def load_config_from_file(config_file: Path): # pragma: no cover schema = strictyaml.Map({ 'email_address': strictyaml.Email(), 'use_keyring': strictyaml.Bool(), }) return strictyaml.load(config_file.read_text(), schema).data
def schema(cls): return syml.Map({ **cls._schema_base(), syml.Optional("roll", 0): syml.Float(), syml.Optional("pitch", 0): syml.Float(), syml.Optional("yaw", 0): syml.Float(), syml.Optional("degrees", True): syml.Bool(), syml.Optional("frames", 1): syml.Int(), })
def _ProtoFieldToSchema(field): """Convert a Proto Field to strictyaml schema.""" if field.type == field.TYPE_STRING: return syaml.Str() if field.type == field.TYPE_BOOL: return syaml.Bool() if field.type in (field.TYPE_INT32, field.TYPE_UINT32, field.TYPE_INT64, field.TYPE_UINT64): return syaml.Int() if field.type in (field.TYPE_DOUBLE, field.TYPE_FLOAT): return syaml.Decimal() if field.type == field.TYPE_MESSAGE: return _ProtoDescriptorToSchema(field.message_type) if field.type == field.TYPE_ENUM: return syaml.Str() raise ConfigError('Unknown field type in lab_config_pb2: %r.' % field.type)
strictyaml.Seq(strictyaml.Str()), strictyaml.Optional('directive-options'): strictyaml.Map({ strictyaml.Optional('clang'): strictyaml.Seq(strictyaml.Str()), strictyaml.Optional('compat'): strictyaml.Str(), strictyaml.Optional('file'): strictyaml.Str(), strictyaml.Optional('members'): strictyaml.Seq(strictyaml.Str()) | strictyaml.EmptyList(), strictyaml.Optional('transform'): strictyaml.Str(), }), strictyaml.Optional('expected-failure'): strictyaml.Bool(), }) def get_testcase_options(testcase): # options are optional options = {} if os.path.isfile(testcase): with open(testcase, 'r') as f: options = strictyaml.load(f.read(), options_schema).data return options def get_input_filename(options, path=None): directive = options.get('directive', 'autodoc')
])), sy.Optional("information"): sy.Seq( sy.Map({ "type": sy.Str(), "url": sy.Url(), "title": sy.Str(), }), ), "date_added": sy.Datetime(), sy.Optional("date_updated"): sy.Datetime(), sy.Optional("maturity"): sy.Int(), sy.Optional("in_incubator"): sy.Bool(), sy.Optional("demo"): sy.Map({ "title": sy.Str(), "url": sy.Url(), "code": sy.Url(), }), })) }) @lru_cache(maxsize=1) def load(): with codecs.open(os.path.join(DATA_PATH, LABS_FILENAME), encoding='utf-8') as f: labs_yaml = sy.load(f.read(), LABS_SCHEMA, label=f.name)
class HierarchicalCategorization(Categorization): """In a hierarchical categorization, descendants and ancestors (parents and children) are defined for each category. Attributes ---------- total_sum : bool If the sum of the values of children equals the value of the parent for extensive quantities. For example, a Categorization containing the Countries in the EU and the EU could set `total_sum = True`, because the emissions of all parts of the EU must equal the emissions of the EU. On the contrary, a categorization of Industries with categories `Power:Fossil Fuels` and `Power:Gas` which are both children of `Power` must set `total_sum = False` to avoid double counting of fossil gas. canonical_top_level_category : HierarchicalCategory The level of a category is calculated with respect to the canonical top level category. Commonly, this will be the world total or a similar category. If the canonical top level category is not set (i.e. is ``None``), levels are not defined for categories. """ hierarchical = True _strictyaml_schema = sy.Map({ "name": sy.Str(), "title": sy.Str(), "comment": sy.Str(), "references": sy.Str(), "institution": sy.Str(), "last_update": sy.Str(), "hierarchical": sy.Bool(), sy.Optional("version"): sy.Str(), "total_sum": sy.Bool(), sy.Optional("canonical_top_level_category"): sy.Str(), "categories": sy.MapPattern(sy.Str(), HierarchicalCategory._strictyaml_schema), }) def _add_categories(self, categories: typing.Dict[str, typing.Dict]): for code, spec in categories.items(): cat = HierarchicalCategory.from_spec(code=code, spec=spec, categorization=self) self._primary_code_map[code] = cat self._graph.add_node(cat) for icode in cat.codes: self._all_codes_map[icode] = cat for code, spec in categories.items(): if "children" in spec: parent = self._all_codes_map[code] for i, child_set in enumerate(spec["children"]): for child_code in child_set: self._graph.add_edge(parent, self._all_codes_map[child_code], set=i) def __init__( self, *, categories: typing.Dict[str, typing.Dict], name: str, title: str, comment: str, references: str, institution: str, last_update: datetime.date, version: typing.Optional[str] = None, total_sum: bool, canonical_top_level_category: typing.Optional[str] = None, ): self._graph = nx.MultiDiGraph() Categorization.