def strips_planner(universe, search, max_time=INF, max_cost=INF, verbose=False): initial_atoms = filter(lambda atom: not isinstance(atom, Initialize), universe.get_initial_atoms()) objects = universe.type_to_objects problem = STRIPStreamProblem(initial_atoms, universe.goal_formula, universe.actions + universe.axioms, []) # TODO - constants? static_map = {pr: [] for pr in problem.get_static_predicates()} for atom in initial_atoms: if atom.predicate in static_map: static_map[atom.predicate].append(atom) initial_state = State(PyLiteral(atom) for atom in initial_atoms if atom.predicate not in static_map) dnf_goal = list(universe.goal_formula.propositional(objects).get_literals()) if not dnf_goal: return [] if len(dnf_goal) != 1: raise NotImplementedError('Currently only support a conjunctive goal: %s'%universe.goal_formula) goal_state = PartialState(map(PyLiteral, dnf_goal[0])) strips_actions = list(get_actions(universe.actions, static_map, objects)) strips_axioms = list(get_axioms(universe.axioms, static_map, objects)) if verbose: print 'Actions:', len(strips_actions) print 'Axioms:', len(strips_axioms) plan, state_space = default_derived_plan(initial_state, goal_state, strips_actions, strips_axioms) if verbose: print plan print state_space if plan is None: return None return [(universe.name_to_action[action.lifted.name], action.args) for action in plan.operators]
def compile_problem(oracle): problem = oracle.problem CSpace.robot_base(oracle.robot).set_active() initial_config = Config( base_values_from_full_config(oracle.initial_config.value)) initial_atoms = [ AtConfig(Conf(initial_config)), ] print 'Initial', initial_config.value goal_literals = [AtConfig(Conf(problem.goal_config)) ] if problem.goal_config is not None else [] print 'Goal', problem.goal_config.value actions = [ Move(oracle), ] axioms = [ #InRegionAxiom(), ] cond_streams = [ CollisionFreeTest(oracle), ConfStream(oracle), ] objects = [] return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, objects)
def constraint_to_stripstream(fts_problem, do_axioms=True, test_streams=True): expanded_state_vars = expand_variables(fts_problem.state_vars) #expanded_control_vars = expand_variables(fts_problem.control_vars) # TODO - use this to check variables var_map = fts_problem.get_variable_map() axiom_map = {} initial_atoms = convert_initial_state(fts_problem.initial_state, var_map, expanded_state_vars) goal_literals = convert_goal_constraints(fts_problem.goal_constraints, var_map, axiom_map) actions, axioms = convert_transition(fts_problem.transition, var_map, axiom_map) cond_streams = map( convert_sampler, fts_problem.samplers) # TODO - prune not useful samplers convert_constraint_forms(fts_problem.get_constraint_forms(), initial_atoms, cond_streams, test_streams=test_streams) objects = convert_domains(fts_problem.state_vars + fts_problem.control_vars) return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, objects)
def observable_problem(belief, goal, costs=True): # NOTE - costs is really important here #objects = belief.objLoc.keys() locations = belief.occupancies.keys() states = [dirty, clean, dry, wet] initial_atoms = [] occupied = set() for obj in belief.objLoc.keys(): dist = belief.objLocDist(obj) loc, p = dist.computeMPE() # TODO - concentration inequalities for Gaussian if p >= LOC_CONFIDENCE: initial_atoms.append(At(obj, loc)) occupied.add(loc) else: initial_atoms.append(UnsureLoc(obj)) for loc in locations: p = dist.prob(loc) cost = int(COST_SCALE*1./max(p, MIN_P)) if costs else COST_SCALE*1 # TODO - set to infinity if too large (equivalent to blocking) initial_atoms.append(Initialize(FindCost(OBJ(obj), LOC(loc)), cost)) #if p < MIN_CONFIDENCE: # initial_atoms.append(NotAtLoc(obj, loc)) for obj in belief.objState.keys(): dist = belief.objState[obj] state, p = dist.computeMPE() if p >= STATE_CONFIDENCE: initial_atoms.append(HasState(obj, state)) else: initial_atoms.append(UnsureState(obj)) for state in states: p = dist.prob(state) cost = int(COST_SCALE*1./max(p, MIN_P)) if costs else COST_SCALE*1 initial_atoms.append(Initialize(InspectStateCost(OBJ(obj), STATE(state)), cost)) #if p < MIN_CONFIDENCE: # initial_atoms.append(NotHasState(obj, loc)) for loc in belief.occupancies.keys(): if loc == 'washer': initial_atoms.append(IsWasher(loc)) elif loc == 'painter': initial_atoms.append(IsPainter(loc)) elif loc == 'dryer': initial_atoms.append(IsDryer(loc)) goal_literals = [] for fluent in goal.fluents: if isinstance(fluent, Bd): literal, arg, prob = fluent.args if isinstance(literal, ObjLoc): goal_literals.append(At(literal.args[0], literal.value)) elif isinstance(literal, ObjState): goal_literals.append(HasState(literal.args[0], arg)) elif isinstance(literal, toyTest.Clear): goal_literals.append(Clear(literal.args[0])) else: raise NotImplementedError(literal) else: raise NotImplementedError(fluent) return STRIPStreamProblem(initial_atoms, goal_literals, actions, [], [])
def get_problem(): region = [1, 2, 3] #mergeable_types = {BLOCK} block = C('block%s' % 1, BLOCK) obstacle = C('block%s' % 2, BLOCK) blocks = [block] #blocks = [block, obstacle] pose = Pose(10) config = Config(0) region = C('region%s' % 1, REGION) initial_atoms = [ AtConfig(config), HandEmpty(), AtPose(block, pose), #AtPose(obstacle, Pose(20)), #Unsafe(pose), ] + [ #AtPose(obj, pose) for obj, pose in object_poses.iteritems() ] goal_literals = [ Holding(block), #Not(HandEmpty(robot)), # NOTE - negative goal #Not(AtPose(obj, Pose(0))), #AtPose(block, Pose(20)), #AtPose(obj, Pose(4)), #AtConfig(Config(5)), #AtConfig(robot, Config(4)), #InRegion(block, region), ] operators = [ Move(), Pick(), Place(blocks), #InRegionAxiom(), ] if COLLISIONS: operators.append(SafeAxiom()) cond_streams = [ PoseStream(), #IKStream(), CollisionFreeTest(), ConfigStream(), #IKStreamBad(), IKTest(), ] objects = [ # Assorted objects ] return STRIPStreamProblem(initial_atoms, goal_literals, operators, cond_streams, objects)
def create_problem(): """ Creates a blocksworld STRIPStream problem. :return: a :class:`.STRIPStreamProblem` """ # Data types BLOCK = Type() # Fluent predicates Clear = Pred(BLOCK) OnTable = Pred(BLOCK) ArmEmpty = Pred() Holding = Pred(BLOCK) On = Pred(BLOCK, BLOCK) # Free parameters B1, B2 = Param(BLOCK), Param(BLOCK) rename_easy(locals()) actions = [ Action(name='pickup', parameters=[B1], condition=And(Clear(B1), OnTable(B1), ArmEmpty()), effect=And(Holding(B1), Not(Clear(B1)), Not(OnTable(B1)), Not(ArmEmpty()))), Action(name='putdown', parameters=[B1], condition=Holding(B1), effect=And(Clear(B1), OnTable(B1), ArmEmpty(), Not(Holding(B1)))), Action(name='stack', parameters=[B1, B2], condition=And(Clear(B2), Holding(B1)), effect=And(Clear(B1), On(B1, B2), ArmEmpty(), Not(Clear(B2)), Not(Holding(B1)))), Action(name='unstack', parameters=[B1, B2], condition=And(Clear(B1), On(B1, B2), ArmEmpty()), effect=And(Clear(B2), Holding(B1), Not(Clear(B1)), Not(On(B1, B2)), Not(ArmEmpty()))), ] axioms = [] cond_streams = [] constants = [] initial_atoms = [ OnTable('A'), OnTable('B'), OnTable('C'), Clear('A'), Clear('B'), Clear('C'), ArmEmpty(), ] goal_literals = [On('A', 'B'), On('B', 'C')] return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
def compile_problem(tamp_problem): blocks = [BlockO(block) for block in tamp_problem.get_blocks()] initial_atoms = [ AtConfig(ConfigO(tamp_problem.initial_config)), ] + [ AtPose(BlockO(block), PoseO(pose)) for block, pose in tamp_problem.initial_poses ] + [ IsPose(BlockO(block), PoseO(pose)) for block, pose in tamp_problem.initial_poses ] if tamp_problem.initial_holding is None: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(BlockO(tamp_problem.initial_holding))) goal_literals = [] if tamp_problem.goal_config is not None: goal_literals.append(AtConfig(ConfigO(tamp_problem.goal_config))) if tamp_problem.goal_holding is False: goal_literals.append(HandEmpty()) elif tamp_problem.goal_holding is not None: goal_literals.append(Holding(BlockO(tamp_problem.goal_holding))) for block, goal in tamp_problem.goal_poses: goal_literals.append(AtPose(BlockO(block), PoseO(goal))) for block, goal in tamp_problem.goal_regions: goal_literals.append(InRegion(BlockO(block), RegionO(goal))) operators = [ Pick(), Place(), InRegionAxiom(), ] cond_streams = [ GraspStream(tamp_problem.robot), RegionStream(), RegionTest(), IKStream(tamp_problem), ] if COLLISIONS: operators.append(SafeAxiom()) cond_streams.append(CollisionFreeTest()) if USE_BASE: operators.append(Move(blocks)) operators.append(MoveHolding(blocks)) cond_streams.append(MotionStream(tamp_problem)) objects = [ # Assorted objects RegionO(tamp_problem.env_region), ] return STRIPStreamProblem(initial_atoms, goal_literals, operators, cond_streams, objects)
def observable_problem(env, start, goal): locations = start.details.occupancies.keys() initial_atoms = [] constants = [] occupied = set() for obj in env.objects: for attr in env.objects[obj]: if attr == 'clean': initial_atoms.append(Clean(obj)) elif attr == 'dirty': pass elif attr in locations: initial_atoms.append(At(obj, attr)) occupied.add(attr) else: raise NotImplementedError(attr) for loc in locations: if loc not in occupied: initial_atoms.append(Clear(loc)) constants.append(LOC(loc)) if loc == 'washer': initial_atoms.append(IsWasher(loc)) if loc == 'painter': initial_atoms.append(IsPainter(loc)) if loc == 'dryer': initial_atoms.append(IsDryer(loc)) goal_literals = [] for fluent in goal.fluents: if isinstance(fluent, Bd): literal, arg, prob = fluent.args if isinstance(literal, ObjLoc): goal_literals.append(At(literal.args[0], literal.value)) elif isinstance(literal, ObjState) and arg == 'clean': goal_literals.append(Clean(literal.args[0])) elif isinstance(literal, ObjState) and arg == 'wetPaint': goal_literals.append(WetPaint(literal.args[0])) elif isinstance(literal, ObjState) and arg == 'dryPaint': goal_literals.append(DryPaint(literal.args[0])) else: raise NotImplementedError(literal) else: raise NotImplementedError(fluent) return STRIPStreamProblem(initial_atoms, goal_literals, actions, [], constants)
def compile_belief(belief, goal): constants = map(OBJ, belief.objLoc.keys()) + map(LOC, belief.occupancies.keys()) #constants = [] initial_atoms = [UnknownAt(obj) for obj in belief.objLoc] initial_atoms += [ BAt(obj, belief.objLocDist(obj)) for obj in belief.objLoc ] # NOTE - objLocDist != objLoc goal_literals = [] for fluent in goal.fluents: if isinstance(fluent, Bd): literal, arg, prob = fluent.args if isinstance(literal, ObjLoc): goal_literals.append( BAtAbove(literal.args[0], literal.value, prob)) #elif isinstance(literal, ObjState) and arg == 'clean': # goal_literals.append(BClean(literal.args[0], prob)) else: raise NotImplementedError(literal) else: raise NotImplementedError(fluent) cond_streams = [ # Forward streams #LookUpdate(), #PerfectLookUpdate(), # Oriented streams #LookPlan(), #LookJump(), PerfectLookJump(), #PerfectLookJump2(), # Independent costs LookCostFn(), MoveCostFn(), MoveUpdate(), #GeneratorStream(inputs=[L, B, L2], outputs=[B2], conditions=[], effects=[IsMoveUpdate(L, B, L2, B2)], # generator=lambda l, b, l2: [move_update(l, b, l2)[0]]), #TestStream(inputs=[B, L, P], conditions=[], effects=[BSatisfies(B, L, P)], # test=is_above, eager=True), ] return STRIPStreamProblem(initial_atoms, goal_literals, actions, cond_streams, constants)
