コード例 #1
0
ファイル: flag_cr.py プロジェクト: nden/jwst
def buildMask(dqarr, bitvalue):
    """ Builds a bit-mask from an input DQ array and a bitvalue flag"""

    bitvalue = bitmask.interpret_bits_value(bitvalue)
    if bitvalue is None:
        return (np.ones(dqarr.shape, dtype=np.uint32))
    return np.logical_not(np.bitwise_and(dqarr, ~bitvalue)).astype(np.uint32)
コード例 #2
0
ファイル: flag_cr.py プロジェクト: nden/jwst
def buildMask(dqarr, bitvalue):
    """ Builds a bit-mask from an input DQ array and a bitvalue flag"""

    bitvalue = bitmask.interpret_bits_value(bitvalue)
    if bitvalue is None:
        return (np.ones(dqarr.shape, dtype=np.uint32))
    return np.logical_not(np.bitwise_and(dqarr, ~bitvalue)).astype(np.uint32)
コード例 #3
0
def buildMask(dqarr, bitvalue):
    """ Builds a bit-mask from an input DQ array and a bitvalue flag"""

    bitvalue = bitmask.interpret_bits_value(bitvalue)

    #if bitvalue == None:
    #return ((dqarr * 0.0) + 1.0).astype(np.uint8)
    #_maskarr = np.bitwise_or(dqarr,np.array([bitvalue]))
    #return np.choose(np.greater(_maskarr,bitvalue),(1,0)).astype(np.uint8)

    if bitvalue is None:
        return (np.ones(dqarr.shape, dtype=np.uint8))
    return np.logical_not(np.bitwise_and(dqarr, ~bitvalue)).astype(np.uint8)
コード例 #4
0
def buildMask(dqarr,bitvalue):
    """ Builds a bit-mask from an input DQ array and a bitvalue flag"""

    bitvalue = bitmask.interpret_bits_value(bitvalue)

    #if bitvalue == None:
        #return ((dqarr * 0.0) + 1.0).astype(np.uint8)
    #_maskarr = np.bitwise_or(dqarr,np.array([bitvalue]))
    #return np.choose(np.greater(_maskarr,bitvalue),(1,0)).astype(np.uint8)

    if bitvalue is None:
        return (np.ones(dqarr.shape,dtype=np.uint8))
    return np.logical_not(np.bitwise_and(dqarr,~bitvalue)).astype(np.uint8)
コード例 #5
0
ファイル: acs_destripe.py プロジェクト: SaraOgaz/acstools
def _mergeUserMaskAndDQ(dq, mask, dqbits):
    dqbits = bitmask.interpret_bits_value(dqbits)
    if dqbits is None:
        if mask is None:
            return None
        else:
            return mask.copy().astype(dtype=np.uint8)

    if dq is None:
        raise ValueError("DQ array is None while 'dqbits' is not None.")

    dqmask = bitmask.bitmask2mask(bitmask=dq, ignore_bits=dqbits,
                                  good_mask_value=1, dtype=np.uint8)
    if mask is None:
        return dqmask

    # merge user mask with DQ mask:
    dqmask[mask == 0] = 0

    return dqmask
コード例 #6
0
    def process(self, input):
        img = datamodels.ModelContainer(input)

        self._dqbits = bitmask.interpret_bits_value(self.dqbits)

        # set sky stattistics:
        self._skystat = SkyStats(skystat=self.skystat,
                                 lower=self.lower,
                                 upper=self.upper,
                                 nclip=self.nclip,
                                 lsig=self.lsigma,
                                 usig=self.usigma,
                                 binwidth=self.binwidth)

        # group images by their "group id":
        grp_img = img.models_grouped

        # create a list of "Sky" Images and/or Groups:
        images = []

        for g in grp_img:
            if len(g) > 1:
                images.append(SkyGroup(list(map(self._imodel2skyim, g))))
            elif len(g) == 1:
                images.append(self._imodel2skyim(g[0]))
            else:
                raise AssertionError("Logical error in the pipeline code.")