__init__( self, categories=categories, name=name, title=title, comment=comment, references=references, institution=institution, last_update=last_update, version=version, ) self.total_sum = total_sum if canonical_top_level_category is None: self.canonical_top_level_category: typing.Optional[ HierarchicalCategory] = None else: self.canonical_top_level_category = self._all_codes_map[ canonical_top_level_category] def __getitem__(self, code: str) -> HierarchicalCategory: """Get the category for a code.""" return self._all_codes_map[code] def values(self) -> typing.ValuesView[HierarchicalCategory]: """Iterate over the categories.""" return self._primary_code_map.values() def items(self) -> typing.ItemsView[str, HierarchicalCategory]: """Iterate over (primary code, category) pairs.""" return self._primary_code_map.items() @classmethod def from_spec( cls, spec: typing.Dict[str, typing.Any]) -> "HierarchicalCategorization": """Create Categorization from a Dictionary specification.""" if spec["hierarchical"] != cls.hierarchical: raise ValueError( "Specification is for a non-hierarchical categorization, use" "Categorization.from_spec.") last_update = datetime.date.fromisoformat(spec["last_update"]) return cls( categories=spec["categories"], name=spec["name"], title=spec["title"], comment=spec["comment"], references=spec["references"], institution=spec["institution"], last_update=last_update, version=spec.get("version", None), total_sum=spec["total_sum"], canonical_top_level_category=spec.get( "canonical_top_level_category", None), ) def to_spec(self) -> typing.Dict[str, typing.Any]: """Turn this categorization into a specification dictionary ready to be written to a yaml file. Returns ------- spec: dict Specification dictionary understood by `from_spec`. """ # we can't call Categorization.to_spec here because we need to control ordering # in the returned dict so that we get nicely ordered yaml files. spec = { "name": self.name, "title": self.title, "comment": self.comment, "references": self.references, "institution": self.institution, "hierarchical": self.hierarchical, "last_update": self.last_update.isoformat(), } if self.version is not None: spec["version"] = self.version spec["total_sum"] = self.total_sum if self.canonical_top_level_category is not None: spec[ "canonical_top_level_category"] = self.canonical_top_level_category.codes[ 0] spec["categories"] = {} for cat in self.values(): code, cat_spec = cat.to_spec() spec["categories"][code] = cat_spec return spec @property def _canonical_subgraph(self) -> nx.DiGraph: # TODO: from python 3.8 on, there is functools.cached_property to # automatically cache this - as soon as we drop python 3.7 support, we can # easily add it. return nx.DiGraph( self._graph.edge_subgraph( ((u, v, 0) for (u, v, s) in self._graph.edges(data="set") if s == 0))) def _show_subtree_children( self, children: typing.Iterable[HierarchicalCategory], format_func: typing.Callable, prefix: str, maxdepth: typing.Optional[int], ) -> str: children_sorted = natsort.natsorted(children, key=format_func) r = "".join( self._show_subtree( node=child, prefix=prefix + "│", format_func=format_func, maxdepth=maxdepth, ) for child in children_sorted[:-1]) # Last child needs to be called slightly differently r += self._show_subtree( node=children_sorted[-1], prefix=prefix + " ", last=True, format_func=format_func, maxdepth=maxdepth, ) return r @staticmethod def _render_node( node: HierarchicalCategory, last: bool, prefix: str, format_func: typing.Callable[[HierarchicalCategory], str], ): formatted = format_func(node) if prefix: if last: return f"{prefix[:-1]}╰{formatted}\n" else: return f"{prefix[:-1]}├{formatted}\n" else: return f"{formatted}\n" def _show_subtree( self, *, node: HierarchicalCategory, prefix="", last=False, format_func: typing.Callable[[HierarchicalCategory], str] = str, maxdepth: typing.Optional[int], ) -> str: """Recursively-called function to show a subtree starting at the given node.""" r = self._render_node(node, last=last, prefix=prefix, format_func=format_func) if maxdepth is not None: maxdepth -= 1 if maxdepth == 0: # maxdepth reached, nothing more to do return r child_sets = node.children if len(child_sets) == 1: children = child_sets[0] if children: r += self._show_subtree_children( children=children, format_func=format_func, maxdepth=maxdepth, prefix=prefix, ) elif len(child_sets) > 1: prefix += "║" i = 1 for children in child_sets: if children: if i == 1: r += ( f"{prefix[:-1]}╠╤══ ('{format_func(node)}'s children," f" option 1)\n") else: r += ( f"{prefix[:-1]}╠╕ ('{format_func(node)}'s children," f" option {i})\n") r += self._show_subtree_children( children=children, format_func=format_func, maxdepth=maxdepth, prefix=prefix, ) i += 1 r += f"{prefix[:-1]}╚═══\n" return r def show_as_tree( self, *, format_func: typing.Callable[[HierarchicalCategory], str] = str, maxdepth: typing.Optional[int] = None, root: typing.Optional[typing.Union[HierarchicalCategory, str]] = None, ) -> str: """Format the hierarchy as a tree. Starting from the given root, or - if no root is given - the top-level categories (i.e. categories without parents), the tree of categories that are transitive children of the root is show, with children connected to their parents using lines. If a parent category has one set of children, the children are connected to each other and the parent with a simple line. If a parent category has multiple sets of children, the sets are connected to parent with double lines and the children in a set are connected to each other with simple lines. Parameters ---------- format_func: callable, optional Function to call to format categories for display. Each category is formatted for display using format_func(category), so format_func should return a string without line breaks, otherwise the tree will look weird. By default, str() is used, so that the first code and the title of the category are used. maxdepth: int, optional Maximum depth to