def get_problem(): satellite = C('satellite1', SATELLITE) satellite_pos = 50 initial_atoms = [ #AtState(Position(0), Velocity(0)), AtState(State((0, 0))), Carrying(satellite), ArePair(State((satellite_pos, 0)), Position(satellite_pos)), Landed(), ] goal_literals = [ #Above(Position(20)), #AtState(State((50, 0))), AtOrbit(satellite, Position(satellite_pos)), Landed(), ] operators = [ Burst(), Glide(), Deploy(), TakeOff(), Land(), AboveAxiom(), ] cond_streams = [ ForwardBurstStream( ), # TODO - BackwardBurstStream in order to move back from the goal #FixedBurstStream(), TargetBurstStream(), ForwardGlideStream(), AboveTest(), ] objects = [ # Assorted objects #Acceleration(ACCELERATION_RANGE[1]), #Acceleration(ACCELERATION_RANGE[0]), #Acceleration(0), ] return STRIPStreamProblem(initial_atoms, goal_literals, operators, cond_streams, objects)
def create_abstract_problem(state, goal): # Goal serialization is basically like this # Necessary and sufficient? tables, initial_poses, initial_config, holding = state # TODO: connect this to goals on the actual states # The quantification of poses and grasps is independent # Conditions are derived or atoms actions = [ Action( name='pick', parameters=[B, S], condition=And(On(B, S), HandEmpty()), #, AtConf(Q)), #condition=And(On(B, S), HandEmpty(), Not(Holding(B))), # , AtConf(Q)), effect=And(Holding(B), Not(On(B, S)), Not(HandEmpty()))), Action( name='place', parameters=[B, S], condition=And(Holding(B)), #, AtConf(Q)), effect=And(On(B, S), HandEmpty(), Not(Holding(B)))), #Action(name='move', parameters=[S1, Q2], # condition=AtConf(Q), # effect=And(AtConf(Q2), Not(AtConf(Q)))), ] axioms = [] cond_streams = [] initial_atoms = [ #AtConf(initial_config), HandEmpty() ] + [On(block, pose.sur) for block, pose in initial_poses.items()] goal_literals = [On(b, s) for b, s in goal.on.items()] if goal.holding is not None: goal_literals.append(Holding(goal.holding)) problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams) return problem
def compile_problem(tamp_problem, stream_fn=generative_streams): blocks = [C(block, BLOCK) for block in tamp_problem.get_blocks()] initial_atoms = [ AtConfig(Config(tamp_problem.initial_config)), ] + [ AtPose(C(block, BLOCK), Pose(pose)) for block, pose in tamp_problem.initial_poses.iteritems() ] if tamp_problem.initial_holding is False: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(C(tamp_problem.initial_holding, BLOCK))) goal_literals = [] if tamp_problem.goal_holding is False: goal_literals.append(HandEmpty()) elif tamp_problem.goal_holding is not None: goal_literals.append(Holding(C(tamp_problem.goal_holding, BLOCK))) for block, goal in tamp_problem.goal_poses.iteritems(): goal_literals.append(AtPose(C(block, BLOCK), Pose(goal))) operators = [ Move(), #H1Pick(), Pick(), Place(blocks), #InRegionAxiom(), ] if COLLISIONS: operators.append(SafeAxiom()) objects = [ # Assorted objects ] return STRIPStreamProblem(initial_atoms, goal_literals, operators, stream_fn(), objects)
def create_problem(goal, obstacles=(), distance=.25, digits=3): """ Creates a Probabilistic Roadmap (PRM) motion planning problem. :return: a :class:`.STRIPStreamProblem` """ # Data types POINT = Type() REGION = Type() # Fluent predicates AtPoint = Pred(POINT) # Derived predicates InRegion = Pred(REGION) #IsReachable = Pred(POINT, POINT) IsReachable = Pred(POINT) # Stream predicates IsEdge = Pred(POINT, POINT) Contained = Pred(POINT, REGION) # Free parameters P1, P2 = Param(POINT), Param(POINT) R = Param(REGION) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='move', parameters=[P1, P2], condition=And(AtPoint(P1), IsReachable(P2)), effect=And(AtPoint(P2), Not(AtPoint(P1)))) ] axioms = [ Axiom(effect=InRegion(R), condition=Exists([P1], And(AtPoint(P1), Contained(P1, R)))), Axiom(effect=IsReachable(P2), condition=Or(AtPoint(P2), Exists([P1], And(IsReachable(P1), IsEdge(P1, P2))))), ] #################### def sampler(): for _ in inf_sequence(): yield [(sample(digits), ) for _ in range(10)] roadmap = set() def test(p1, p2): if not (get_distance(p1, p2) <= distance and is_collision_free( (p1, p2), obstacles)): return False roadmap.add((p1, p2)) return True #################### # Conditional stream declarations cond_streams = [ EasyListGenStream( inputs=[], outputs=[P1], conditions=[], effects=[], generator=sampler ), # NOTE - version that only generators collision-free points GeneratorStream(inputs=[R], outputs=[P1], conditions=[], effects=[Contained(P1, R)], generator=lambda r: (sample_box(r) for _ in inf_sequence())), TestStream(inputs=[P1, P2], conditions=[], effects=[IsEdge(P1, P2), IsEdge(P2, P1)], test=test, eager=True), ] #################### constants = [] initial_atoms = [ AtPoint((0, 0)), ] goal_literals = [] if is_region(goal): goal_literals.append(InRegion(goal)) else: goal_literals.append(AtPoint(goal)) problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem, roadmap
def compile_problem(oracle): problem = oracle.problem for obj in problem.goal_poses: if problem.goal_poses[obj] == 'initial': problem.goal_poses[obj] = oracle.initial_poses[obj] elif problem.goal_poses[ obj] in oracle.initial_poses: # Goal names other object (TODO - compile with initial) problem.goal_poses[obj] = oracle.initial_poses[ problem.goal_poses[obj]] # oracle.initial_config = ??? # TODO - set the initial configuration transit_conf = Config(oracle.default_left_arm_config) #################### O, P, G, T = Param(OBJ), Param(POSE), Param(GRASP), Param(TRAJ) OB, R = Param(OBJ), Param(REG) BQ, MQ = Param(BASE_CONF), Param(MANIP_CONF) BQ2, MQ2 = Param(BASE_CONF), Param(MANIP_CONF) BT, MT = Param(BASE_TRAJ), Param(MANIP_TRAJ) rename_easy(locals()) # Separate arm and base configs and trajectories? # Make a fixed configuration for arm stuff # If I separate arm and base poses, I can avoid worrying about collision when the base and things # Would I ever want to actually separate these and use the same grasp at a different config? # - Maybe for two arms? # - I don't want to reuse trajectories at different base configs. That wouldn't make sense # - Although if I manipulate two configs at once, maybe it would! # - Make constant arm transit configs? # TODO - maybe make an axiom to handle BT and MT when doing these things? # TODO - I could equip a manip conf with a base conf at all times if I really don't want them separate # NOTE - put then would need to update them whenever moving the base #actions = [ # Action(name='pick', parameters=[O, P, G, BQ, MQ], # condition=And(PoseEq(O, P), HandEmpty(), Kin(O, P, G, BQ, MQ), BaseEq(BQ), ManipEq(MQ)), # #ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))), # effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))), # # Action(name='place', parameters=[O, P, G, BQ, MQ], # condition=And(GraspEq(O, G), Kin(O, P, G, BQ, MQ), BaseEq(BQ), ManipEq(MQ)), # #ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))), # effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))), # # Action(name='move_arm', parameters=[MQ, MQ2, BQ, MT], # condition=And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT)), # effect=And(ManipEq(MQ2), Not(ManipEq(MQ)))), # # Action(name='move_base', parameters=[BQ, BQ2, MQ, BT], # TODO - put the arm motion stuff in an axiom # condition=And(BaseEq(BQ), TransitManip(MQ), BaseMotion(BQ, BQ2, BT)), # effect=And(BaseEq(BQ2), Not(BaseEq(BQ)))), # ] # TODO - should I include the grasp in move backwards trajectory? actions = [ abs_action( name='pick', parameters=[O, P, G, BQ, MQ], conditions=[ And(PoseEq(O, P), HandEmpty(), Kin(O, P, G, BQ, MQ)), #ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))), And(BaseEq(BQ), ManipEq(MQ)) ], effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))), abs_action( name='place', parameters=[O, P, G, BQ, MQ], conditions=[ And(GraspEq(O, G), Kin(O, P, G, BQ, MQ)), #ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))), And(BaseEq(BQ), ManipEq(MQ)) ], effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))), # NOTE - the hierarchical versions of this abs_action( name='move_arm', parameters=[MQ, MQ2, BQ, MT], # TODO - Or(TransitManip(MQ), TransitManip(MQ2)) conditions=[ And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ)), #And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ), Or(TransitManip(MQ), TransitManip(MQ2))) # This does something odd #And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ), # Or(TransitManip(MQ), LegalConf(BQ, MQ)), # Or(TransitManip(MQ2), LegalConf(BQ, MQ2))) # This does something odd ], # TODO - put an Or(Pair(MQ, BQ), Pair(MQ2, BQ)) or something effect=And(ManipEq(MQ2), Not(ManipEq(MQ)))), abs_action(name='move_base', parameters=[BQ, BQ2, BT], conditions=[ And(BaseEq(BQ), SafeManip(BT), BaseMotion(BQ, BQ2, BT)) ], effect=And(BaseEq(BQ2), Not(BaseEq(BQ)))), #abs_action(name='move_base', parameters=[BQ, BQ2, MQ, BT], # conditions=[ # And(BaseEq(BQ), TransitManip(MQ), BaseMotion(BQ, BQ2, BT))], # effect=And(BaseEq(BQ2), Not(BaseEq(BQ)))), ] # NOTE - the parameters really aren't necessary # TODO - could remove any dependence on tests because there are so cheap with the evaluation (already can't use them with axioms) # TODO - could also just make the cost only depend on the introduced objects within the effects axioms = [ Axiom(effect=Holding(O), condition=Exists([G], And(GraspEq(O, G), LegalGrasp(O, G)))), Axiom(effect=InRegion(O, R), condition=Exists([P], And(PoseEq(O, P), Contained(R, O, P)))), #Axiom(effect=Safe(O, T), condition=Exists([P], And(PoseEq(O, P), CFree(O, P, T)))), #Axiom(effect=SafeArm(O, MQ, T), condition=Exists([P, MQ], And(PoseEq(O, P), ManipEq(MQ), CFree(O, P, T)))), Axiom(effect=SafeManip(BT), condition=Exists( [MQ], And(ManipEq(MQ), TransitManip(MQ)))), # TODO - add condition here ] # TODO - include parameters in STRIPS axiom? #################### def get_base_conf(conf): return Config(base_values_from_full_config(conf.value)) def get_arm_conf(conf): return Config( arm_from_full_config(oracle.robot.GetActiveManipulator(), conf.value)) def sample_poses(o, num_samples=1): while True: if AVOID_INITIAL: oracle.set_all_object_poses(oracle.initial_poses) else: oracle.set_all_object_poses({o: oracle.initial_poses[o]}) yield list( islice( random_region_placements(oracle, o, oracle.get_counters(), region_weights=True), num_samples)) def