        match(images,
              skymethod=self.skymethod,
              match_down=self.match_down,
              subtract=self.subtract)

        # set sky background value in each image's meta:
        for im in images:
            if isinstance(im, SkyImage):
                pass

        return img
コード例 #7
0
ファイル: skymatch_step.py プロジェクト: nden/jwst
    def process(self, input):
        img = models.ModelContainer(input)

        self._dqbits = bitmask.interpret_bits_value(self.dqbits)

        # set sky stattistics:
        self._skystat = SkyStats(
            skystat = self.skystat,
            lower = self.lower,
            upper = self.upper,
            nclip = self.nclip,
            lsig = self.lsigma,
            usig = self.usigma,
            binwidth = self.binwidth
        )

        # group images by their "group id":
        grp_img = img.models_grouped

        # create a list of "Sky" Images and/or Groups:
        images = []

        for g in grp_img:
            if len(g) > 1:
                images.append(SkyGroup(list(map(self._imodel2skyim, g))))
            elif len(g) == 1:
                images.append(self._imodel2skyim(g[0]))
            else:
                raise AssertionError("Logical error in the pipeline code.")

        match(images, skymethod=self.skymethod, match_down=self.match_down,
              subtract=self.subtract)

        # set sky background value in each image's meta:
        for im in images:
            if isinstance(im, SkyImage):
                pass

        return img
コード例 #8
0
ファイル: sky.py プロジェクト: brechmos-stsci/drizzlepac
def _skymatch(imageList, paramDict, in_memory, clean, logfile):
    # '_skymatch' converts input imageList and other parameters to
    # data structures accepted by the "skymatch" package.
    # It also creates a temporary mask by combining 'static' mask,
    # DQ image, and user-supplied mask. The combined mask is then
    # passed to 'skymatch' to be used for excluding "bad" pixels.

    skyKW="MDRIZSKY" #header keyword that contains the sky that's been subtracted

    nimg = len(imageList)
    if nimg == 0:
        ml.logentry("Skymatch needs at least one images to perform{0}" \
                    "sky matching. Nothing to be done.",os.linesep)
        return

    # create a list of input file names as provided by the user:
    user_fnames   = []
    loaded_fnames = []
    filemaskinfos = nimg * [ None ]
    for img in imageList:
        user_fnames.append(img._original_file_name)
        loaded_fnames.append(img._filename)

    # parse sky mask catalog file (if any):
    catfile = paramDict['skymask_cat']
    if catfile:
        #extname = imageList[0].scienceExt
        #assert(extname is not None and extname != '')
        catfile = catfile.strip()
        mfindx = parse_at_file(fname = catfile,
                               default_ext = ('SCI','*'),
                               default_mask_ext = 0,
                               clobber      = False,
                               fnamesOnly   = True,
                               doNotOpenDQ  = True,
                               match2Images = user_fnames,
                               im_fmode     = 'update',
                               dq_fmode     = 'readonly',
                               msk_fmode    = 'readonly',
                               logfile      = MultiFileLog(console=True),
                               verbose      = True)
        for p in mfindx:
            filemaskinfos[p[1]] = p[0]

    # step through the list of input images and create
    # combined (static + DQ + user supplied, if any) mask, and
    # create a list of FileExtMaskInfo objects to be passed
    # to 'skymatch' function.
    #
    # This needs to be done in several steps, mostly due to the fact that
    # the mask catalogs use "original" (e.g., GEIS, WAIVER FITS) file names
    # while ultimately we want to open the version converted to MEF. Second
    # reason is that we want to combine user supplied masks with DQ+static
    # masks provided by astrodrizzle.
    new_fi = []
    sky_bits = bitmask.interpret_bits_value(paramDict['sky_bits'])
    for i in range(nimg):
        # extract extension information:
        extname = imageList[i].scienceExt
        extver  = imageList[i].group
        if extver is None:
            extver = imageList[i].getExtensions()
        assert(extname is not None and extname != '')
        assert(extver)

