'sqx'))
    sout = scs.add_attributes(sout, stream_name=name)
    return sin, sout
コード例 #9
0
def ImageTaggingStream():
    ''' Creates an image tagging stream.

        This stream will take in an image and output a tage as to what the
        image is.

        **Stream Inputs**
            image : 2d np.ndarray
                the image to be tagged

        **Stream Outputs**
            tag_name : str
                the name of the tag for the image
    '''
    sin = sc.Stream(stream_name="Image Tagger")
    sout = scs.map(infer, scs.select(sin, 'image'))
    sout = scs.add_attributes(sout, stream_name="image-tag")
    return sin, sout
コード例 #10
0
def AngularCorrelatorStream(bins=(800, 360)):
    ''' Stream to run angular correlations.

        **Stream Inputs**
            image : 2d np.ndarray
                the image to run the angular correltions on

            mask : 2d np.ndarray
                the mask

            origin : 2 tuple
                the beam center of the image

            bins : tuple
                the number of bins in q and phi

            method : string, optional
                the method to use for the angular correlations
                defaults to 'bgest'

            q_map : the q_map to be used

        **Stream Outputs**
            sin : Stream instance
                the stream input

            sout : Stream instance
                the stream output
    '''
    # TODO : Allow optional kwargs in streams
    sin = sc.Stream(stream_name="Angular Correlation")
    sout = scs.select(sin, ('image', 'image'), ('mask', 'mask'),
                      ('origin', 'origin'), ('q_map', 'r_map'))
    sout = scs.map(angular_corr, sout, bins=bins)
    sout = scs.add_attributes(sout, stream_name="angular-corr")
    return sin, sout
コード例 #11
0
def ImageStitchingStream(return_intermediate=False):
    '''
        Image stitching

        **Stream Inputs**
            image : 2d np.ndarray
                the image for the stitching

            mask : 2d np.ndarray
                the mask

            origin : 2 tuple
                the beam center

            stitchback : bool
                whether or not to stitchback to previous image

        **Stream Outputs**
            image : 2d np.ndarray
                the stitched image

            mask : 2d np.ndarray
                the mask from the stitch

            origin : 2 tuple
                the beam center

            stitchback : bool
                whether or not to stitchback to previous image

        Returns
        -------
            sin : Stream instance
                the input stream

            sout : Stream instance
                the output stream

        Parameters
        ----------
            return_intermediate : bool, optional
                decide whether to return intermediate results or not
                defaults to False

        Notes
        -----
        Any normalization of images (for ex: by exposure time) should be done
        before inputting to this stream.

        Examples
        --------
        >>> sin, sout = ImageStitchingStream()
        >>> L = sout.sink_to_list()
        >>> mask = np.ones((10, 10), dtype=np.int64)
        >>> img1 = np.ones_like(mask, dtype=float)
        >>> # 3 rows are higher
        >>> img1[2:4] = 2
        >>> # some arb value
        >>> origin1 = [2, 3]
        >>> # roll along zero axis
        >>> img2 = np.roll(img1, 2, axis=0)
        >>> # rolled by two
        >>> origin2 = [2+2, 3]
        >>> # first image, stitchback can be anything
        >>> sdoc1 = StreamDoc(kwargs=dict(mask=mask, image=img1,
        ...                               origin=origin1,
        ...                               stitchback=False))
        >>> sin.emit(sdoc1)
        >>> # emit a second image and it will be stitched
        >>> sdoc2 = StreamDoc(kwargs=dict(mask=mask, image=img2,
        ...                               origin=origin2,
        ...                               stitchback=True))
        >>> sin.emit(sdoc2)
        >>> # A new image with False stitchback will have output
        >>> # stream output a result
        >>> img3 = np.random.random((10,10))
        >>> origin3 = (0,0)
        >>> sdoc3 = StreamDoc(kwargs=dict(mask=mask, image=img3,
        ...                               origin=origin3,
        ...                               stitchback=False))
        >>> sin.emit(sdoc3)
        >>> len(L) == 1
        True
        >>> # the stitched image is here:
        >>> img = L[0]['kwargs']['image']
    '''

    # TODO : add state. When False returned, need a reason why
    def validate(x):
        if not hasattr(x, 'kwargs'):
            raise ValueError("No kwargs")
        kwargs = x['kwargs']
        expected = ['mask', 'origin', 'stitchback', 'image']
        for key in expected:
            if key not in kwargs:
                message = "{} not in kwargs".format(key)
                raise ValueError(message)
        if not isinstance(kwargs['mask'], np.ndarray):
            message = "mask is not array"
            raise ValueError(message)

        if not isinstance(kwargs['image'], np.ndarray):
            message = "image is not array"
            raise ValueError(message)

        if len(kwargs['origin']) != 2:
            message = "origin not length 2"
            raise ValueError(message)
        return x