sample_grasps(o): yield get_grasps(oracle, o) def sample_region(o, r, num_samples=1): while True: oracle.set_all_object_poses({o: oracle.initial_poses[o]}) yield list( islice( random_region_placements(oracle, o, [r], region_weights=True), num_samples)) def sample_motion(o, p, g, max_calls=1, max_failures=50): oracle.set_all_object_poses( {o: p}) # TODO - saver for the initial state as well? if oracle.approach_collision(o, p, g): return for i in range(max_calls): pap = PickAndPlace(oracle.get_geom_hash(o), p, g) if not pap.sample(oracle, o, max_failures=max_failures, sample_vector=False, sample_arm=False, check_base=False): break #pap.obj = o yield [(get_base_conf(pap.grasp_config), get_arm_conf(pap.grasp_config))] def collision_free(o, p, t): if p is None or o == t.obj: return True holding = ObjGrasp(t.obj, t.grasp) #holding = Holding(self.oracle.get_body_name(pap.geom_hash), pap.grasp) if not DO_ARM_MOTION: return not oracle.holding_collision(t.grasp_config, o, p, holding) return not oracle.traj_holding_collision(t.approach_config, t.trajs, o, p, holding) cond_streams = [ EasyListGenStream(inputs=[O], outputs=[P], conditions=[], effects=[LegalPose(O, P)], generator=sample_poses), EasyListGenStream(inputs=[O], outputs=[G], conditions=[], effects=[LegalGrasp(O, G)], generator=sample_grasps), EasyListGenStream(inputs=[O, R], outputs=[P], conditions=[], effects=[LegalPose(O, P), Contained(R, O, P)], generator=sample_region), #MultiEasyGenStream(inputs=[O, P, G], outputs=[BQ, MQ], conditions=[LegalPose(O, P), LegalGrasp(O, G)], # effects=[Kin(O, P, G, BQ, MQ)], generator=sample_motion), EasyListGenStream(inputs=[O, P, G], outputs=[BQ, MQ], conditions=[LegalPose(O, P), LegalGrasp(O, G)], effects=[Kin(O, P, G, BQ, MQ), LegalConf(BQ, MQ)], generator=sample_motion), # TODO - this doesn't work for constants # TODO - make a condition that MQ, MQ2 both work for BQ. Otherwise, it will still create a ton of streams #EasyGenStream(inputs=[MQ, MQ2, BQ], outputs=[MT], conditions=[], # effects=[ManipMotion(MQ, MQ2, BQ, MT)], generator=lambda *args: [None], order=1), EasyGenStream(inputs=[MQ, MQ2, BQ], outputs=[MT], conditions=[TransitManip(MQ), LegalConf(BQ, MQ2)], effects=[ManipMotion(MQ, MQ2, BQ, MT)], generator=lambda *args: [None], order=1), EasyGenStream(inputs=[MQ, MQ2, BQ], outputs=[MT], conditions=[LegalConf(BQ, MQ), TransitManip(MQ2)], effects=[ManipMotion(MQ, MQ2, BQ, MT)], generator=lambda *args: [None], order=1), #EasyGenStream(inputs=[MQ, MQ2, BQ], outputs=[MT], conditions=[LegalConf(BQ, MQ), LegalConf(BQ, MQ2)], # effects=[ManipMotion(MQ, MQ2, BQ, MT)], generator=lambda *args: [None], order=1), EasyGenStream(inputs=[BQ, BQ2], outputs=[BT], conditions=[], effects=[BaseMotion(BQ, BQ2, BT)], generator=lambda *args: [None], order=1), #effects=[BaseMotion(BQ, BQ2, BT)], generator=lambda *args: [None], order=2), # NOTE - causes a bug! #EasyTestStream(inputs=[O, P, T], conditions=[LegalPose(O, P)], effects=[CFree(O, P, T)], # test=collision_free, eager=EAGER_TESTS), ] #################### #print transit_conf.value #print oracle.initial_config.value initial_base = get_base_conf(oracle.initial_config) initial_manip = get_arm_conf(oracle.initial_config) print initial_base.value print initial_manip.value constants = [] initial_atoms = [ BaseEq(initial_base), ManipEq(initial_manip), HandEmpty(), TransitManip(transit_conf), LegalConf(initial_base, initial_manip), ] for obj, pose in oracle.initial_poses.iteritems(): initial_atoms += [PoseEq(obj, pose), LegalPose(obj, pose)] # TODO - serialize goals by object name goal_literals = [] if problem.goal_holding is not None: if problem.goal_holding is False: goal_literals.append(HandEmpty()) elif isinstance(problem.goal_holding, ObjGrasp): goal_literals.append( GraspEq(problem.goal_holding.object_name, problem.goal_holding.grasp)) elif problem.goal_holding in oracle.get_objects(): goal_literals.append(Holding(problem.goal_holding)) else: raise Exception() for obj, pose in problem.goal_poses.iteritems(): goal_literals.append(PoseEq(obj, pose)) initial_atoms.append(LegalPose(obj, pose)) for obj, region in problem.goal_regions.iteritems(): goal_literals.append(InRegion(obj, region)) #goal_formula = And(*goal_literals) #goal_formula = AbsCondition(map(And, goal_literals)) # TODO - bug where goals must have And goal_formula = AbsCondition( goal_literals) # TODO - bug where goals must have And return STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, cond_streams, constants)
def amber_stripstream(use_window=True, step=False): problem = dantam2() window_3d = Window3D(title='World', windowWidth=500, noWindow=(not use_window), viewport=problem.workspace.flatten('F')) if is_window_active(window_3d): draw_window_3d( window_3d, problem.initial_conf, [body.applyTrans(pose) for body, pose in problem.initial_poses]) raw_input('Start?') robot = problem.initial_conf.robot name_to_body = {get_name(body): body for body, _ in problem.initial_poses} static_bodies = [ body.applyTrans(pose) for body, pose in problem.initial_poses if get_name(body) not in problem.movable_names ] block = name_to_body[problem.movable_names[-1]] # Generic object #################### # NOTE - can either modify the world state or create new bodies # Collision free test between an object at pose1 and an object at pose2 def cfree_pose(pose1, pose2): return not ((pose1 == pose2) or block.applyTrans(pose1).collides( block.applyTrans(pose2))) def cfree_traj( traj, pose ): # Collision free test between a robot executing traj (which may or may not involve a grasp) and an object at pose if DISABLE_TRAJ_COLLISIONS: return True placed = [body.applyTrans(pose)] attached = None if traj.grasp is not None: attached = { ARM: body.applyTrans( get_wrist_frame(traj.grasp, robot, ARM).inverse()) } # TODO - cache bodies for these configurations collision_fn = get_collision_fn(placed, attached) return not any(collision_fn(q) for q in traj.path) #################### # Sample pregrasp config and motion plan that performs a grasp def sample_grasp_traj(pose, grasp): attached = { ARM: body.applyTrans(get_wrist_frame(grasp, robot, ARM).inverse()) } collision_fn = get_collision_fn(static_bodies, attached) manip_frame = manip_from_pose_grasp(pose, grasp, robot, ARM) grasp_conf = next( inverse_kinematics(problem.initial_conf, manip_frame, ARM), None) # Grasp configuration if grasp_conf is None or collision_fn(grasp_conf): return # NOTE - I could also do this in the opposite order pregrasp_frame = approach_from_manip(manip_frame) pregrasp_conf = next( inverse_kinematics(grasp_conf, pregrasp_frame, ARM)) # Pregrasp configuration if pregrasp_conf is None or collision_fn(pregrasp_conf): return if DISABLE_GRASP_TRAJECTORIES: yield (pregrasp_conf, Traj([grasp_conf], grasp)) return grasp_path = direct_path( grasp_conf, pregrasp_conf, # Trajectory from grasp configuration to pregrasp get_extend_fn([robot.armChainNames[ARM]], STEP_SIZE), collision_fn) if grasp_path is None: return yield (pregrasp_conf, Traj(grasp_path, grasp)) def sample_free_motion(conf1, conf2): # Sample motion while not holding if DISABLE_MOTION_TRAJECTORIES: yield (Traj([conf2]), ) return active_chains = [robot.armChainNames[ARM]] path = birrt(conf1, conf2, get_distance_fn(active_chains), get_sample_fn(conf1, active_chains), get_extend_fn(active_chains, STEP_SIZE), get_collision_fn(static_bodies), restarts=0, iterations=50, smooth=None) if path is None: return yield (Traj(path), ) def sample_holding_motion(conf1, conf2, grasp): # Sample motion while holding if DISABLE_MOTION_TRAJECTORIES: yield (Traj([conf2], grasp), ) return active_chains = [robot.armChainNames[ARM]] attached = { ARM: body.applyTrans(get_wrist_frame(grasp, robot, ARM).inverse()) } path = birrt(conf1, conf2, get_distance_fn(active_chains), get_sample_fn(conf1, active_chains), get_extend_fn(active_chains, STEP_SIZE), get_collision_fn(static_bodies, attached), restarts=0, iterations=50, smooth=None) if path is None: return yield (Traj(path, grasp), ) #################### cond_streams = [ # Pick/place trajectory EasyGenStream(inputs=[P, G], outputs=[Q, T], conditions=[], effects=[GraspMotion(P, G, Q, T)], generator=sample_grasp_traj), # Move trajectory EasyGenStream(inputs=[Q, Q2], outputs=[T], conditions=[], effects=[FreeMotion(Q, Q2, T)], generator=sample_free_motion, order=1, max_level=0), EasyGenStream(inputs=[Q, Q2, G], outputs=[T], conditions=[], effects=[HoldingMotion(Q, Q2, G, T)], generator=sample_holding_motion, order=1, max_level=0), # Collisions EasyTestStream(inputs=[P, P2], conditions=[], effects=[CFreePose(P, P2)], test=cfree_pose, eager=True), EasyTestStream(inputs=[T, P], conditions=[], effects=[CFreeTraj(T, P)], test=cfree_traj), ] #################### constants = map(GRASP, TOP_GRASPS[:MAX_GRASPS]) + map( POSE, problem.known_poses) initial_atoms = [ ConfEq(problem.initial_conf), HandEmpty(), ] + [ PoseEq(get_name(body), pose) for body, pose in problem.initial_poses if get_name(body) in problem.movable_names ] goal_literals = [ PoseEq(obj, pose) for obj, pose in problem.goal_poses.iteritems() ] if problem.goal_conf is not None: goal_literals.append(ConfEq(problem.goal_conf)) stream_problem = STRIPStreamProblem(initial_atoms, And(*goal_literals), actions + axioms, cond_streams, constants) search_fn = get_fast_downward('eager', max_time=10, verbose=False) plan, _ = incremental_planner(stream_problem, search=search_fn, frequency=1, waves=True, debug=False) print SEPARATOR plan = convert_plan(plan) if plan is not None: print 'Success' for i, (action, args) in enumerate(plan): print i + 1, action else: print 'Failure' if is_window_active(window_3d) and plan is not None: robot_conf = problem.initial_conf placements = { get_name(body): body.applyTrans(pose) for body, pose in problem.initial_poses } attached = {'left': None, 'right': None} def _execute_traj(path): for j, conf in enumerate(path): draw_window_3d(window_3d, conf, placements.values(), attached) if step: raw_input('%s/%s) Step?' % (j, len(path))) else: window_3d.update() sleep(0.01) draw_window_3d(window_3d, robot_conf, placements.values()) raw_input('Start?') for i, (action, args) in enumerate(plan): if action.name == 'move': _, _, traj = args _execute_traj(traj.path) elif action.name == 'move_holding': _, _, traj, _, _ = args _execute_traj(traj.path) elif action.name == 'pick': obj, _, grasp, _, traj = args _execute_traj(traj.path[::-1]) attached[ARM] = name_to_body[obj].applyTrans( get_wrist_frame(grasp, robot, ARM).inverse()) del placements[obj] _execute_traj(traj.path) elif action.name == 'place': obj, pose, _, _, traj = args _execute_traj(traj.path[::-1]) placements[obj] = name_to_body[obj].applyTrans(pose) attached[ARM] = None _execute_traj(traj.path) else: raise ValueError(action.name) raw_input('Finish?')