        # create a new FileExtMaskInfo object
        fi = FileExtMaskInfo(default_ext=(extname,'*'),
                             default_mask_ext=0,
                             clobber=False,
                             doNotOpenDQ=True,
                             fnamesOnly=False,
                             im_fmode='update',
                             dq_fmode='readonly',
                             msk_fmode='readonly')

        # set image file and extensions:
        fi.image = loaded_fnames[i]
        extlist  = [ (extname,ev) for ev in extver ]
        fi.append_ext(extlist)

        # set user masks if any (this will open the files for a later use):
        fi0 = filemaskinfos[i]
        if fi0 is not None:
            nmask = len(fi0.mask_images)
            for m in range(nmask):
                mask = fi0.mask_images[m]
                ext  = fi0.maskext[m]
                fi.append_mask(mask, ext)
        fi.finalize()

        # combine user masks with static masks:
        assert(len(extlist) == fi.count) #TODO: <-- remove after thorough testing

        masklist = []
        mextlist = []

        for k in range(fi.count):
            if fi.mask_images[k].closed:
                umask = None
            else:
                umask = fi.mask_images[k].hdu[fi.maskext[k]].data
            (mask, mext) = _buildStaticDQUserMask(imageList[i], extlist[k],
                               sky_bits, paramDict['use_static'],
                               fi.mask_images[k], fi.maskext[k], in_memory)

            masklist.append(mask)
            mextlist.append(mext)

        # replace the original user-supplied masks with the
        # newly computed combined static+DQ+user masks:
        fi.clear_masks()
        for k in range(fi.count):
            if in_memory and mask is not None:
                # os.stat() on the "original_fname" of the mask will fail
                # since this is a "virtual" mask. Therefore we need to compute
                # mask_stat ourselves. We will simply use id(data) for this:
                mstat = os.stat_result((0,id(mask.hdu)) + 8*(0,))
                fi.append_mask(masklist[k], mextlist[k], mask_stat=mstat)
            else:
                fi.append_mask(masklist[k], mextlist[k])
            if masklist[k]:
                masklist[k].release()
        fi.finalize()

        new_fi.append(fi)

    # Run skymatch algorithm:
    skymatch(new_fi,
             skymethod   = paramDict['skymethod'],
             skystat     = paramDict['skystat'],
             lower       = paramDict['skylower'],
             upper       = paramDict['skyupper'],
             nclip       = paramDict['skyclip'],
             lsigma      = paramDict['skylsigma'],
             usigma      = paramDict['skyusigma'],
             binwidth    = paramDict['skywidth'],
             skyuser_kwd = skyKW,
             units_kwd   = 'BUNIT',
             readonly    = not paramDict['skysub'],
             dq_bits     = None,
             optimize    = 'inmemory' if in_memory else 'balanced',
             clobber     = True,
             clean       = clean,
             verbose     = True,
             flog        = MultiFileLog(console = True, enableBold = False),
             _taskname4history = 'AstroDrizzle')

    # Populate 'subtractedSky' and 'computedSky' of input image objects:
    for i in range(nimg):
        assert(not new_fi[i].fnamesOnly and not new_fi[i].image.closed)
        image       = imageList[i]
        skysubimage = new_fi[i].image.hdu
        numchips    = image._numchips
        extname     = image.scienceExt
        assert(os.path.samefile(image._filename, skysubimage.filename()))

        for extver in range(1,numchips+1,1):
            chip = image[extname,extver]
            if not chip.group_member:
                continue
            subtracted_sky     = skysubimage[extname,extver].header[skyKW]
            chip.subtractedSky = subtracted_sky
            chip.computedSky   = subtracted_sky

    # clean-up:
    for fi in new_fi:
        fi.release_all_images()
コード例 #9
0
def setCommonInput(configObj, createOutwcs=True):
    """
    The common interface interpreter for MultiDrizzle tasks which not only runs
    'process_input()' but 'createImageObject()' and 'defineOutput()' as well to
    fully setup all inputs for use with the rest of the MultiDrizzle steps either
    as stand-alone tasks or internally to MultiDrizzle itself.