show in the tree. By default, goes to arbitrary depth. root: HierarchicalCategory or str, optional HierarchicalCategory object or code to use as the top-most category. If not given, the whole tree is shown, starting from all categories without parents. Returns ------- tree_str: str Representation of the hierarchy as formatted string. print() it for optimal viewing. """ if root is None: top_level_nodes = (node for node in self.values() if not node.parents) else: if not isinstance(root, HierarchicalCategory): root = self[root] top_level_nodes = [root] return "\n".join((self._show_subtree( node=top_level_node, format_func=format_func, maxdepth=maxdepth)) for top_level_node in top_level_nodes) def extend( self, *, categories: typing.Optional[typing.Dict[str, typing.Dict]] = None, alternative_codes: typing.Optional[typing.Dict[str, str]] = None, children: typing.Optional[typing.List[tuple]] = None, name: str, title: typing.Optional[str] = None, comment: typing.Optional[str] = None, last_update: typing.Optional[datetime.date] = None, ) -> "HierarchicalCategorization": """Extend the categorization with additional categories and relationships, yielding a new categorization. Metadata: the ``name``, ``title``, ``comment``, and ``last_update`` are updated automatically (see below), the ``institution`` and ``references`` are deleted and the values for ``version``, ``hierarchical``, ``total_sum``, and ``canonical_top_level_category`` are kept. You can set more accurate metadata (for example, your institution) on the returned object if needed. Parameters ---------- categories: dict, optional Map of new category codes to their specification. The specification is a dictionary with the keys "title", optionally "comment", and optionally "alternative_codes". alternative_codes: dict, optional Map of new alternative codes. A dictionary with the new alternative code as key and existing code as value. children: list, optional List of ``(parent, (child1, child2, …))`` pairs. The given relationships will be inserted in the extended categorization. name : str The name of your extension. The returned Categorization will have a name of "{old_name}_{name}", indicating that it is an extension of the underlying Categorization. title : str, optional A string to add to the original title. If not provided, " + {name}" will be used. comment : str, optional A string to add to the original comment. If not provided, " extended by {name}" will be used. last_update : datetime.date, optional The date of the last update to this extension. Today will be used if not provided. Returns ------- Extended categorization : HierarchicalCategorization """ spec = self._extend_prepare( name=name, categories=categories, title=title, comment=comment, last_update=last_update, alternative_codes=alternative_codes, ) if children is not None: for parent, child_set in children: if "children" not in spec["categories"][parent]: spec["categories"][parent]["children"] = [] spec["categories"][parent]["children"].append(child_set) return HierarchicalCategorization.from_spec(spec) @property def df(self) -> "pandas.DataFrame": """All category codes as a pandas dataframe.""" titles = [] comments = [] alternative_codes = [] children = [] for cat in self.values(): titles.append(cat.title) comments.append(cat.comment) alternative_codes.append(cat.codes[1:]) children.append( tuple( tuple(sorted(c.codes[0] for c in cs)) for cs in cat.children)) return pandas.DataFrame( index=self.keys(), data={ "title": titles, "comment": comments, "alternative_codes": alternative_codes, "children": children, }, ) def level(self, cat: typing.Union[str, HierarchicalCategory]) -> int: """The level of the given category. The canonical top-level category has level 1 and its children have level 2 etc. To calculate the level, first only the first ("canonical") set of children is considered. Only if no path from the canonical top-level category to the given category can be found all other sets of children are considered to calculate the level. """ if not isinstance(cat, HierarchicalCategory): return self.level(self[cat]) if not isinstance(self.canonical_top_level_category, HierarchicalCategory): raise ValueError( "Can not calculate the level without a canonical_top_level_category." ) # first use the canonical subgraph for shortest paths csg = self._canonical_subgraph try: sp = nx.shortest_path_length(csg, self.canonical_top_level_category, cat) except (nx.NetworkXNoPath, nx.NodeNotFound): try: sp = nx.shortest_path_length(self._graph, self.canonical_top_level_category, cat) except (nx.NetworkXNoPath, nx.NodeNotFound): raise ValueError( f"{cat.codes[0]!r} is not a transitive child of the " f"canonical top level " f"{self.canonical_top_level_category.codes[0]!r}.") return sp + 1 def parents( self, cat: typing.Union[str, HierarchicalCategory] ) -> typing.Set[HierarchicalCategory]: """The direct parents of the given category.""" if not isinstance(cat, HierarchicalCategory): return self.parents(self._all_codes_map[cat]) return set(self._graph.predecessors(cat)) def ancestors( self, cat: typing.Union[str, HierarchicalCategory] ) -> typing.Set[HierarchicalCategory]: """All ancestors of the given category, i.e. the direct parents and their parents, etc.""" if not isinstance(cat, HierarchicalCategory): return