    # TODO : remove the add_attributes part and just keep stream_name
    sin = sc.Stream(stream_name="Image Stitching Stream")
    # sout = sc.map(sin, validate)
    # sin.map(lambda x : print("Beginning of stream data\n\n\n"))
    # TODO : remove compute requirement
    # TODO : incomplete
    sout = scs.add_attributes(sin, stream_name="stitch")

    sout = scs.select(sout, ('image', None), ('mask', None), ('origin', None),
                      ('stitchback', None))

    # put all args into a tuple
    def pack(*args):
        return args

    sout = scs.map(pack, sout)
    # sout = scs.map(s3.map(psdm(pack))
    sout = scs.accumulate(_xystitch_accumulate, sout)

    sout = scs.map(scs.star(_xystitch_result), sout)

    def stitchbackcomplete(xtuple):
        ''' only plot images whose stitch is complete, and only involved more
        than one image
        NOTE : *Only* the bool "True" will activate a stitch. "1" does not
        count. This is handled by checking 'is True' and 'is not True'
        '''
        # previous must have been true for stitch to have involved more than
        # one image
        prev = xtuple[0]['kwargs']['stitchback']
        # next must be False (or just not True) to be complete
        next = xtuple[1]['kwargs']['stitchback']

        return next is not True and prev is True

    # swin.map(lambda x : print("result : {}".format(x)), raw=True)

    # only get results where stitch is stopped
    # NOTE : need to compute before filtering here

    # now emit some dummy value to swin, before connecting more to stream
    # swin.emit(dict(attributes=dict(stitchback=0)))

    # TODO : figure out how to filter
    if not return_intermediate:
        # keep previous two results
        sout = sout.sliding_window(2)
        sout = sout.filter(stitchbackcomplete)
        sout = sout.map(lambda x: x[0])

    return sin, sout
コード例 #12
0
def LineCutStream(axis=0, name=None):
    ''' Obtain line cuts from a 2D image.

        Just simple slicing. It's a stream mainly to make this more standard.

        Parameters
        ----------
            axis : int, optional
                the axis to obtain linecuts from.
                Default is 0 (so we index rows A[i])
                If 1, the index cols (A[:,i])

            name : str, optional
                the name of the stream

        **Stream Inputs**
            image : 2d np.ndarray
                the image to obtain line cuts from

            y : 1d np.ndarray
                The y (row) values per pixel

            x : The x (column) values per pixel

            vals : list
                the values to obtain the linecuts from

        **Stream Outputs**
            linecuts : list
                a list of line cuts

            linecuts_domain : 1d np.ndarray
                the domain of the line cuts

            linecuts_vals : 1d np.ndarray
                the corresponding value for each line cut

        Returns
        -------
            sin : Stream instance
                the input stream (see Stream Inputs)

            sout : Stream instance
                the output stream (see Stream Outputs)
    '''
    def linecuts(image, y, x, vals, axis=0):
        ''' Can potentially return an empty list of linecuts.'''

        linecuts = list()
        linecuts_vals = list()
        if axis == 1:
            # swap x y and transpose
            tmp = y
            y = x
            x = tmp

        linecuts_domain = x
        for val in vals:
            ind = np.argmin(np.abs(y - val))
            linecuts.append(image[ind])
            linecuts_vals.append(y[ind])

        return dict(linecuts=linecuts,
                    linecuts_domain=linecuts_domain,
                    linecuts_vals=linecuts_vals)

    # the string for the axis
    axisstr = ['y', 'x'][axis]
    if name is None:
        stream_name = 'linecuts-axis{}'.format(axisstr)
    else:
        stream_name = name + "-axis{}".format(axisstr)

    sin = sc.Stream(stream_name=stream_name)
    sout = scs.map(linecuts, sin, axis=axis)

    sout = scs.add_attributes(sout, stream_name=stream_name)
    return sin, sout
コード例 #13
0
def CircularAverageStream():
    ''' Circular average stream.

        **Stream Inputs**
            image : 2d np.ndarray
                the image to run circular average on

            calibration : 2D np.ndarray
                the calibration object, with members:
                    q_map : 2d np.ndarray
                        the magnite of the wave vectors

                    r_map : 2d np.ndarray
                        the pixel positions from center

            mask : 2d np.ndarray, optional
                the mask

            bins : int or tuple, optional
                if an int, the number of bins to divide into
                if a list, the bins to use

        **Stream Outputs**

            sqx : 1D np.ndarray
                the q values
            sqxerr : 1D np.ndarray
                the error q values
            sqy : 1D np.ndarray
                the intensities
            sqyerr : 1D np.ndarray
                the error in intensities (approximate)

        Notes
        -----
            Assumes square pixels

            Assumes variance comes from shot noise only (by taking average
            along ring/Npixels)

            If bins is None, it does its best to estimate pixel sizes and make
            the bins a pixel in size. Note, for Ewald curvature this is not
            straightforward. You need both a r_map in pixels from the center
            and the q_map for the actual q values.