    Parameters
    ----------
    configObj : object
        configObj instance or simple dictionary of input parameters
    imageObjectList : list of imageObject objects
        list of imageObject instances, 1 for each input exposure
    outwcs : object
        imageObject instance defining the final output frame

    Notes
    -----
    At a minimum, the configObj instance (dictionary) should contain:
        configObj = {'input':None,'output':None }

    If provided, the configObj should contain the values of all the multidrizzle parameters
    as set by the user with TEAL. If no configObj is given, it will retrieve
    the default values automatically.  In either case, the values from the input_dict
    will be merged in with the configObj before being used by the rest of the
    code.

    Examples
    --------
    You can set *createOutwcs=False* for the cases where you only want the
    images processed and no output wcs information in necessary; as in:

    >>>imageObjectList,outwcs = processInput.processCommonInput(configObj)


    """
    # make sure 'updatewcs' is set to False when running from GUI or if missing
    # from configObj:
    if 'updatewcs' not in configObj:
        configObj['updatewcs'] = False

    if not createOutwcs or not configObj['coeffs']:
        # we're probably just working on single images here
        configObj['updatewcs']=False

    # maybe we can chunk this part up some more so that we can call just the
    # parts we want

    # Interpret input, read and convert and update input files, then return
    # list of input filenames and derived output filename
    asndict, ivmlist, output = process_input(
            configObj['input'], configObj['output'],
            updatewcs=configObj['updatewcs'], wcskey=configObj['wcskey'],
            **configObj['STATE OF INPUT FILES'])

    if not asndict:
        return None, None
    # convert the filenames from asndict into a list of full filenames
    files = [fileutil.buildRootname(f) for f in asndict['order']]
    original_files = asndict['original_file_names']

    # interpret MDRIZTAB, if specified, and update configObj accordingly
    # This can be done here because MDRIZTAB does not include values for
    # input, output, or updatewcs.
    if 'mdriztab' in configObj and configObj['mdriztab']:
        print("Reading in MDRIZTAB parameters for {} files".format(len(files)))
        mdriztab_dict = mdzhandler.getMdriztabParameters(files)

        # Update configObj with values from mpars
        cfgpars.mergeConfigObj(configObj, mdriztab_dict)

    # Convert interpreted list of input files from process_input into a list
    # of imageObject instances for use by the MultiDrizzle tasks.
    instrpars = configObj['INSTRUMENT PARAMETERS']
    # pass in 'proc_unit' to initialize unit conversions as necessary
    instrpars['proc_unit'] = configObj['proc_unit']

    undistort = True
    if not configObj['coeffs']:
        undistort = False

    # determine whether parallel processing will be performed
    use_parallel = False
    if util.can_parallel:
        # look to see whether steps which can be run using multiprocessing
        # have been turned on
        for stepnum in parallel_steps:
            sname = util.getSectionName(configObj,stepnum[0])
            if configObj[sname][stepnum[1]]:
                use_parallel = True
                break

    # interpret all 'bits' related parameters and convert them to integers
    configObj['resetbits'] = bitmask.interpret_bits_value(configObj['resetbits'])
    step3name = util.getSectionName(configObj,3)
    configObj[step3name]['driz_sep_bits'] = bitmask.interpret_bits_value(
                                        configObj[step3name]['driz_sep_bits'])
    step7name = util.getSectionName(configObj,7)
    configObj[step7name]['final_bits'] = bitmask.interpret_bits_value(
                                        configObj[step7name]['final_bits'])
    # Verify any refimage parameters to be used
    step3aname = util.getSectionName(configObj,'3a')
    if not util.verifyRefimage(configObj[step3aname]['driz_sep_refimage']):
        msg = 'No refimage with WCS found!\n '+\
        ' This could be caused by one of 2 problems:\n'+\
        '   * filename does not specify an extension with a valid WCS.\n'+\
        '   * can not find the file.\n'+\
        'Please check the filename specified in the "refimage" parameter.'
        print(textutil.textbox(msg))
        return None,None
    step7aname = util.getSectionName(configObj,'7a')
    if not util.verifyRefimage(configObj[step7aname]['final_refimage']):
        msg = 'No refimage with WCS found!\n '+\
        ' This could be caused by one of 2 problems:\n'+\
        '   * filename does not specify an extension with a valid WCS.\n'+\
        '   * can not find the file.\n'+\
        'Please check the filename specified in the "refimage" parameter.'
        print(textutil.textbox(msg))
        return None,None