self.ancestors(self._all_codes_map[cat]) return set(nx.ancestors(self._graph, cat)) def children( self, cat: typing.Union[str, HierarchicalCategory] ) -> typing.List[typing.Set[HierarchicalCategory]]: """The list of sets of direct children of the given category.""" if not isinstance(cat, HierarchicalCategory): return self.children(self._all_codes_map[cat]) children_dict = {} for (_, child, setno) in self._graph.edges(cat, "set"): if setno not in children_dict: children_dict[setno] = [] children_dict[setno].append(child) return [set(children_dict[x]) for x in sorted(children_dict.keys())] def descendants(self, cat: typing.Union[str, HierarchicalCategory]): """All descendants of the given category, i.e. the direct children and their children, etc.""" if not isinstance(cat, HierarchicalCategory): return self.descendants(self._all_codes_map[cat]) return set(nx.descendants(self._graph, cat))
class Categorization: """A single categorization system. A categorization system comprises a set of categories, and their relationships as well as metadata describing the categorization system itself. Use the categorization object like a dictionary, where codes can be translated to their meaning using ``cat[code]`` and all codes are available using ``cat.keys()``. Metadata about the categorization is provided in attributes. If `pandas` is available, you can access a `pandas.DataFrame` with all category codes, and their meanings at ``cat.df``. Attributes ---------- name : str The unique name/code references : str Citable reference(s) title : str A short, descriptive title for humans comment : str Notes and explanations for humans institution : str Where the categorization originates last_update : datetime.date The date of the last change version : str, optional The version of the Categorization, if there are multiple versions hierarchical : bool True if descendants and ancestors are defined """ hierarchical: bool = False _strictyaml_schema = sy.Map({ "name": sy.Str(), "title": sy.Str(), "comment": sy.Str(), "references": sy.Str(), "institution": sy.Str(), "last_update": sy.Str(), "hierarchical": sy.Bool(), sy.Optional("version"): sy.Str(), "categories": sy.MapPattern(sy.Str(), Category._strictyaml_schema), }) def _add_categories(self, categories: typing.Dict[str, typing.Dict]): for code, spec in categories.items(): cat = Category.from_spec(code=code, spec=spec, categorization=self) self._primary_code_map[code] = cat for icode in cat.codes: self._all_codes_map[icode] = cat def __init__( self, *, categories: typing.Dict[str, typing.Dict], name: str, title: str, comment: str, references: str, institution: str, last_update: datetime.date, version: typing.Optional[str] = None, ): self._primary_code_map = {} self._all_codes_map = {} self.name = name self.references = references self.title = title self.comment = comment self.institution = institution self.last_update = last_update self.version = version self._add_categories(categories) # is filled in __init__.py to contain all categorizations self._cats: typing.Dict[str, "Categorization"] = {} def __hash__(self): return hash(self.name) @classmethod def from_yaml( cls, filepath: typing.Union[str, pathlib.Path, typing.IO[bytes]] ) -> "Categorization": """Read Categorization from a StrictYaml file.""" try: yaml = sy.load(filepath.read(), schema=cls._strictyaml_schema) except AttributeError: with open(filepath) as fd: yaml = sy.load(fd.read(), schema=cls._strictyaml_schema) return cls.from_spec(yaml.data) @classmethod def from_spec(cls, spec: typing.Dict[str, typing.Any]) -> "Categorization": """Create Categorization from a Dictionary specification.""" if spec["hierarchical"] != cls.hierarchical: raise ValueError( "Specification is for a hierarchical categorization, use" "HierarchicalCategorization.from_spec.") last_update = datetime.date.fromisoformat(spec["last_update"]) return cls( categories=spec["categories"], name=spec["name"], title=spec["title"], comment=spec["comment"], references=spec["references"], institution=spec["institution"], last_update=last_update, version=spec.get("version", None), ) @staticmethod def from_pickle( filepath: typing.Union[str, pathlib.Path, typing.IO[bytes]] ) -> "Categorization": """De-serialize Categorization from a file written by to_pickle. Note that this uses the pickle module, which executes arbitrary code in the provided file. Only load from pickle files that you trust.""" return from_pickle(filepath) def to_spec(self) -> typing.Dict[str, typing.Any]: """Turn this categorization into a specification dictionary ready to be written to a yaml file. Returns ------- spec: dict Specification dictionary understood by `from_spec`. """ spec = { "name": self.name, "title": self.title, "comment": self.comment, "references": self.references, "institution": self.institution, "hierarchical": self.hierarchical, "last_update": self.last_update.isoformat(), } if self.version is not None: spec["version"] = self.version spec["categories"] = {} for cat in self.values(): code, cat_spec = cat.to_spec() spec["categories"][code] = cat_spec return spec def to_yaml(self, filepath: typing.Union[str, pathlib.Path]) -> None: """Write to a YAML file.""" spec = self.to_spec() yaml = YAML() yaml.default_flow_style = False with open(filepath, "w") as fd: yaml.dump(spec, fd) def to_pickle(self, filepath: typing.Union[str, pathlib.Path]) -> None: """Serialize to a file using python's pickle.""" spec = self.to_spec() with open(filepath, "wb") as fd: pickle.dump(spec, fd, protocol=4) def keys(self) -> typing.KeysView[str]: """Iterate over the codes for all categories.""" return self._primary_code_map.keys() def values(self) -> typing.ValuesView[Category]: """Iterate over the categories.""" return self._primary_code_map.values() def items(self) -> typing.ItemsView[str, Category]: """Iterate over (primary code, category) pairs.""" return self._primary_code_map.items() def all_keys(self) -> typing.KeysView[str]: """Iterate over all codes for all categories.""" return self._all_codes_map.keys() def __iter__(self) -> typing.Iterable[str]: return iter(self._primary_code_map) def __getitem__(self, code: str) -> Category: """Get the category for a code.""" return self._all_codes_map[code] def __contains__(self, code: str) -> bool: """Can the code be mapped to a category?""" return code in self._all_codes_map def __len__(self) -> int: return len(self._primary_code_map) def __repr__(self) -> str: return ( f"<Categorization {self.name} {self.title!r} with {len(self)} categories>" ) def __str__(self) -> str: return self.name @property def df(self) -> "pandas.DataFrame": """All category codes as a pandas dataframe.""" titles = [] comments = [] alternative_codes = [] for cat in self.values(): titles.append(cat.title) comments.append(cat.comment) alternative_codes.append(cat.codes[1:]) return pandas.DataFrame( index=self.keys(), data={ "title": titles, "comment": comments, "alternative_codes": alternative_codes, }, ) def _extend_prepare( self, *, categories: typing.Optional[typing.Dict[str, typing.Dict]] = None, alternative_codes: typing.Optional[typing.Dict[str, str]] = None, name: str, title: typing.Optional[str] = None, comment: typing.Optional[str] = None, last_update: typing.Optional[datetime.date] = None, ) -> typing.Dict[str, typing.Any]: spec = self.to_spec() spec["name"] = f"{self.name}_{name}" spec["references"] = "" spec["institution"] = "" if title is None: spec["title"] = f"{self.title} + {name}" else: spec["title"] = self.title + title if comment is None: spec["comment"] = f"{self.comment} extended by {name}" else: spec["comment"] = self.comment + comment if last_update is None: spec["last_update"] = datetime.date.today().isoformat() else: spec["last_update"] = last_update.isoformat() if categories is not None: spec["categories"].update(categories) if alternative_codes is not None: for alias, primary in alternative_codes.items(): if "alternative_codes" not in spec["categories"][primary]: spec["categories"][primary]["alternative_codes"] = [] spec["categories"][primary]["alternative_codes"].append(alias) return spec def extend( self, *, categories: typing.Optional[typing.Dict[str, typing.Dict]] = None, alternative_codes: typing.Optional[typing.Dict[str, str]] = None, name: str, title: typing.Optional[str] = None, comment: typing.Optional[str] = None, last_update: typing.Optional[datetime.date] = None, ) -> "Categorization": """Extend the categorization with additional categories, yielding a new categorization. Metadata: the ``name``, ``title``, ``comment``, and ``last_update`` are updated automatically (see below), the ``institution`` and ``references`` are deleted and the values for ``version`` and ``hierarchical`` are kept. You can set more accurate metadata (for example, your institution) on the returned object if needed. Parameters ---------- categories: dict, optional Map of new category codes to their specification. The specification is a dictionary with the keys "title", optionally "comment", and optionally "alternative_codes". alternative_codes: dict, optional Map of new alternative codes. A dictionary with the new alternative code as key and existing code as value. name : str The name of your extension. The returned Categorization will have a name of "{old_name}_{name}", indicating that it is an extension of the underlying Categorization. title : str, optional A string to add to the original title. If not provided, " + {name}" will be used. comment : str, optional A string to add to the original comment. If not provided, " extended by {name}" will be used. last_update : datetime.date, optional The date of the last update to this extension. Today will be used if not provided. Returns ------- Extended categorization : Categorization """ spec = self._extend_prepare( name=name, categories=categories, title=title, comment=comment, last_update=last_update, alternative_codes=alternative_codes, ) return Categorization.from_spec(spec) def __eq__(self, other): if not isinstance(other, Categorization): return False if self.name != other.name: return False return self._primary_code_map == other._primary_code_map def conversion_to( self, other: typing.Union["Categorization", str]) -> Conversion: """Get conversion to other categorization. If conversion rules for this conversion are not included, raises NotImplementedError.""" if isinstance(other, str): other_name = other else: other_name = other.name forward_csv_name = f"conversion.{self.name}.{other_name}.csv" if importlib.resources.is_resource(data, forward_csv_name): fd = importlib.resources.open_text(data, forward_csv_name) return ConversionSpec.from_csv(fd).hydrate(cats=self._cats) reversed_csv_name = f"conversion.{other_name}.{self.name}.csv" if importlib.resources.is_resource(data, reversed_csv_name): fd = importlib.resources.open_text(data, reversed_csv_name) return ConversionSpec.from_csv(fd).hydrate( cats=self._cats).reversed() raise NotImplementedError( f"Conversion between {self.name} and {other_name} not yet included." )