def create_problem(initRobotPos = (0.5, 0.5), initRobotVar = 0.01, maxMoveDist = 5.0, beaconPos = (1, 1), homePos = (0, 0), goalPosEps = 0.1, goalVar = 0.1, odoErrorRate = 0.1, obsVarPerDistFromSensor = 10.0, minObsVar = 0.001, domainSize = 20, verboseFns = True): """ :return: a :class:`.STRIPStreamProblem` """ # Data types POS = Type() # 2D position VAR = Type() # 2D variance DIST = Type() # positive scalar # Fluent predicates RobotPos = Pred(POS) RobotVar = Pred(VAR) # Derived predicates KnowYouAreHome = Pred() # Static predicates DistBetween = Pred(POS, POS, DIST) # Distance between two positions (function) LessThanV = Pred(VAR, VAR) # Less than, on distances LessThanD = Pred(DIST, DIST) # Less than, on distances OdometryVar = Pred(VAR, VAR, DIST) # How does odometry variance increase? SensorVar = Pred(VAR, VAR, DIST) # How does an observation decrease variance? LegalPos = Pred(POS) # Any legal robot pos # Free parameters RPOS1, RPOS2, RVAR1, RVAR2 = Param(POS), Param(POS), Param(VAR), Param(VAR) DIST1, DIST2 = Param(DIST), Param(DIST) def odoVarFun(rv, d): odoVar = (d * odoErrorRate)**2 result = rv + odoVar if verboseFns: print 'ovf:', rv, d, result return [result] def sensorVarFun(rv, d): obsVar = max(d / obsVarPerDistFromSensor, minObsVar) result = 1.0 / ((1.0 / rv) + (1.0 / obsVar)) if verboseFns: print 'svf:', rv, d, result return [result] def randPos(): while True: result = (random.random() * domainSize, random.random() * domainSize) print 'rp:', result yield [result] def legalTest(rp): (x, y) = rp result = (0 <= x <= domainSize) and (0 <= y <= domainSize) if not result: print 'not legal:', rp return result actions = [ Action(name='Move', parameters=[RPOS1, RPOS2, RVAR1, RVAR2, DIST1], condition = And(RobotPos(RPOS1), RobotVar(RVAR1), LegalPos(RPOS2), # Generate an intermediate pos DistBetween(RPOS1, RPOS2, DIST1), LessThanD(DIST1, maxMoveDist), OdometryVar(RVAR1, RVAR2, DIST1)), effect = And(RobotPos(RPOS2), RobotVar(RVAR2), Not(RobotPos(RPOS1)), Not(RobotVar(RVAR1)))), # Action(name='Look', # parameters=[RPOS1, RVAR1, RVAR2, DIST1], # condition = And(RobotPos(RPOS1), # RobotVar(RVAR1), # DistBetween(RPOS1, beaconPos, DIST1), # SensorVar(RVAR1, RVAR2, DIST1)), # effect = And(RobotVar(RVAR2), # Not(RobotVar(RVAR1)))) ] axioms = [ Axiom(effect = KnowYouAreHome(), condition = Exists([RPOS1, RVAR1, DIST1], And(RobotPos(RPOS1), RobotVar(RVAR1), DistBetween(RPOS1, homePos, DIST1), LessThanD(DIST1, goalPosEps), LessThanV(RVAR1, goalVar)))) ] # Conditional stream declarations cond_streams = [ TestStream(inputs = [RPOS1], conditions = [], effects = [LegalPos(RPOS1)], test = legalTest, eager = True), GeneratorStream(inputs = [], outputs = [RPOS1], conditions = [], effects = [LegalPos(RPOS1)], generator = randPos), GeneratorStream(inputs = [RPOS1, RPOS2], outputs = [DIST1], conditions = [], effects = [DistBetween(RPOS1, RPOS2, DIST1)], generator = lambda rp1, rp2: [distance(rp1, rp2)]), GeneratorStream(inputs = [RVAR1, DIST1], outputs = [RVAR2], conditions = [], effects = [OdometryVar(RVAR1, RVAR2, DIST1)], generator = odoVarFun), # GeneratorStream(inputs = [RVAR1, DIST1], # outputs = [RVAR2], # conditions = [], # effects = [SensorVar(RVAR1, RVAR2, DIST1)], # generator = sensorVarFun), TestStream(inputs = [DIST1, DIST2], conditions = [], effects = [LessThanD(DIST1, DIST2)], test = lt, eager = True), TestStream(inputs = [RVAR1, RVAR2], conditions = [], effects = [LessThanV(RVAR1, RVAR2)], test = lt, eager = True) ] #################### constants = [ ] initial_atoms = [ RobotPos(initRobotPos), RobotVar(initRobotVar), LegalPos(homePos), LegalPos((.1, .1)), LegalPos((3.0, .1)), LegalPos((6.0, .1)) ] goal_literals = [ KnowYouAreHome() ] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def solve_tamp(env, use_focused): use_viewer = env.GetViewer() is not None problem = PROBLEM(env) # TODO: most of my examples have literally had straight-line motions plans robot, manipulator, base_manip, ir_model = initialize_openrave( env, ARM, min_delta=MIN_DELTA) set_manipulator_conf(ir_model.manip, CARRY_CONFIG) bodies = {obj: env.GetKinBody(obj) for obj in problem.movable_names} surfaces = {surface.name: surface for surface in problem.surfaces} open_gripper(manipulator) initial_q = Conf(robot.GetConfigurationValues()) initial_poses = { name: Pose(name, get_pose(body)) for name, body in bodies.iteritems() } # TODO: just keep track of the movable degrees of freedom # GetActiveDOFIndices, GetActiveJointIndices, GetActiveDOFValues saver = EnvironmentStateSaver(env) #cfree_pose = cfree_pose_fn(env, bodies) #cfree_traj = cfree_traj_fn(env, robot, manipulator, body1, body2, all_bodies) #base_generator = base_generator_fn(ir_model) #base_values = base_values_from_full_config(initial_q.value) #goal_values = full_config_from_base_values(base_values + np.array([1, 0, 0]), initial_q.value) #goal_conf = Conf(goal_values) #return #################### # TODO - should objects contain their geometry cond_streams = [ EasyListGenStream(inputs=[O, P, G], outputs=[Q, T], conditions=[IsPose(O, P), IsGrasp(O, G)], effects=[GraspMotion(O, P, G, Q, T)], generator=sample_grasp_traj_fn( base_manip, ir_model, bodies, CARRY_CONFIG)), EasyGenStream(inputs=[Q, Q2], outputs=[T], conditions=[], effects=[FreeMotion(Q, Q2, T)], generator=sample_free_base_motion_fn(base_manip, bodies), order=1, max_level=0), EasyTestStream( inputs=[O, P, O2, P2], conditions=[IsPose(O, P), IsPose(O2, P2)], effects=[CFreePose(P, P2)], test=lambda *args: True, #cfree_pose, eager=True), EasyTestStream(inputs=[T, P], conditions=[], effects=[CFreeTraj(T, P)], test=lambda *args: True), #test=cfree_traj), EasyListGenStream(inputs=[O], outputs=[G], conditions=[], effects=[IsGrasp(O, G)], generator=grasp_generator_fn(bodies, TOP_GRASPS, SIDE_GRASPS, MAX_GRASPS)), EasyListGenStream(inputs=[O, S], outputs=[P], conditions=[], effects=[IsPose(O, P), Stable(P, S)], generator=pose_generator_fn(bodies, surfaces)), #EasyGenStream(inputs=[O, P, G], outputs=[Q], conditions=[IsPose(O, P), IsGrasp(O, G)], # effects=[], generator=base_generator), ] #################### constants = [] initial_atoms = [ConfEq(initial_q), HandEmpty()] for name in initial_poses: initial_atoms += body_initial_atoms(name, initial_poses, bodies, surfaces) goal_formula = And( ConfEq(initial_q), *[ OnSurface(obj, surface) for obj, surface in problem.goal_surfaces.iteritems() ]) #goal_formula = ConfEq(goal_conf) #obj, _ = problem.goal_surfaces.items()[0] #goal_formula = And(Holding(obj)) #goal_formula = Holding(obj) # TODO: this cause a bug stream_problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, cond_streams, constants) print stream_problem handles = draw_affine_limits(robot) if use_viewer: for surface in problem.surfaces: surface.draw(env) raw_input('Start?') max_time = INF search_fn = get_fast_downward('eager', max_time=10, verbose=False) if use_focused: solve = lambda: simple_focused(stream_problem, search=search_fn, max_level=INF, shared=False, debug=False, verbose=False, max_time=max_time) else: solve = lambda: incremental_planner(stream_problem, search=search_fn, frequency=10, waves=False, debug=False, max_time=max_time) with env: plan, universe = solve() print SEPARATOR plan = convert_plan(plan) if plan is not None: print 'Success' for i, (action, args) in enumerate(plan): print i + 1, action, args else: print 'Failure' #################### if plan is not None: commands = process_plan(robot, bodies, plan) if use_viewer: print SEPARATOR saver.Restore() visualize_solution(commands, step=False) raw_input('Finish?')
def compile_problem(oracle): problem = oracle.problem block_poses = [(C(obj, BLOCK), Pose(obj, oracle.initial_poses[obj])) for obj in oracle.get_objects()] #region = C('region%s'%1, REGION) initial_atoms = [ HandEmpty(), # TODO - toggle ] + [AtPose(block, pose) for block, pose in block_poses ] + [IsPose(block, pose) for block, pose in block_poses] goal_literals = [] if problem.goal_holding is not None: if problem.goal_holding is False: goal_literals.append(HandEmpty()) elif isinstance(problem.goal_holding, Holding): goal_literals.append( HasGrasp(C(problem.goal_holding.object_name, BLOCK), C(problem.goal_holding.grasp, GRASP))) elif problem.goal_holding in oracle.get_objects(): goal_literals.append(Holding(C(problem.goal_holding, BLOCK))) else: raise Exception() for obj in problem.goal_poses: if problem.goal_poses[obj] == 'initial': problem.goal_poses[obj] = oracle.initial_poses[obj] elif problem.goal_poses[obj] in oracle.initial_poses: problem.goal_poses[obj] = oracle.initial_poses[ problem.goal_poses[obj]] goal_literals.append( AtPose(C(obj, BLOCK), C(obj, problem.goal_poses[obj]))) for obj, region in problem.goal_regions.iteritems(): #for obj, region in problem.goal_regions.items()[:1]: goal_literals.append(InRegion(C(obj, BLOCK), C(region, REGION))) # NOTE - need to add the IsPose to everything a priori """ block = C(oracle.get_objects()[0], BLOCK) goal_literals = [ Holding(block), #Not(HandEmpty(robot)), # NOTE - negative goal #Not(AtPose(obj, Pose(0))), #AtPose(block, Pose(20)), #AtPose(obj, Pose(4)), #AtConfig(Config(5)), #AtConfig(robot, Config(4)), #InRegion(block, region), ] """ actions = [ Pick(oracle), Place(oracle), ] axioms = [ #HoldingAxiom(), InRegionAxiom(), SafeAxiom(), ] cond_streams = [ PoseStream(oracle), GraspStream(oracle), ContainedStream(oracle), #ContainedTest(oracle), IKStream(oracle), CollisionFreeTest(oracle), ] objects = [] return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, objects)
def create_problem(goal, obstacles=(), distance=.25, digits=3): """ Creates a Probabilistic Roadmap (PRM) motion planning problem. :return: a :class:`.STRIPStreamProblem` """ # Data types POINT = Type() REGION = Type() # Fluent predicates AtPoint = Pred(POINT) # Derived predicates InRegion = Pred(REGION) # Stream predicates AreNearby = Pred(POINT, POINT) IsEdge = Pred(POINT, POINT) Contained = Pred(POINT, REGION) # Functions Distance = Func(POINT, POINT) # Free parameters P1, P2 = Param(POINT), Param(POINT) R = Param(REGION) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ #STRIPSAction(name='move', parameters=[P1, P2], # conditions=[AtPoint(P1), IsEdge(P1, P2)], # effects=[AtPoint(P2), Not(AtPoint(P1))], cost=1), # Fixed cost #STRIPSAction(name='move', parameters=[P1, P2], # conditions=[AtPoint(P1), IsEdge(P1, P2)], # effects=[AtPoint(P2), Not(AtPoint(P1)), Cost(Distance(P1, P2))]), # Cost depends on parameters Action(name='move', parameters=[P1, P2], condition=And(AtPoint(P1), IsEdge(P1, P2)), effect=And(AtPoint(P2), Not(AtPoint(P1))), costs=[1, Distance(P1, P2)]), ] axioms = [ #Axiom(effect=GoalReached(), condition=Exists([P1], And(AtPos(P1), Contained(P1)))), STRIPSAxiom(conditions=[AtPoint(P1), Contained(P1, R)], effects=[InRegion(R)]) ] #################### # Conditional stream declarations cond_streams = [ GeneratorStream( inputs=[], outputs=[P1], conditions=[], effects=[], generator=lambda: ((sample(digits), ) for _ in inf_sequence()) ), # NOTE - version that only generators collision-free points GeneratorStream(inputs=[R], outputs=[P1], conditions=[], effects=[Contained(P1, R)], generator=lambda r: ((sample_box(r), ) for _ in inf_sequence())), #TestStream(inputs=[P1, P2], conditions=[], effects=[AreNearby(P1, P2), AreNearby(P2, P1)], # test=lambda p1, p2: get_distance(p1, p2) <= distance, eager=True), #TestStream(inputs=[P1, P2], conditions=[AreNearby(P1, P2)], effects=[IsEdge(P1, P2), IsEdge(P2, P1)], # test=lambda