    # Build imageObject list for all the valid, shift-updated input files
    log.info('-Creating imageObject List as input for processing steps.')
    if 'in_memory' in configObj:
        virtual = configObj['in_memory']
    else:
        virtual = False

    imageObjectList = createImageObjectList(files, instrpars,
                                            group=configObj['group'],
                                            undistort=undistort,
                                            inmemory=virtual)

    # Add original file names as "hidden" attributes of imageObject
    assert(len(original_files) == len(imageObjectList)) #TODO: remove after extensive testing
    for i in range(len(imageObjectList)):
        imageObjectList[i]._original_file_name = original_files[i]

    # apply context parameter
    applyContextPar(imageObjectList, configObj['context'])

    # reset DQ bits if requested by user
    resetDQBits(imageObjectList, cr_bits_value=configObj['resetbits'])

    # Add info about input IVM files at this point to the imageObjectList
    addIVMInputs(imageObjectList, ivmlist)

    if createOutwcs:
        log.info('-Creating output WCS.')

        # Build output WCS and update imageObjectList with output WCS info
        outwcs = wcs_functions.make_outputwcs(imageObjectList, output,
                                              configObj=configObj, perfect=True)
        outwcs.final_wcs.printwcs()
    else:
        outwcs = None

    try:
        # Provide user with some information on resource usage for this run
        # raises ValueError Exception in interactive mode and user quits
        num_cores = configObj.get('num_cores') if use_parallel else 1

        reportResourceUsage(imageObjectList, outwcs, num_cores)
    except ValueError:
        imageObjectList = None

    return imageObjectList, outwcs
コード例 #10
0
ファイル: cube_skymatch_step.py プロジェクト: sosey/jwst
    def process(self, input1, input2):
        cube_models = datamodels.ModelContainer(input1)
        models2d = datamodels.ModelContainer(input2)
        dqbits = bitmask.interpret_bits_value(self.dqbits)

        # set sky stattistics:
        self._skystat = SkyStats(
            skystat=self.skystat,
            lower=self.lower,
            upper=self.upper,
            nclip=self.nclip,
            lsig=self.lsigma,
            usig=self.usigma,
            binwidth=self.binwidth
        )

        # create a list of SkyCubes:
        skycubes = []

        for cm in cube_models:

            # process weights and combine with DQ:
            if not hasattr(cm, 'weightmap') or cm.weightmap is None:
                weights = np.ones_like(cm.data, dtype=np.float64)
            else:
                weights = cm.weightmap.copy()

            if dqbits is not None:
                dq = bitmask.bitmask2mask(bitmask=cm.dq,
                                          ignore_bits=self._dqbits,
                                          good_mask_value=0, dtype=np.bool)
                weights[dq] = 0.0

            wcs = cm.meta.wcs if hasattr(cm.meta, 'wcs') else None
            wcsinfo = cm.meta.wcsinfo if hasattr(cm.meta, 'wcsinfo') else None

            exptime = cm.meta.exposure.exposure_time
            if exptime is None:
                exptime = 1.0

            sc = SkyCube(
                data=cm.data,
                wcs=wcs,
                wcsinfo=wcsinfo,
                weights=weights,
                cube_weight=exptime,
                bkg_deg=self.bkg_degree,
                bkg_center=None,
                id=None,
                meta={'original_cube_model': cm}
            )

            skycubes.append(sc)

        skymatch_cubes, nsubspace = match(skycubes, subtract=self.subtract)

        if nsubspace > 1:
                self.log.warning("Not all cubes have been sky matched as "
                                 "some of them do not overlap.")