class PipelineConfig: """Pipeline run configuration. Attributes: SCHEMA: class attribute containing the YAML schema for the run config. TEMPLATE_PATH: class attribute containing the path to the default Jinja2 run config template file. epoch_based: boolean indicating if the original run config inputs were provided with user-defined epochs. Raises: PipelineConfigError: the input YAML config violates the schema. """ # key: config input type, value: boolean indicating if it is required _REQUIRED_INPUT_TYPES: Dict[str, bool] = { "image": True, "selavy": True, "noise": True, "background": False, } # Inputs may be optional. All inputs will be either a unique list or a mapping (epoch # mode and/or glob expressions). These possibilities cannot be validated at once, so # it will accept Any and then revalidate later. _SCHEMA_INPUTS = {(k if v else yaml.Optional(k)): yaml.MapPattern(yaml.Str(), yaml.Any()) | yaml.UniqueSeq(yaml.Str()) for k, v in _REQUIRED_INPUT_TYPES.items()} _SCHEMA_GLOB_INPUTS = {"glob": yaml.Str() | yaml.Seq(yaml.Str())} _VALID_ASSOC_METHODS: List[str] = ["basic", "advanced", "deruiter"] SCHEMA = yaml.Map({ "run": yaml.Map({ "path": yaml.Str(), "suppress_astropy_warnings": yaml.Bool(), }), "inputs": yaml.Map(_SCHEMA_INPUTS), "source_monitoring": yaml.Map({ "monitor": yaml.Bool(), "min_sigma": yaml.Float(), "edge_buffer_scale": yaml.Float(), "cluster_threshold": yaml.Float(), "allow_nan": yaml.Bool(), }), "source_association": yaml.Map({ "method": yaml.Enum(_VALID_ASSOC_METHODS), "radius": yaml.Float(), "deruiter_radius": yaml.Float(), "deruiter_beamwidth_limit": yaml.Float(), "parallel": yaml.Bool(), "epoch_duplicate_radius": yaml.Float(), }), "new_sources": yaml.Map({ "min_sigma": yaml.Float(), }), "measurements": yaml.Map({ "source_finder": yaml.Enum(["selavy"]), "flux_fractional_error": yaml.Float(), "condon_errors": yaml.Bool(), "selavy_local_rms_fill_value": yaml.Float(), "write_arrow_files": yaml.Bool(), "ra_uncertainty": yaml.Float(), "dec_uncertainty": yaml.Float(), }), "variability": yaml.Map({ "source_aggregate_pair_metrics_min_abs_vs": yaml.Float(), }), }) # path to default run config template TEMPLATE_PATH: str = os.path.join(settings.BASE_DIR, "vast_pipeline", "config_template.yaml.j2") def __init__(self, config_yaml: yaml.YAML): """Initialises PipelineConfig with parsed (but not necessarily validated) YAML. Args: config_yaml (yaml.YAML): Input YAML, usually the output of `strictyaml.load`. Raises: PipelineConfigError: The input YAML config violates the schema. """ self._yaml: yaml.YAML = config_yaml # The epoch_based parameter below is for if the user has entered just lists we # don't have access to the dates until the Image instances are created. So we # flag this as true so that we can reorder the epochs once the date information # is available. It is also recorded in the database such that there is a record # of the fact that the run was processed in an epoch based mode. self.epoch_based: bool # Determine if epoch-based association should be used based on input files. # If inputs have been parsed to dicts, then the user has defined their own epochs. # If inputs have been parsed to lists, we must convert to dicts and auto-fill # the epochs. # ensure the inputs are valid in case .from_file(..., validate=False) was used try: self._validate_inputs() except yaml.YAMLValidationError as e: raise PipelineConfigError(e) # detect simple list inputs and convert them to epoch-mode inputs for input_file_type in self._REQUIRED_INPUT_TYPES: # skip missing optional input types, e.g. background if (not self._REQUIRED_INPUT_TYPES[input_file_type] and input_file_type not in self["inputs"]): continue input_files = self["inputs"][input_file_type] # resolve glob expressions if present if isinstance(input_files, dict): # must be either a glob expression, list of glob expressions, or epoch-mode if "glob" in input_files: # resolve the glob expressions self.epoch_based = False file_list = self._resolve_glob_expressions( self._yaml["inputs"][input_file_type]) self._yaml["inputs"][ input_file_type] = self._create_input_epochs(file_list) else: # epoch-mode with either a list of files or glob expressions self.epoch_based = True for epoch in input_files: if "glob" in input_files[epoch]: # resolve the glob expressions file_list = self._resolve_glob_expressions( self._yaml["inputs"][input_file_type][epoch]) self._yaml["inputs"][input_file_type][ epoch] = file_list else: # Epoch-based association not requested and no globs present. Replace # input lists with dicts where each input file has it's own epoch. self.epoch_based = False self._yaml["inputs"][ input_file_type] = self._create_input_epochs(input_files) def __getitem__(self, name: str): """Retrieves the requested YAML chunk as a native Python object.""" return self._yaml[name].data @staticmethod def _create_input_epochs(input_files: List[str]) -> Dict[str, List[str]]: """Convert a list of input files into a dict where