p1, p2: is_collision_free((p1, p2), obstacles), eager=True), TestStream( inputs=[P1, P2], conditions=[], effects=[IsEdge(P1, P2), IsEdge(P2, P1)], #test=lambda p1, p2: is_collision_free((p1, p2), obstacles), eager=True), test=lambda p1, p2: (get_distance(p1, p2) <= distance) and is_collision_free( (p1, p2), obstacles), eager=True), #TestStream(inputs=[P1, P2], conditions=[], effects=[IsEdge(P1, P2), IsEdge(P2, P1)], # test=lambda p1, p2: get_distance(p1, p2) <= distance and is_collision_free((p1, p2), obstacles), eager=True), #TestStream(inputs=[P1, R], conditions=[], effects=[Contained(P1, R)], # test=lambda p, r: contains(p, r), eager=True), CostStream(inputs=[P1, P2], conditions=[], effects=[Distance(P1, P2), Distance(P2, P1)], function=get_distance, scale=100, eager=True), ] #################### constants = [] initial_atoms = [ AtPoint((0, 0)), ] goal_literals = [] if is_region(goal): goal_literals.append(InRegion(goal)) else: goal_literals.append(AtPoint(goal)) problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def create_problem(): """ Creates the 1D task and motion planning STRIPStream problem. :return: a :class:`.STRIPStreamProblem` """ blocks = ['block%i'%i for i in range(3)] num_poses = pow(10, 10) initial_config = 0 # the initial robot configuration is 0 initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1 #################### VALUE = Type() # Fluent predicates AtConf = Pred(VALUE) AtPose = Pred(VALUE, VALUE) HandEmpty = Pred() Holding = Pred(VALUE) # Derived predicates Safe = Pred(VALUE, VALUE, VALUE) # Static predicates IsBlock = Pred(VALUE) IsPose = Pred(VALUE) IsConf = Pred(VALUE) LegalKin = Pred(VALUE, VALUE) CollisionFree = Pred(VALUE, VALUE, VALUE, VALUE) # Free parameters B1, B2 = Param(VALUE), Param(VALUE) P1, P2 = Param(VALUE), Param(VALUE) Q1, Q2 = Param(VALUE), Param(VALUE) rename_easy(locals()) # Trick to make debugging easier #################### # NOTE - it would be easier to just update an in hand pose actions = [ STRIPSAction(name='pick', parameters=[B1, P1, Q1], conditions=[IsBlock(B1), IsPose(P1), IsConf(Q1), LegalKin(P1, Q1), AtPose(B1, P1), HandEmpty(), AtConf(Q1)], effects=[Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty())]), STRIPSAction(name='place', parameters=[B1, P1, Q1], conditions=[IsBlock(B1), IsPose(P1), IsConf(Q1), LegalKin(P1, Q1), Holding(B1), AtConf(Q1)] + [Safe(b2, B1, P1) for b2 in blocks], effects=[AtPose(B1, P1), HandEmpty(), Not(Holding(B1))]), STRIPSAction(name='move', parameters=[Q1, Q2], conditions=[IsConf(Q1), IsConf(Q2), AtConf(Q1)], effects=[AtConf(Q2), Not(AtConf(Q1))]), ] axioms = [ # TODO - need to combine axioms #Axiom(effect=Safe(B2, B1, P1), # condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1 ] #################### # Conditional stream declarations cond_streams = [ GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[IsPose(P1)], generator=lambda: xrange(num_poses)), # Enumerating all the poses GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[IsPose(P1)], effects=[IsConf(Q1), LegalKin(P1, Q1)], generator=lambda p: [p]), # Inverse kinematics TestStream(inputs=[B1, P1, B2, P2], conditions=[IsBlock(B1), IsPose(P1), IsBlock(B2), IsPose(P2)], effects=[CollisionFree(B1, P1, B2, P2)], test=lambda b1, p1, b2, p2: p1 != p2, eager=True), # Collision checking ] #################### constants = [] initial_atoms = [ IsConf(initial_config), AtConf(initial_config), HandEmpty() ] for block, pose in initial_poses.iteritems(): initial_atoms += [ IsBlock(block), IsPose(pose), AtPose(block, pose), ] goal_literals = [] for block, pose in goal_poses.iteritems(): initial_atoms += [ IsBlock(block), IsPose(pose), ] goal_literals.append(AtPose(block, pose)) problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def solve_incrementally(): O = Param(OBJECT) O1, O2 = Param(OBJECT), Param(OBJECT) L = Param(LOCATION) L_s, L_g = Param(LOCATION), Param(LOCATION) # generic location Stove_l_s, Stove_l_g = Param(STOVE_L_S), Param( STOVE_L_G) # locations for stove and sink Sink_l_s, Sink_l_g = Param(SINK_L_S), Param(SINK_L_G) actions = [ Action(name='wash', parameters=[O], condition=And(InSink(O)), effect=And(Clean(O))), Action(name='cook', parameters=[O], condition=And(InStove(O), Clean(O)), effect=And(Cooked(O))), Action(name='pickplace', parameters=[O, L_s, L_g], condition=And(EmptySweptVolume(O, L_s, L_g), AtPose(O, L_s)), effect=And(AtPose(O, L_g), Not(AtPose(O, L_s)))) # You should delete! ] axioms = [ # For all objects in the world, either object is O1 or if not, then it is not in the region Axiom(effect=EmptySweptVolume(O,L_s,L_g),condition=ForAll([O2],\ Or(Equal(O,O2),\ Exists([L],(And(AtPose(O2,L),OutsideRegion(O,O2,L,L_s,L_g))))))), # Object is in the stove if it is at pose L for which Ls and Lg define stove Axiom(effect=InStove(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsStove(L_s,L_g)))), Axiom(effect=InSink(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsSink(L_s,L_g)))), ] cond_streams = [ EasyGenStream(inputs=[O,L_s,L_g], outputs=[L], conditions=[IsSmaller(L_s,L_g)], effects=[Contained(O,L,L_s,L_g)],\ generator=lambda b, ls, lg: (sample_region_pose(b, ls, lg ) for _ in irange(0, INF))), EasyTestStream(inputs=[L_s,L_g],conditions=[],effects=[IsSmaller(L_s,L_g)],test=is_smaller,eager=EAGER_TESTS), # Generate static predicates that object is contained in sink for which Ls and Lg define the sink. If L was not continuous value, # then we would define this in the intial condition and would not be changed by any of the actions (hence static predicate) EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsSink(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS), EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsStove(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS), # OutsideRegion tests if O2 is is outside of the region (Ls,Lg) EasyTestStream(inputs=[O,O2,L,L_s,L_g],conditions=[],effects=[OutsideRegion(O,O2,L,L_s,L_g)],test=not_in_region,eager=EAGER_TESTS), ] #################### tamp_problem = sample_one_d_kitchen_problem() # instantiate the environment region? constants = [ STOVE_L_S(tamp_problem.stove_region_s), STOVE_L_G(tamp_problem.stove_region_g), SINK_L_S(tamp_problem.sink_region_s), SINK_L_G(tamp_problem.sink_region_g), ] # define initial state using initial poses of objects initial_atoms = [ AtPose(block, pose) for block, pose in tamp_problem.initial_poses.iteritems() ] + [IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)] + [ IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g) ] # initial_atoms = static predicates, but on steroid goal_literals = [] subgoal_list = [ InSink(tamp_problem.target_obj), \ InStove(tamp_problem.target_obj), Cooked(tamp_problem.target_obj) ] for i in range(len(subgoal_list)): goal_literals = [subgoal_list[0]] stream_problem = STRIPStreamProblem(initial_atoms, goal_literals, \ actions+axioms, cond_streams, constants) search = get_fast_downward('eager') plan, universe = incremental_planner(stream_problem, search=search,\ frequency=1, verbose=True, max_time=200) plan = convert_plan(plan) # move the object to the new locations; todo: add new predicates if len(plan) > 0: # if no action needed, keep last initial atoms initial_atoms = [] for action in plan: action_name = action[0].name action_args = action[1] if action_name == 'pickplace': O = action_args[0].name pick_l = action_args[1] place_l = action_args[2] block = [b for b in tamp_problem.blocks if b.name == O][0] initial_atoms += [AtPose(block, place_l)] if len(initial_atoms) == 1: block = [b for b in tamp_problem.blocks if b.name != O][0] initial_atoms += [AtPose(block, tamp_problem.initial_poses[block])] initial_atoms += [ IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g) ] initial_atoms += [ IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g) ]
def create_problem(): """ Creates the 1D task and motion planning STRIPStream problem. This models the same problem as :module:`.run_tutorial` but does so without using any streams. :return: a :class:`.STRIPStreamProblem` """ num_blocks = 3 blocks = ['block%i'%i for i in range(num_blocks)] num_poses = num_blocks+1 initial_config = 0 # the initial robot configuration is 0 initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1 #################### # Data types CONF, BLOCK, POSE = Type(), Type(), Type() # Fluent predicates AtConf = Pred(CONF) AtPose = Pred(BLOCK, POSE) HandEmpty = Pred() Holding = Pred(BLOCK) # Derived predicates Safe = Pred(BLOCK, BLOCK, POSE) # Static predicates LegalKin = Pred(POSE, CONF) CollisionFree = Pred(BLOCK, POSE, BLOCK, POSE) # Free parameters B1, B2 = Param(BLOCK), Param(BLOCK) P1, P2 = Param(POSE), Param(POSE) Q1, Q2 = Param(CONF), Param(CONF) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='pick', parameters=[B1, P1, Q1], condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1), ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))), # TODO - convert to finite blocks case? effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=AtConf(Q1), effect=And(AtConf(Q2), Not(AtConf(Q1)))), ] axioms = [ Axiom(effect=Safe(B2, B1, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1 ] #################### cond_streams = [] constants = [] initial_atoms = [ AtConf(initial_config), HandEmpty() ] + [ AtPose(block, pose) for block, pose in initial_poses.iteritems() ] + [ LegalKin(i, i) for i in range(num_poses) ] + [ CollisionFree(b1, p1, b2, p2) for b1, p1, b2, p2 in product(blocks, range(num_poses), blocks, range(num_poses)) if p1 != p2 and b1 != b2 ] goal_literals = [AtPose(block, pose) for block, pose in goal_poses.iteritems()] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def compile_problem(estimator, task): # Data types CONF = Type() SURFACE = Type() # Difference between fixed and movable objects ITEM = Type() POSE = Type() CLASS = Type() # Fluent predicates AtConf = Pred(CONF) HandEmpty = Pred() Holding = Pred(ITEM) AtPose = Pred(ITEM, POSE) Supported = Pred(POSE, SURFACE) # Fluent Localized = Pred(OBJECT) Measured = Pred(OBJECT) # Static predicates IsKin = Pred(POSE, CONF) IsClass = Pred(OBJECT, CLASS) IsVisible = Pred(SURFACE, CONF) IsSupported = Pred(POSE, SURFACE) # Static # Functions ScanRoom = Func(SURFACE) #ScanTable = Func(SURFACE, TYPE) ScanTable = Func( SURFACE, ITEM) # TODO: could include more specific vantage point costs Distance = Func(CONF, CONF) # Derived On = Pred(ITEM, SURFACE) ComputableP = Pred(POSE) ComputableQ = Pred(CONF) # Free parameters Q1, Q2 = Param(CONF), Param(CONF) S1 = Param(SURFACE) B1, B2 = Param(ITEM), Param(ITEM) P1, P2 = Param(POSE), Param(POSE) rename_easy(locals()) # Trick to make debugging easier # TODO: could just do easier version of this that doesn't require localized to start actions = [ Action( name='pick', parameters=[B1, P1, Q1], # TODO: Visibility constraint condition=And(Localized(B1), AtPose(B1, P1), HandEmpty(), AtConf(Q1), IsKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), IsKin(P1, Q1)), effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=And(AtConf(Q1), ComputableQ(Q2)), effect=And(AtConf(Q2), Not(AtConf(Q1)), Cost(Distance(Q1, Q2)))), Action(name='scan_room', parameters=[S1], condition=Not(Localized(S1)), effect=And(Localized(S1), Cost(ScanRoom(S1)))), # TODO: need to set later poses to be usable or not to constrain order