        Returns
        -------
        sin : Stream instance
            the source stream (see Stream Inputs)

        sout : Stream instance
            the output stream (see Stream Outputs)

        Examples
        --------
        >>> from streamz import Stream
        >>> from SciStreams import StreamDoc
        >>> import numpy as np
        >>> s = Stream()
        >>> from SciStreams.streams.XS_Streams import CircularAverageStream
        >>> sin, sout = CircularAverageStream()
        >>> s.connect(sin)
        >>> mask = None
        >>> bins = 3
        >>> img = np.random.random((10, 10))
        >>> x = np.linspace(-5, 5, 10)
        >>> X, Y = np.meshgrid(x, x)
        >>> r_map = np.sqrt(X**2 + Y**2)
        >>> q_map = r_map*.12
        >>> class Calib:
        ...     def __init__(self, qmap, rmap):
        ...         self.q_map = qmap
        ...         self.r_map = rmap
        >>> calibration = Calib(q_map, r_map)
        >>> sdoc = StreamDoc(kwargs=dict(image=img,
        ...                  calibration=calibration,
        ...                  mask=mask,
        ...                  bins=bins))
        >>> # emit data as usual
        >>> sin.emit(sdoc)
    '''

    # TODO : extend file to mltiple writers?
    def validate(x):
        kwargs = x['kwargs']
        if 'image' not in kwargs or 'calibration' not in kwargs:
            message = "expected two kwargs: "
            message += "(image, calibration), "
            message += "got {} instead".format(list(kwargs.keys()))
            raise ValueError(message)

        # kwargs are optional so don't validate them
        return x

    sin = sc.Stream(stream_name="Circular Average")
    sout = scs.add_attributes(sin, stream_name="circavg")
    # No validation for now
    # validation should not be necessary, should just throw an error
    # sout = sout.map(validate)
    sout = scs.map(circavg_from_calibration, sout)

    return sin, sout
コード例 #14
0
def CalibrationStream():
    ''' This stream takes data with kwargs and creates calibration object.


        **Stream Inputs**

             md : dict
                No requirements

             data : dict
                requires keys who contain calibration information
                (this is usually obtained by moving metadata to data in first
                step)

        **Stream Outputs**

            md : dict
                keeps regular md

            data : dict
                calibration : object
                    a calibration object

        Notes
        -----
            This will distribute the computation of the qmaps and cache them
            by saving references to the futures (which distributed will
            bookkeep)

            Use the ``AttributeNormalizingStream`` first so that the data is as
            the CalibrationStream expects.

        Examples
        --------
        >>> from streamz import Stream
        >>> from SciStreams import StreamDoc
        >>> import numpy as np
        >>> s = Stream()
        >>> from SciStreams.streams.XS_Streams import CalibrationStream
        >>> sin, sout = CalibrationStream()
        >>> s.connect(sin)
        >>> # some example data
        >>> data = dict(wavelength=dict(value=1), pixel_size_x=dict(value=1),
        ...             pixel_size_y=dict(value=1),
        ...             sample_det_distance=dict(value=1),
        ...             beamx0=dict(value=0), beamy0=dict(value=0),
        ...             shape=(100,100))
        >>> sdoc = StreamDoc(kwargs=data)
        >>> s.emit(sdoc)

        Returns
        -------
        sin : Stream instance
            the source stream (see Stream Inputs)

        sout : Stream instance
            the output stream (see Stream Outputs)
    '''
    global global_calib
    sin = sc.Stream(stream_name="Calibration")
    # force computation to come back here
    sout = scs.map(make_calibration, sin, remote=True)

    # this piece should be computed using Dask
    def _generate_qxyz_maps(calibration):
        calibration.generate_maps()
        return dict(calibration=calibration)

    # from streamz.dask import scatter, gather
    # from SciStreams.globals import client

    # TODO : change to use scatter/gather
    # (need to setup event loop for this etc)

    # sout = scs.map(lambda calibration:
    # client.submit(_generate_qxyz_maps, calibration),
    #               sout)

    # save the futures to a list (scheduler will ensure caching of result if
    # any reference to a future is kept)
    # sc.map(sout, lambda calibration:
    #        streams_globals.futures_cache.append(calibration))

    # sout = scs.map(lambda calibration:
    #                client.gather(calibration), sout)

    sout = scs.map(_generate_qxyz_maps, sout)
    # sout.map(lambda x :
    #          x['kwargs'].result()['calibration'].q_map).sink(print)
    # sink the futures to a global list (deque)
    sout.map(lambda x: x['kwargs']).sink(futures_cache.append)
    sout.map(lambda x: x['args']).sink(futures_cache.append)

    return sin, sout
コード例 #15
0
def AttributeNormalizingStream(external_keymap=None):
    ''' Get and re-map the attributes of the stream.