each list element is placed into its own list of length 1 and mapped to by a unique key, a string that is a 0-padded integer. For example, ["A", "B", "C", ..., "Z"] would be converted to { "01": ["A"], "02": ["B"], "03": ["C"], ... "26": ["Z"], } The keys are 0-padded to ensure the strings are sortable regardless of the length of `input_files`. This conversion is required for run configs that are not defined in "epoch mode" as after config validation, the pipeline assumes that there will be defined epochs. Args: input_files (List[str]): the list of input file paths. Returns: Dict[str, List[str]]: the input file paths mapped to by unique epoch keys. """ pad_width = len(str(len(input_files))) input_files_dict = { f"{i + 1:0{pad_width}}": [val] for i, val in enumerate(input_files) } return input_files_dict @classmethod def from_file( cls, yaml_path: str, label: str = "run config", validate: bool = True, add_defaults: bool = True, ) -> "PipelineConfig": """Create a PipelineConfig object from a run configuration YAML file. Args: yaml_path: Path to the run config YAML file. label: A label for the config object that will be used in error messages. Default is "run config". validate: Perform config schema validation immediately after loading the config file. If set to False, the full schema validation will not be performed until PipelineConfig.validate() is explicitly called. The inputs are always validated regardless. Defaults to True. add_defaults: Add missing configuration parameters using configured defaults. The defaults are read from the Django settings file. Defaults to True. Raises: PipelineConfigError: The run config YAML file fails schema validation. """ schema = PipelineConfig.SCHEMA if validate else yaml.Any() with open(yaml_path) as fh: config_str = fh.read() try: config_yaml = yaml.load(config_str, schema=schema, label=label) except yaml.YAMLValidationError as e: raise PipelineConfigError(e) if add_defaults: # make a template config based on defaults config_defaults_str = make_config_template( cls.TEMPLATE_PATH, **settings.PIPE_RUN_CONFIG_DEFAULTS, ) config_defaults_dict: Dict[str, Any] = yaml.load( config_defaults_str).data # merge configs config_dict = dict_merge(config_defaults_dict, config_yaml.data) config_yaml = yaml.as_document(config_dict, schema=schema, label=label) return cls(config_yaml) @staticmethod def _resolve_glob_expressions(input_files: yaml.YAML) -> List[str]: """Resolve glob expressions in a YAML chunk, returning a list of sorted file paths. Args: input_files (yaml.YAML): A validated YAML chunk of input files that is a mapping of "glob" to either a single glob expression or a sequence of glob expressions. e.g. --- glob: /foo/*.fits --- or --- glob: - /foo/A/*.fits - /foo/B/*.fits --- Returns: List[str]: The resolved file paths in lexicographical order. """ file_list: List[str] = [] if input_files["glob"].is_sequence(): for glob_expr in input_files["glob"]: file_list.extend(sorted(list(glob(glob_expr.data)))) else: file_list.extend(sorted(list(glob(input_files["glob"].data)))) return file_list def _validate_inputs(self): """Validate the input files. Each input type (i.e. image, selavy, noise, background) may be given as one of the following: 1. A list of files. 2. A glob expression. 3. A list of glob expressions. 4. A mapping of epochs to any of the above. Each input type is validated individually. Extra input validation steps, e.g. to ensure each input type has the same number of files, are performed in `validate()`. Raises: PipelineConfigError: The run config inputs fail schema validation. """ try: # first pass validation self._yaml["inputs"].revalidate(yaml.Map(self._SCHEMA_INPUTS)) for input_type in self._yaml["inputs"]: input_yaml = self._yaml["inputs"][input_type] if input_yaml.is_mapping(): # inputs are either epoch-mode, glob expressions, or both if "glob" in input_yaml: # validate globs input_yaml.revalidate( yaml.Map(self._SCHEMA_GLOB_INPUTS)) else: # validate epoch mode which may also contain glob expressions input_yaml.revalidate( yaml.MapPattern( yaml.Str(), yaml.UniqueSeq(yaml.Str()) | yaml.Map(self._SCHEMA_GLOB_INPUTS), )) except yaml.YAMLValidationError as e: raise PipelineConfigError(e) def validate(self, user: User = None): """Perform extra validation steps not covered by the default schema validation. The following checks are performed in order. If a check fails, an exception is raised and no further checks are performed. 1. All input files have the same number of epochs and the same number of files per epoch. 2. The number of input files does not exceed the configured pipeline maximum. This is only enforced if a regular user (not staff/admin) created the run. 3. There are at least two input images. 