Action(name='scan_table', parameters=[S1, B1, P1, Q1], condition=And(Localized(S1), AtConf(Q1), IsVisible(S1, Q1), Not(Localized(B1))), effect=And(Localized(B1), Measured(P1), Supported(P1, S1), Cost(ScanTable(S1, B1)))), ] axioms = [ # TODO: axiom for on? Might need a stream that generates initial fluents for On # TODO: axiom that says that all fake values depending on a certain one now are usable # TODO: could use stream predicates as fluents (as long as it doesn't break anything...) Axiom(effect=On(B1, S1), condition=Exists([P1], And(AtPose(B1, P1), Or(IsSupported(P1, S1), Supported(P1, S1))))), # TODO: compile automatically Axiom(effect=ComputableQ(Q1), condition=Or(Measured(Q1), Exists([P1], And(IsKin(P1, Q1), ComputableP(P1))), Exists([S1], And(IsVisible(S1, Q1), Localized(S1))))), Axiom(effect=ComputableP(P1), condition=Or( Measured(P1), Exists([S1], And(IsSupported(P1, S1), Localized(S1))))), ] ##### surface_types = estimator.surface_octomaps.keys() item_types = estimator.object_octomaps.keys() names_from_type = defaultdict(list) known_poses = {} holding = None def add_type(cl): name = '{}{}'.format(cl, len(names_from_type[cl])) names_from_type[cl].append(name) return name # TODO: this is all very similar to the generic open world stuff if estimator.holding is not None: holding = add_type(estimator.holding) for cl, octomap in estimator.surface_octomaps.items( ): # TODO: generic surface object for pose in octomap.get_occupied(): known_poses[add_type(cl)] = pose for cl, octomap in estimator.object_octomaps.items(): for pose in octomap.get_occupied(): known_poses[add_type(cl)] = pose print dict(names_from_type), known_poses # Human tells you to move block -> at least one block # At least one block -> at least one surface # TODO: generate fake properties about these fake values? goal_objects, goal_surfaces = entities_from_task(task) for cl in surface_types: add_type(cl) #for cl in goal_surfaces: # for i in xrange(len(names_from_type[cl]), goal_surfaces[cl]): # add_type(cl) #for cl in item_types: for cl in goal_objects: for i in xrange(len(names_from_type[cl]), goal_objects[cl]): add_type(cl) ##### initial_atoms = [ AtConf(estimator.robot_conf), Measured(CONF(estimator.robot_conf)) ] if holding is None: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(holding)) class_from_name = { name: ty for ty in names_from_type for name in names_from_type[ty] } for name, ty in class_from_name.iteritems(): ENTITY = SURFACE if ty in surface_types else ITEM initial_atoms.append(IsClass(ENTITY(name), ty)) if name in known_poses: initial_atoms.append(Localized(ENTITY(name))) if ENTITY == ITEM: pose = known_poses[name] initial_atoms += [AtPose(name, pose), Measured(POSE(pose))] else: if ENTITY == ITEM: pose = 'p_init_{}'.format( name ) # The object should always be at this pose (we just can't do anything about it yet) initial_atoms += [AtPose(name, pose)] goal_literals = [] if task.holding is None: goal_literals.append(HandEmpty()) elif task.holding is not False: goal_literals.append( Exists([B1], And(Holding(B1), IsClass(B1, task.holding)))) for obj, surface in task.object_surfaces: goal_literals.append( Exists([B1, S1], And(On(B1, S1), IsClass(B1, obj), IsClass(S1, surface)))) goal_formula = And(*goal_literals) #################### TOLERANCE = 0.1 def is_visible(table, conf): x, y = conf pose = known_poses[table] #return (pose == x) and (y == 2) #return (pose == x) and (y == 2) return (pose == x) and (abs(y - 2) < TOLERANCE) def is_kinematic(pose, conf): x, y = conf #return (pose == x) and (y == 1) return (pose == x) and (abs(y - 1) < TOLERANCE) #################### def sample_visible(table): # TODO: could generically do this with poses if table in known_poses: y = 2 #y += round(uniform(-TOLERANCE, TOLERANCE), 3) conf = (known_poses[table], y) assert is_visible(table, conf) else: conf = 'q_vis_{}'.format(table) yield (conf, ) def inverse_kinematics(pose): # TODO: list stream that uses ending info # TODO: only do if localized as well? # TODO: is it helpful to have this even if the raw value is kind of wrong (to steer the search) if type(pose) != str: y = 1 #y += round(uniform(-TOLERANCE, TOLERANCE), 3) conf = (pose, y) assert is_kinematic(pose, conf) else: conf = 'q_ik_{}'.format(pose) yield (conf, ) def sample_table(table): if table in known_poses: pose = known_poses[table] else: pose = 'p_{}'.format(table) yield (pose, ) #################### MAX_DISTANCE = 10 # TODO: maybe I don't need to worry about normalizing. I can just pretend non-parametric again for planning def scan_surface_cost( surface, obj): # TODO: what about multiple scans of the belief? fail_cost = 100 surface_cl = class_from_name[surface] obj_cl = class_from_name[obj] prob = 1.0 if obj_cl in estimator.object_prior: prob *= estimator.object_prior[obj_cl].get(surface_cl, 0) if surface in known_poses: prob *= estimator.object_octomaps[obj_cl].get_prob( known_poses[surface]) else: prob *= 0.1 # Low chance if you don't even know the table exists # TODO: could even include the probability the table exists #return expected_cost(1, fail_cost, prob) return mdp_cost(1, fail_cost, prob) def scan_room_cost(surface): # TODO: try to prove some sort of bound on the cost to recover will suffice? fail_cost = 100 cl = class_from_name[surface] occupied_poses = { known_poses[n] for n in names_from_type[cl] if n in known_poses } p_failure = 1.0 for pose in estimator.poses: if pose not in occupied_poses: p_failure *= (1 - estimator.surface_octomaps[cl].get_prob(pose)) return 1 * (1 - p_failure) + fail_cost * p_failure def distance_cost(q1, q2): if str in (type(q1), type(q2)): return MAX_DISTANCE # TODO: take the max possible pose distance # TODO: can use the info encoded within these to obtain better bounds return np.linalg.norm(np.array(q2) - np.array(q1)) #################### # TODO: could add measured as the output to these streams = [ GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[IsKin(P1, Q1)], generator=inverse_kinematics), GeneratorStream(inputs=[S1], outputs=[Q1], conditions=[], effects=[IsVisible(S1, Q1)], generator=sample_visible), GeneratorStream(inputs=[S1], outputs=[P1], conditions=[], effects=[IsSupported(P1, S1)], generator=sample_table), CostStream(inputs=[S1, B1], conditions=[], effects=[ScanTable(S1, B1)], function=scan_surface_cost), CostStream(inputs=[Q1, Q2], conditions=[], effects=[Distance(Q1, Q2), Distance(Q2, Q1)], function=distance_cost), CostStream(inputs=[S1], conditions=[], effects=[ScanRoom(S1)], function=scan_room_cost), # TODO: make an is original precondition and only apply these to original values? # I suppose I could apply to all concrete things but that's likely not useful #TestStream(inputs=[S1, Q1], conditions=[IsOriginal(Q1)], effects=[IsVisible(S1, Q1)], # test=is_visible, eager=True), #TestStream(inputs=[P1, Q1], conditions=[IsOriginal(Q1), IsOriginal(Q1)], effects=[IsKin(P1, Q1)], # test=is_kinematic, eager=True), #GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[IsVisible(P1, Q1)], # generator=sample_visible), ] problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, streams, []) def command_from_action((action, args)): if action.name == 'scan_room': return simulate_scan, [] if action.name in ('scan_table', 'look_block'): return simulate_look, [] if action.name == 'move': q1, q2 = map(get_value, args) return simulate_move, [q2] if action.name == 'pick': o, p, q = map(get_value, args) return simulate_pick, [class_from_name[o]] if action.name == 'place': return simulate_place, [] raise ValueError(action.name) return problem, command_from_action
def compile_problem(tamp_problem): """ Constructs a STRIPStream problem for the countable TMP problem. :param tamp_problem: a :class:`.TMPProblem` :return: a :class:`.STRIPStreamProblem` """ B1, B2 = Param(BLOCK), Param(BLOCK) P1, P2 = Param(POSE), Param(POSE) Q1, Q2 = Param(CONF), Param(CONF) actions = [ Action(name='pick', parameters=[B1, P1, Q1], condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1), ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))), effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=AtConf(Q1), effect=And(AtConf(Q2), Not(AtConf(Q1)))), ] axioms = [ Axiom(effect=Safe(B2, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(P1, P2)))), ] cond_streams = [ EasyGenStream(inputs=[], outputs=[P1], conditions=[], effects=[], generator=lambda: irange(0, NUM_POSES)), EasyGenStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[LegalKin(P1, Q1)], generator=lambda p: iter([p])), EasyTestStream(inputs=[P1, P2], conditions=[], effects=[CollisionFree(P1, P2)], test=lambda p1, p2: p1 != p2, eager=EAGER_TESTS), ] constants = [] initial_atoms = [ AtConf(tamp_problem.initial_config), ] + [ AtPose(block, pose) for block, pose in tamp_problem.initial_poses.iteritems() ] if tamp_problem.initial_holding is False: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(tamp_problem.initial_holding, BLOCK)) goal_literals = [] if tamp_problem.goal_holding is False: goal_literals.append(HandEmpty()) elif tamp_problem.goal_holding is not None: goal_literals.append(Holding(tamp_problem.goal_holding)) for block, goal in tamp_problem.goal_poses.iteritems(): goal_literals.append(AtPose(block, goal)) return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
def create_problem(dt, GoalTest, ClearTest, CalcDiffSystem, InitialState): """ Creates a generic non-holonomic motion planning problem :return: a :class:`.STRIPStreamProblem` """ # Data types X, DX, U = Type(), Type(), Type() # Fluent predicates AtX = Pred(X) # Fluent predicates GoalReached = Pred() # Static predicates ComputeDX = Pred(X, U, DX) Dynamics = Pred(X, DX, X) AtGoal = Pred(X) Clear = Pred(X, X) # Free parameters X1, X2 = Param(X), Param(X) DX1 = Param(DX) U1 = Param(U) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='simulate', parameters=[X1, U1, X2, DX1], condition=And(AtX(X1), ComputeDX(X1, U1, DX1), Dynamics(X1, DX1, X2), Clear(X1, X2)), effect=And(Not(AtX(X1)), AtX(X2))), ] axioms = [ Axiom(effect=GoalReached(), condition=Exists([X1], AtGoal(X1))), ] #################### # Conditional stream declarations def ComputeDXCalculator(X1F, DX1F): X2F = X1F[:] for i in range(len(X2F)): X2F[i] = X1F[i] + dt * DX1F[i] return X2F cond_streams = [ FunctionStream(inputs=[X1, DX1], outputs=[X2], conditions=[], effects=[Dynamics(X1, DX1, X2)], function=ComputeDXCalculator), FunctionStream(inputs=[X1, U1], outputs=[DX1], conditions=[], effects=[ComputeDX(X1, U1, DX1)], function=CalcDiffSystem), TestStream(inputs=[X1, X2], conditions=[], effects=[Clear(X1, X2)], test=ClearTest, eager=True), TestStream(inputs=[X1], conditions=[], effects=[AtGoal(X1)], test=GoalTest, eager=True), ] #################### constants = [ # TODO - need to declare control inputs (or make a stream for them) ] initial_atoms = [ AtX(InitialState), ] goal_literals = [GoalReached()] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def compile_problem(oracle): problem = oracle.problem for obj in problem.goal_poses: if problem.goal_poses[obj] == 'initial': problem.goal_poses[obj] = oracle.initial_poses[obj] elif problem.goal_poses[obj] in oracle.initial_poses: # Goal names other object (TODO - compile with initial) problem.goal_poses[obj] = oracle.initial_poses[problem.goal_poses[obj]] #################### def sample_poses(o, num_samples=1): while True: if AVOID_INITIAL: oracle.set_all_object_poses(oracle.initial_poses) else: oracle.set_all_object_poses({o: oracle.initial_poses[o]}) yield list(islice(random_region_placements(oracle, o, oracle.get_counters(), region_weights=True), num_samples)) def sample_grasps(o): yield get_grasps(oracle, o) def sample_region(o, r, num_samples=1): while True: oracle.set_all_object_poses({o: oracle.initial_poses[o]}) yield list(islice(random_region_placements(oracle, o, [r], region_weights=True), num_samples)) def sample_motion(o, p, g, max_calls=1, max_failures=50): oracle.set_all_object_poses({o: p}) # TODO - saver for the initial state as well? if oracle.approach_collision(o, p, g): return for i in range(max_calls): pap = PickAndPlace(oracle.get_geom_hash(o), p, g) if not pap.sample(oracle, o, max_failures=max_failures, sample_vector=DO_ARM_MOTION, sample_arm=DO_ARM_MOTION, check_base=CHECK_BASE): break pap.obj = o yield [(pap.approach_config, pap)] def collision_free(o, p, t): if p is None or o == t.obj: return True holding = ObjGrasp(t.obj, t.grasp) #holding = Holding(self.oracle.get_body_name(pap.geom_hash), pap.grasp) if not DO_ARM_MOTION: return not oracle.holding_collision(t.grasp_config, o, p, holding) return not oracle.traj_holding_collision(t.approach_config, t.trajs, o, p, holding) #################### # Types CONF, TRAJ, REG = Type(), Type(), Type() BLOCK, POSE, GRASP = Type(), Type(), Type() # Fluent predicates AtConfig = Pred(CONF) HandEmpty = Pred() AtPose = Pred(BLOCK, POSE) Holding = Pred(BLOCK, GRASP) # Static predicates IsPose = Pred(BLOCK, POSE) IsGrasp = Pred(BLOCK, GRASP) IsKin = Pred(BLOCK, POSE, GRASP, CONF, TRAJ) IsCollisionFree = Pred(BLOCK, POSE, TRAJ) IsContained = Pred(REG, BLOCK, POSE) # Derived predicates Safe = Pred(BLOCK, TRAJ) InRegion = Pred(BLOCK, REG) # Parameters O, P, G = Param(BLOCK), Param(POSE), Param(GRASP) Q, Q2, T = Param(CONF), Param(CONF), Param(TRAJ) OB, R = Param(BLOCK), Param(REG) actions = [ Action(name='pick', parameters=[O, P, G, Q, T], condition=And(AtPose(O, P), HandEmpty(), IsKin(O, P, G, Q, T), AtConfig(Q), ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))), effect=And(Holding(O, G), Not(HandEmpty()), Not(AtPose(O, P)))), Action(name='place', parameters=[O, P, G, Q, T], condition=And(Holding(O, G), IsKin(O, P, G, Q, T), AtConfig(Q), ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))), effect=And(AtPose(O, P), HandEmpty(), Not(Holding(O, G)))), Action(name='move', parameters=[Q, Q2], condition=AtConfig(Q), effect=And(AtConfig(Q2), Not(AtConfig(Q))))] axioms = [ Axiom(effect=InRegion(O, R), condition=Exists([P], And(AtPose(O, P), IsContained(R, O, P)))), Axiom(effect=Safe(O, T), condition=Exists([P], And(AtPose(O, P), IsCollisionFree(O, P, T))))] cond_streams = [ GenStream(inputs=[O], outputs=[P], conditions=[], effects=[IsPose(O, P)], generator=sample_poses), GenStream(inputs=[O], outputs=[G], conditions=[], effects=[IsGrasp(O, G)], generator=sample_grasps), GenStream(inputs=[O, R], outputs=[P], conditions=[], effects=[IsPose(O, P), IsContained(R, O, P)], generator=sample_region), GenStream(inputs=[O, P, G], outputs=[Q, T], conditions=[IsPose(O, P), IsGrasp(O, G)], effects=[IsKin(O, P, G, Q, T)], generator=sample_motion), TestStream(inputs=[O, P, T], conditions=[IsPose(O, P)], effects=[IsCollisionFree(O, P, T)], test=collision_free)] #################### constants = [POSE(None)] initial_atoms = [AtConfig(oracle.initial_config)] # TODO - toggle holding = set() if problem.start_holding is not False: obj, grasp = problem.start_holding initial_atoms += [Holding(obj, grasp), AtPose(obj, None), IsGrasp(obj, grasp)] holding.add(obj) if not holding: initial_atoms.append(HandEmpty()) for obj, pose in oracle.initial_poses.iteritems(): if obj not in holding: initial_atoms += [AtPose(obj, pose), IsPose(obj, pose)] goal_literals = [] if problem.goal_holding is not None: if problem.goal_holding is False: goal_literals.append(HandEmpty()) elif isinstance(problem.goal_holding, ObjGrasp): goal_literals.append(Holding(problem.goal_holding.object_name, problem.goal_holding.grasp)) elif problem.goal_holding in oracle.get_objects(): goal_literals.append(Holding(problem.goal_holding)) else: raise Exception() for obj, pose in problem.goal_poses.iteritems(): goal_literals.append(AtPose(obj, pose)) initial_atoms.append(IsPose(obj, pose)) for obj, region in problem.goal_regions.iteritems(): goal_literals.append(InRegion(obj, region)) goal_formula = goal_literals return STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, cond_streams, constants)
def compile_problem(oracle): problem = oracle.problem oracle.surface_poses = { surface: oracle.get_pose(surface) for surface in oracle.get_surfaces() } manips = [] if ACTIVE_LEFT: manips.append(C('left', MANIP)) if ACTIVE_RIGHT: manips.append(C('right', MANIP)) initial_atoms = [ AtConfig(Config(oracle.initial_config)), ] if problem.start_holding is False: # TODO - handle if a grasp happens initial_atoms += [HandEmpty(manip) for manip in manips] #for surface in oracle.get_surfaces(): for surface in oracle.get_counters(): body, pose = C(surface, BODY), Pose(surface, oracle.surface_poses[surface]) initial_atoms += [ IsFixed(body), AtPose(body, pose), IsPose(body, pose), ] goal_literals = [] if problem.goal_holding is not None: if problem.goal_holding is False: goal_literals += [HandEmpty(manip) for manip in manips] elif isinstance(problem.goal_holding, ObjGrasp): # TODO - add the manipulator here goal_literals.append( HasGrasp(C(problem.goal_holding.object_name, BODY), C(problem.goal_holding.grasp, GRASP))) elif problem.goal_holding in oracle.get_objects(): goal_literals.append(Holding(C(problem.goal_holding, BODY))) else: raise Exception() for obj in problem.goal_poses: if problem.goal_poses[obj] == 'initial': problem.goal_poses[obj] = oracle.initial_poses[obj] elif problem.goal_poses[ obj] in oracle.initial_poses: # Goal names other object (TODO - compile with initial) problem.goal_poses[obj] = oracle.initial_poses[ problem.goal_poses[obj]] goal_literals.append( AtPose(C(obj, BODY), Pose(obj, problem.goal_poses[obj]))) initial_atoms += [ IsPose(C(obj, BODY), Pose(obj, problem.goal_poses[obj]) ) # NOTE - need to add the IsPose to everything a priori # TODO - stuff here ] for obj, region in problem.goal_regions.iteritems(): goal_literals.append(InRegion(C(obj, BODY), C(region, REGION))) for obj, base in problem.goal_stackings.items(): goal_literals.append(On(C(obj, BODY), C(base, BODY))) initial_atoms.append(AreStackable(C(obj, BODY), C( base, BODY))) # NOTE - do I want to have this? # TODO - I guess I can handle this by making something only stackable when it needs to be # TODO - similarly, I could also make a condition that we only want to place in a region if it is a goal # TODO - make regions a type of stackable body # TODO - dynamically add/remove stacking #goal_literals = [Holding(C('blue_box', BODY))] goal_literals = [On(C('blue_box', BODY), C('table2', BODY))] goal_blocks = set() for atom in And(*goal_literals).get_atoms(): for body in atom.args: if body.type == BODY and body.name in oracle.initial_poses: goal_blocks.add(body.name) #goal_blocks = oracle.get_objects() print 'Initial objects:', goal_blocks oracle.introduced_objects = set() for obj in goal_blocks: #for base in goal_blocks: # if obj != base: # initial_atoms.append(AreStackable(C(obj, BODY), C(base, BODY))) initial_atoms += get_object_initial_atoms(obj, oracle) oracle.region_supporters = {} for region in oracle.goal_regions: for surface in oracle.get_surfaces(): if oracle.get_region(surface).region_on(oracle.get_region(region)): assert region not in oracle.region_supporters print 'Region supporter:', region, surface oracle.region_supporters[region] = surface initial_atoms.append( IsRegionOn(C(region, REGION), C(surface, BODY))) assert region in oracle.region_supporters actions = [ Move(oracle), Pick(oracle), Place(oracle), ] axioms = [ HoldingAxiom(), InRegionAxiom(), SafeAxiom(), OnAxiom(), ] cond_streams = [ PoseStream(oracle), GraspStream(oracle), ContainedStream(oracle), #ContainedTest(oracle), IKStream(oracle), #NearbyTest(oracle), ] if COLLISIONS: cond_streams.append(CollisionFreeTest(oracle)) objects = [] return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, objects)
def compile_problem(tamp_problem): O = Param(OBJECT) O1, O2 = Param(OBJECT), Param(OBJECT) L = Param(LOCATION) L_s, L_g = Param(LOCATION), Param(LOCATION) # generic location Stove_l_s, Stove_l_g = Param(STOVE_L_S), Param( STOVE_L_G) # locations for stove and sink Sink_l_s, Sink_l_g = Param(SINK_L_S), Param(SINK_L_G) actions = [ Action(name='wash', parameters=[O], condition=And(InSink(O)), effect=And(Clean(O))), Action(name='cook', parameters=[O], condition=And(InStove(O), Clean(O)), effect=And(Cooked(O))), Action(name='pickplace', parameters=[O, L_s, L_g], condition=And(EmptySweptVolume(O, L_s, L_g), AtPose(O, L_s)), effect=And(AtPose(O, L_g), Not(AtPose(O, L_s)))) # You should delete! ] axioms = [ # For all objects in the world, either object is O1 or if not, then it is not in the region Axiom(effect=EmptySweptVolume(O,L_s,L_g),condition=ForAll([O2],\ Or(Equal(O,O2),\ Exists([L],(And(AtPose(O2,L),OutsideRegion(O,O2,L,L_s,L_g))))))), Axiom(effect=InStove(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsStove(L_s,L_g)))), Axiom(effect=InSink(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsSink(L_s,L_g)))), ] cond_streams = [ EasyGenStream(inputs=[O,L_s,L_g], outputs=[L], conditions=[IsSmaller(L_s,L_g)], effects=[Contained(O,L,L_s,L_g)],\ generator=lambda b, ls, lg: (sample_region_pose(b, ls, lg ) for _ in irange(0, INF))), EasyTestStream(inputs=[L_s,L_g],conditions=[],effects=[IsSmaller(L_s,L_g)],test=is_smaller,eager=EAGER_TESTS), EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsSink(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS), EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsStove(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS), EasyTestStream(inputs=[O,O2,L,L_s,L_g],conditions=[],effects=[OutsideRegion(O,O2,L,L_s,L_g)],test=not_in_region,eager=EAGER_TESTS), # OutsideRegion tests if the block at L is outside of the region (Ls,Lg) ] #################### # instantiate the environment region? constants = [ STOVE_L_S(tamp_problem.stove_region_s), STOVE_L_G(tamp_problem.stove_region_g), SINK_L_S(tamp_problem.sink_region_s), SINK_L_G(tamp_problem.sink_region_g), ] # define initial state using initial poses of objects initial_atoms = [ AtPose(block, pose) for block, pose in tamp_problem.initial_poses.iteritems() ] + [IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)] + [ IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g) ] # static predicate but on steroid # define goal state as target object to be cooked - can you infer that target object is on Stove goal_literals = [] # goal_literals.append( AtPose(tamp_problem.blue_obj,1) ) #NOTE: This works; so planner knows how to clear the area # goal_literals.append( AtPose(tamp_problem.target_obj,3.0) ) #NOTE: But doing this does not work goal_literals.append(Cooked(tamp_problem.target_obj)) return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants), static_pred_names