        This step is typically performed before sending data to the
        CalibrationStream input stream.

        **Stream Inputs**
            md : dict
                The metadata for the stream.
            data : dict
                No requirements for the data

        **Stream Outputs**
            md : dict
                The same metadata is passed through
            data : dict
                The normalized metadata is put in the data which includes:
                    beamx0: dict {'value' : val, 'unit' : unit}
                        the x0 position of the beam
                    beamy0: dict {'value' : val, 'unit' : unit}
                        the y0 position of the beam
                    wavelength: dict {'value' : val, 'unit' : unit}
                        the wavelength of the beam
                    pixel_size_x: dict {'value' : val, 'unit' : unit}
                        the x size of a pixel
                    pixel_size_y: dict {'value' : val, 'unit' : unit}
                        the y size of a pixel
                    detector_key: str
                        the detector image key
                    detector_name : str
                        the detector name

        Examples
        --------
        >>> # A typical workflow is as follows:
        >>> # instantiate the main stream input
        >>> from streamz import Stream
        >>> from SciStreams import StreamDoc
        >>> import numpy as np
        >>> s = Stream()
        >>> # create the filtering stream
        >>> from SciStreams.streams.XS_Streams import \
        ...     AttributeNormalizingStream
        >>> sin, sout = AttributeNormalizingStream()
        >>> s.connect(sin)
        >>> # create dummy detector image, from pilatus300
        >>> attr = dict(
        ...             calibration_wavelength_A=1.0,
        ...             detector_SAXS_x0_pix=5.0,
        ...             detector_SAXS_y0_pix=5.0,
        ...             detector_SAXS_distance_m=5.0,
        ...             detector_key='pilatus300_image',
        ...             )
        >>> sdoc = StreamDoc(attributes=attr)
        >>> # save result in a list L that you can review later
        >>> L = sout.sink_to_list()
        >>> # emit the data
        >>> s.emit(sdoc)


        Parameters
        ----------
            external_keymap: dict, optional
                The keymap to perform the re-mapping from. If it is not
                specified, internal keymaps are used.
    '''
    sin = sc.Stream()
    # set remote=False. These are quick calculations we don't care to cache
    # they are also always unique to each data so caching doesn't make sense
    sout = scs.get_attributes(sin)
    sout = scs.map(normalize_calib_dict,
                   sout,
                   external_keymap=external_keymap,
                   remote=True)
    sout = scs.map(add_detector_info, sout, remote=True)
    return sin, sout
コード例 #16
0
def PrimaryFilteringStream():
    ''' Filter the stream for just primary results.

        **Stream Inputs**

            md : dict
                No requirements

            data : dict
                must have a 2D np.ndarray with one of accepted detector
                keys
        **Stream Outputs**
            Two streams are outputted, sout and serr

            sout : the stream with valid data
                Outputs from zero to any number streams
                (depends on how many detectors were found)
                md :
                    detector_key : the detector key (string)
                data :
                    data with only one image as detector key
                    if there was more than one, it selects one of them
                    Note this has unspecified behaviour.
            serr : the stream with bad data. This can be sinked to an error
                stream

        Examples
        --------
        >>> # A typical workflow is as follows:
        >>> # instantiate the main stream input
        >>> from streamz import Stream
        >>> s = Stream()
        >>> # create the filtering stream
        >>> from SciStreams.streams.XS_Streams import PrimaryFilteringStream
        >>> sin, sout = PrimaryFilteringStream()
        >>> s.connect(sin)
        >>> import numpy as np
        >>> # create dummy detector image, from pilatus300
        >>> img = np.random.random((619, 487))
        >>> from SciStreams.core.StreamDoc import StreamDoc
        >>> sdoc = StreamDoc(kwargs=dict(pilatus300_image=img))
        >>> # save result in a list L that you can review later
        >>> L = sout.sink_to_list()
        >>> # emit the data
        >>> s.emit(sdoc)

        Returns
        -------
        sin : Stream instance
            the source stream (see Stream Inputs)

        sout : Stream instance
            the output stream (see Stream Outputs)
    '''
    sin = sc.Stream(stream_name="Primary Filter")
    # a primary filter, data will not go through if does not match attributes
    sout = sin.filter(filter_attributes)
    # get the error streams attributes (to output to some log)
    serr = sin.filter(lambda x: not filter_attributes)
    serr = scs.get_attributes(serr)
    serr = scs.add_attributes(serr, error="primary_filter")
    sout = sc.map(sout, pick_allowed_detectors)
    # turn list into individual streams
    # (if empty list, emits nothing, this is sort of like filter)
    sout = sout.concat()
    # just some checks to see if it's good data, else ignore
    return sin, sout, serr