4. Background input images are required is source monitoring is turned on. 5. All input files exist. Args: user: Optional. The User of the request if made through the UI. Defaults to None. Raises: PipelineConfigError: a validation check failed. """ # run standard base schema validation try: self._yaml.revalidate(self.SCHEMA) except yaml.YAMLValidationError as e: raise PipelineConfigError(e) # epochs defined for images only, used as the reference list of epochs epochs_image = self["inputs"]["image"].keys() # map input type to a set of epochs epochs_by_input_type = { input_type: set(self["inputs"][input_type].keys()) for input_type in self["inputs"].keys() } # map input type to total number of files from all epochs n_files_by_input_type = {} for input_type, epochs_set in epochs_by_input_type.items(): n_files_by_input_type[input_type] = 0 for epoch in epochs_set: n_files_by_input_type[input_type] += len( self["inputs"][input_type][epoch]) n_files = 0 # total number of input files # map input type to a mapping of epoch to file count epoch_n_files: Dict[str, Dict[str, int]] = {} for input_type in self["inputs"].keys(): epoch_n_files[input_type] = {} for epoch in self["inputs"][input_type].keys(): n = len(self["inputs"][input_type][epoch]) epoch_n_files[input_type][epoch] = n n_files += n # Note by this point the input files have been converted to a mapping regardless # of the user's input format. # Ensure all input file types have the same epochs. try: for input_type in self["inputs"].keys(): self._yaml["inputs"][input_type].revalidate( yaml.Map({ epoch: yaml.Seq(yaml.Str()) for epoch in epochs_image })) except yaml.YAMLValidationError: # number of epochs could be different or the name of the epochs may not match # find out which by counting the number of unique epochs per input type n_epochs_per_input_type = [ len(epochs_set) for epochs_set in epochs_by_input_type.values() ] if len(set(n_epochs_per_input_type)) > 1: if self.epoch_based: error_msg = "The number of epochs must match for all input types.\n" else: error_msg = "The number of files must match for all input types.\n" else: error_msg = "The name of the epochs must match for all input types.\n" counts_str = "" if self.epoch_based: for input_type in epoch_n_files.keys(): n = len(epoch_n_files[input_type]) counts_str += ( f"{input_type} has {n} epoch{'s' if n > 1 else ''}:" f" {', '.join(epoch_n_files[input_type].keys())}\n") else: for input_type, n in n_files_by_input_type.items(): counts_str += f"{input_type} has {n} file{'s' if n > 1 else ''}\n" counts_str = counts_str[:-1] raise PipelineConfigError(error_msg + counts_str) # Ensure all input file type epochs have the same number of files per epoch. # This could be combined with the number of epochs validation above, but we want # to give specific feedback to the user on failure. try: for input_type in self["inputs"].keys(): self._yaml["inputs"][input_type].revalidate( yaml.Map({ epoch: yaml.FixedSeq([ yaml.Str() for _ in range(epoch_n_files["image"][epoch]) ]) for epoch in epochs_image })) except yaml.YAMLValidationError: # map input type to a mapping of epoch to file count file_counts_str = "" for input_type in self["inputs"].keys(): file_counts_str += f"{input_type}:\n" for epoch in sorted(self["inputs"][input_type].keys()): file_counts_str += ( f" {epoch}: {len(self['inputs'][input_type][epoch])}\n" ) file_counts_str = file_counts_str[:-1] raise PipelineConfigError( "The number of files per epoch does not match between input types.\n" + file_counts_str) # ensure the number of input files is less than the user limit if user and n_files > settings.MAX_PIPERUN_IMAGES: if user.is_staff: logger.warning( "Maximum number of images" f" ({settings.MAX_PIPERUN_IMAGES}) rule bypassed with" " admin status.") else: raise PipelineConfigError( f"The number of images entered ({n_files})" " exceeds the maximum number of images currently" f" allowed ({settings.MAX_PIPERUN_IMAGES}). Please ask" " an administrator for advice on processing your run.") # ensure at least two inputs are provided check = [ n_files_by_input_type[input_type] < 2 for input_type in self["inputs"].keys() ] if any(check): raise PipelineConfigError( "Number of image files must to be larger than 1") # ensure background files are provided if source monitoring is requested if self["source_monitoring"]["monitor"]: inputs_schema = yaml.Map({ k: yaml.UniqueSeq(yaml.Str()) | yaml.MapPattern(yaml.Str(), yaml.UniqueSeq(yaml.Str())) for k in self._REQUIRED_INPUT_TYPES }) try: self._yaml["inputs"].revalidate(inputs_schema) except yaml.YAMLValidationError: raise PipelineConfigError( "Background files must be provided if source monitoring is enabled." ) # ensure the input files all exist for input_type in self["inputs"].keys(): for epoch, file_list in self["inputs"][input_type].items(): for file in file_list: if not os.path.exists(file): raise PipelineConfigError(f"{file} does not exist.") def check_prev_config_diff(self) -> bool: """ Checks if the previous config file differs from the current config file. Used in add mode. Only returns true if the images are different and the other general settings are the same (the requirement for add mode). Otherwise False is returned. Returns: True if images are different but general settings are the same, otherwise False is returned. """ prev_config = PipelineConfig.from_file( os.path.join(self["run"]["path"], "config_prev.yaml"), label="previous run config", ) if self._yaml == prev_config._yaml: return True # are the input image files different? images_changed = self["inputs"]["image"] != prev_config["inputs"][ "image"] # are all the non-input file configs the same? config_dict = self._yaml.data prev_config_dict = prev_config._yaml.data _ = config_dict.pop("inputs") _ = prev_config_dict.pop("inputs") settings_check = config_dict == prev_config_dict if images_changed and settings_check: return False return True