def solve_tamp(env): viewer = env.GetViewer() is not None problem = PROBLEM(env) robot = env.GetRobots()[0] initialize_openrave(env, ARM, min_delta=.01) manipulator = robot.GetActiveManipulator() cspace = CSpace.robot_arm(manipulator) base_manip = interfaces.BaseManipulation(robot, plannername=None, maxvelmult=None) bodies = {obj: env.GetKinBody(obj) for obj in problem.object_names} all_bodies = bodies.values() assert len({body.GetKinematicsGeometryHash() for body in all_bodies}) == 1 # NOTE - assuming all objects has the same geometry body1 = all_bodies[-1] # Generic object 1 body2 = all_bodies[-2] if len(bodies) >= 2 else body1 # Generic object 2 grasps = get_grasps(env, robot, body1, USE_GRASP_APPROACH, USE_GRASP_TYPE)[:MAX_GRASPS] poses = problem.known_poses if problem.known_poses else [] open_gripper(manipulator) initial_conf = Conf(robot.GetConfigurationValues()[manipulator.GetArmIndices()]) def _enable_all(enable): # Enables or disables all bodies for collision checking for body in all_bodies: body.Enable(enable) #################### def cfree_pose(pose1, pose2): # Collision free test between an object at pose1 and an object at pose2 body1.Enable(True) set_pose(body1, pose1.value) body2.Enable(True) set_pose(body2, pose2.value) return not env.CheckCollision(body1, body2) def _cfree_traj_pose(traj, pose): # Collision free test between a robot executing traj and an object at pose _enable_all(False) body2.Enable(True) set_pose(body2, pose.value) for conf in traj.path(): set_manipulator_conf(manipulator, conf) if env.CheckCollision(robot, body2): return False return True def _cfree_traj_grasp_pose(traj, grasp, pose): # Collision free test between an object held at grasp while executing traj and an object at pose _enable_all(False) body1.Enable(True) body2.Enable(True) set_pose(body2, pose.value) for conf in traj.path(): set_manipulator_conf(manipulator, conf) manip_trans = manipulator.GetTransform() set_pose(body1, object_trans_from_manip_trans(manip_trans, grasp.grasp_trans)) if env.CheckCollision(body1, body2): return False return True def cfree_traj(traj, pose): # Collision free test between a robot executing traj (which may or may not involve a grasp) and an object at pose if DISABLE_TRAJ_COLLISIONS: return True return _cfree_traj_pose(traj, pose) and (traj.grasp is None or _cfree_traj_grasp_pose(traj, traj.grasp, pose)) #################### def sample_grasp_traj(pose, grasp): # Sample pregrasp config and motion plan that performs a grasp _enable_all(False) body1.Enable(True) set_pose(body1, pose.value) manip_trans, approach_vector = manip_from_pose_grasp(pose, grasp) grasp_conf = solve_inverse_kinematics(env, manipulator, manip_trans) # Grasp configuration if grasp_conf is None: return if DISABLE_TRAJECTORIES: yield [(Conf(grasp_conf), object())] return set_manipulator_conf(manipulator, grasp_conf) robot.Grab(body1) grasp_traj = vector_traj_helper(env, robot, approach_vector) # Trajectory from grasp configuration to pregrasp #grasp_traj = workspace_traj_helper(base_manip, approach_vector) robot.Release(body1) if grasp_traj is None: return grasp_traj.grasp = grasp pregrasp_conf = Conf(grasp_traj.end()) # Pregrasp configuration yield [(pregrasp_conf, grasp_traj)] def sample_free_motion(conf1, conf2): # Sample motion while not holding if DISABLE_TRAJECTORIES: yield [(object(),)] # [(True,)] return _enable_all(False) set_manipulator_conf(manipulator, conf1.value) #traj = motion_plan(env, cspace, conf2.value, self_collisions=True) traj = cspace_traj_helper(base_manip, cspace, conf2.value, max_iterations=10) if not traj: return traj.grasp = None yield [(traj,)] def sample_holding_motion(conf1, conf2, grasp): # Sample motion while holding if DISABLE_TRAJECTORIES: yield [(object(),)] # [(True,)] return _enable_all(False) body1.Enable(True) set_manipulator_conf(manipulator, conf1.value) manip_trans = manipulator.GetTransform() set_pose(body1, object_trans_from_manip_trans(manip_trans, grasp.grasp_trans)) robot.Grab(body1) #traj = motion_plan(env, cspace, conf2.value, self_collisions=True) traj = cspace_traj_helper(base_manip, cspace, conf2.value, max_iterations=10) robot.Release(body1) if not traj: return traj.grasp = grasp yield [(traj,)] #################### cond_streams = [ # Pick/place trajectory EasyListGenStream(inputs=[P, G], outputs=[Q, T], conditions=[], effects=[GraspMotion(P, G, Q, T)], generator=sample_grasp_traj), # Move trajectory EasyListGenStream(inputs=[Q, Q2], outputs=[T], conditions=[], effects=[FreeMotion(Q, Q2, T)], generator=sample_free_motion, order=1, max_level=0), EasyListGenStream(inputs=[Q, Q2, G], outputs=[T], conditions=[], effects=[HoldingMotion(Q, Q2, G, T)], generator=sample_holding_motion, order=1, max_level=0), # Collisions EasyTestStream(inputs=[P, P2], conditions=[], effects=[CFreePose(P, P2)], test=cfree_pose, eager=True), EasyTestStream(inputs=[T, P], conditions=[], effects=[CFreeTraj(T, P)], test=cfree_traj), ] #################### constants = map(GRASP, grasps) + map(POSE, poses) initial_atoms = [ ConfEq(initial_conf), HandEmpty(), ] + [ PoseEq(obj, pose) for obj, pose in problem.initial_poses.iteritems() ] goal_formula = And(ConfEq(initial_conf), *(PoseEq(obj, pose) for obj, pose in problem.goal_poses.iteritems())) stream_problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, cond_streams, constants) if viewer: env.UpdatePublishedBodies() raw_input('Start?') search_fn = get_fast_downward('eager', max_time=10) solve = lambda: incremental_planner(stream_problem, search=search_fn, frequency=1, waves=True, debug=False) #solve = lambda: simple_focused(stream_problem, search=search_fn, max_level=INF, shared=False, debug=False, verbose=False, max_time=15) env.Lock() plan, universe = solve() env.Unlock() print SEPARATOR #universe.print_statistics() plan = convert_plan(plan) if plan is not None: print 'Success' for i, (action, args) in enumerate(plan): print i+1, action, args else: print 'Failure' #################### def _execute_traj(traj): #for j, conf in enumerate(traj.path()): #for j, conf in enumerate([traj.end()]): path = list(sample_manipulator_trajectory(manipulator, traj.traj())) for j, conf in enumerate(path): set_manipulator_conf(manipulator, conf) env.UpdatePublishedBodies() raw_input('%s/%s) Step?'%(j, len(path))) if viewer and plan is not None: print SEPARATOR # Resets the initial state #set_manipulator_conf(manipulator, initial_conf.value) set_manipulator_conf(manipulator, initial_conf) for obj, pose in problem.initial_poses.iteritems(): set_pose(bodies[obj], pose.value) env.UpdatePublishedBodies() if not DISABLE_TRAJECTORIES: for i, (action, args) in enumerate(plan): raw_input('\n%s/%s) Next?'%(i, len(plan))) if action.name == 'move': _, _, traj = args _execute_traj(traj) elif action.name == 'move_holding': _, _, traj, _, _ = args _execute_traj(traj) elif action.name == 'pick': obj, _, _, _, traj = args _execute_traj(traj.reverse()) robot.Grab(bodies[obj]) _execute_traj(traj) elif action.name == 'place': obj, _, _, _, traj = args _execute_traj(traj.reverse()) robot.Release(bodies[obj]) _execute_traj(traj) else: raise ValueError(action.name) env.UpdatePublishedBodies() else: for i, (action, args) in enumerate(plan): raw_input('\n%s/%s) Next?'%(i, len(plan))) if action.name == 'move': _, q2, _ = args set_manipulator_conf(manipulator, q2) elif action.name == 'move_holding': _, q2, _, _, _ = args set_manipulator_conf(manipulator, q2) elif action.name == 'pick': obj, _, _, _, traj = args robot.Grab(bodies[obj]) elif action.name == 'place': obj, _, _, _, traj = args robot.Release(bodies[obj]) else: raise ValueError(action.name) env.UpdatePublishedBodies() raw_input('Finish?')
def create_problem(initRobotPos = (0.5, 0.5), initRobotVar = 0.01, maxMoveDist = 5.0, beaconPos = (1, 1), homePos = (0, 0), goalPosEps = 0.1, goalVar = 0.1, odoErrorRate = 0.1, obsVarPerDistFromSensor = 10.0, minObsVar = 0.001, domainSize = 20, verboseFns = False): """ :return: a :class:`.STRIPStreamProblem` """ # Data types POS = Type() # 2D position VAR = Type() # 2D variance BEACON = Type() # 2D position # Fluent predicates RobotPos = Pred(POS) RobotVar = Pred(VAR) # Derived predicates KnowYouAreHome = Pred() # Static predicates Odometry = Pred(POS, VAR, POS, VAR) Sensor = Pred(POS, VAR, BEACON, VAR) LegalPosVar = Pred(POS, VAR) NearbyPos = Pred(POS, POS) NearGoalPos = Pred(POS) NearGoalVar = Pred(VAR) # Free parameters RPOS1, RPOS2 = Param(POS), Param(POS) RVAR1, RVAR2 = Param(VAR), Param(VAR) BPOS = Param(BEACON) rename_easy(locals()) # Helper functions def distance(p1, p2): return math.sqrt(sum([(a - b)**2 for (a,b) in zip(p1, p2)])) def odoVarFun(rp1, rv, rp2): d = distance(rp1, rp2) odoVar = (d * odoErrorRate)**2 result = rv + odoVar if verboseFns: print 'ovf:', rv, d, result return [result] def sensorVarFun(rp, rv, bp): d = distance(rp, bp) obsVar = max(d / obsVarPerDistFromSensor, minObsVar) #result = round(1.0 / ((1.0 / rv) + (1.0 / obsVar)), 5) # Causes zero variance which is bad result = 1.0 / ((1.0 / rv) + (1.0 / obsVar)) if verboseFns: print 'svf:', rv, d, result return [result] def randPos(): while True: result = (random.random() * domainSize, random.random() * domainSize) print 'rp:', result yield [result] def legalTest(rp): (x, y) = rp result = (0 <= x <= domainSize) and (0 <= y <= domainSize) if not result: print 'not legal:', rp return result # TODO - combine variance and positions actions = [ Action(name='Move', parameters=[RPOS1, RVAR1, RPOS2, RVAR2], condition = And(RobotPos(RPOS1), RobotVar(RVAR1), Odometry(RPOS1, RVAR1, RPOS2, RVAR2)), effect = And(RobotPos(RPOS2), RobotVar(RVAR2), Not(RobotPos(RPOS1)), Not(RobotVar(RVAR1)))), Action(name='Look', parameters=[RPOS1, RVAR1, BPOS, RVAR2], condition = And(RobotPos(RPOS1), RobotVar(RVAR1), Sensor(RPOS1, RVAR1, BPOS, RVAR2)), effect = And(RobotVar(RVAR2), Not(RobotVar(RVAR1)))) ] axioms = [ ] # Conditional stream declarations cond_streams = [ GeneratorStream(inputs = [], outputs = [RPOS1], conditions = [], effects = [], generator = randPos), # TODO - the number of variances grows incredibly but we just want to consider variances possible with the move # Each var only has one pos because moving changes GeneratorStream(inputs = [RPOS1, RVAR1, RPOS2], outputs = [RVAR2], conditions = [LegalPosVar(RPOS1, RVAR1), NearbyPos(RPOS1, RPOS2)], effects = [Odometry(RPOS1, RVAR1, RPOS2, RVAR2), LegalPosVar(RPOS2, RVAR2)], generator = odoVarFun), GeneratorStream(inputs = [RPOS1, RVAR1, BPOS], outputs = [RVAR2], conditions = [LegalPosVar(RPOS1, RVAR1)], effects = [Sensor(RPOS1, RVAR1, BPOS, RVAR2), LegalPosVar(RPOS1, RVAR2)], generator = sensorVarFun), TestStream(inputs = [RPOS1, RPOS2], conditions = [], effects = [NearbyPos(RPOS1, RPOS2)], test = lambda rp1, rp2: distance(rp1, rp2) < maxMoveDist, eager = True), TestStream(inputs = [RPOS1], conditions = [], effects = [NearGoalPos(RPOS1)], test = lambda rp1: distance(rp1, homePos) < goalPosEps, eager = True), TestStream(inputs = [RVAR1], conditions = [], effects = [NearGoalVar(RVAR1)], test = lambda a: a < goalVar, eager = True) # NOTE - the problem seems to be the fast that this is eager ] #################### constants = [ BEACON(beaconPos), #POS((.1, .1)), #POS((3., .1)), #POS((6., .1)), POS(homePos), ] initial_atoms = [ RobotPos(initRobotPos), RobotVar(initRobotVar), LegalPosVar(initRobotPos, initRobotVar), # TODO - I might as well keep track of pairs. Make this a legal on both ] goal_formula = Exists([RPOS1, RVAR1], And(RobotPos(RPOS1), RobotVar(RVAR1), LegalPosVar(RPOS1, RVAR1), NearGoalPos(RPOS1), NearGoalVar(RVAR1))) problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, cond_streams, constants) return problem