        # save background info in 'meta' and subtract sky from 2D images
        # if requested:
        ##### model.meta.instrument.channel

        for c in skymatch_cubes:
            self._set_cube_bkg_meta(c.meta['original_cube_model'], c)
            model2d, channel = _find_associated_2d_image(
                c.meta['original_cube_model'], models2d
            )

            if model2d is None:
                continue

            self._set_model2d_bkg_meta(
                c.meta['original_cube_model'],
                model2d,
                channel
            )

            if self.subtract2d:
                self._apply_sky_2d(model2d, channel)

        return cube_models, models2d
コード例 #11
0
def reset_dq_bits(input,bits,extver=None,extname='dq'):
    """ This function resets bits in the integer array(s) of a FITS file.

    Parameters
    ----------
    filename : str
        full filename with path

    bits : str
        sum or list of integers corresponding to all the bits to be reset

    extver : int, optional
        List of version numbers of the DQ arrays
        to be corrected [Default Value: None, will do all]

    extname : str, optional
        EXTNAME of the DQ arrays in the FITS file
        [Default Value: 'dq']

    Notes
    -----
    The default value of None for the 'extver' parameter specifies that all
    extensions with EXTNAME matching 'dq' (as specified by the 'extname'
    parameter) will have their bits reset.

    Examples
    --------
        1. The following command will reset the 4096 bits in all
           the DQ arrays of the file input_file_flt.fits::

                reset_dq_bits("input_file_flt.fits", 4096)

        2. To reset the 2,32,64 and 4096 bits in the second DQ array,
           specified as 'dq,2', in the file input_file_flt.fits::

                reset_dq_bits("input_file_flt.fits", "2,32,64,4096", extver=2)

    """
    # Interpret bits value
    bits = bitmask.interpret_bits_value(bits)

    flist, fcol = parseinput.parseinput(input)
    for filename in flist:
        # open input file in write mode to allow updating the DQ array in-place
        p = fits.open(filename,mode='update')

        # Identify the DQ array to be updated
        # If no extver is specified, build a list of all DQ arrays in the file
        if extver is None:
            extver = []
            for hdu in p:
                # find only those extensions which match the input extname
                # using case-insensitive name comparisons for 'extname'
                if 'extver' in hdu.header and \
                   hdu.header['extname'].lower() == extname.lower():
                    extver.append(int(hdu.header['extver']))
        else:
            # Otherwise, insure that input extver values are a list
            if not isinstance(extver, list): extver = [extver]

        # for each DQ array identified in the file...
        for extn in extver:
            dqarr = p[extname,extn].data
            dqdtype = dqarr.dtype
            # reset the desired bits
            p[extname,extn].data = (dqarr & ~bits).astype(dqdtype) # preserve original dtype
            log.info('Reset bit values of %s to a value of 0 in %s[%s,%s]' %
                     (bits, filename, extname, extn))
        # close the file with the updated DQ array(s)
        p.close()
コード例 #12
0
ファイル: sky.py プロジェクト: brechmos-stsci/drizzlepac
def _skymatch(imageList, paramDict, in_memory, clean, logfile):
    # '_skymatch' converts input imageList and other parameters to
    # data structures accepted by the "skymatch" package.
    # It also creates a temporary mask by combining 'static' mask,
    # DQ image, and user-supplied mask. The combined mask is then
    # passed to 'skymatch' to be used for excluding "bad" pixels.

    skyKW = "MDRIZSKY"  #header keyword that contains the sky that's been subtracted

    nimg = len(imageList)
    if nimg == 0:
        ml.logentry("Skymatch needs at least one images to perform{0}" \
                    "sky matching. Nothing to be done.",os.linesep)
        return

    # create a list of input file names as provided by the user:
    user_fnames = []
    loaded_fnames = []
    filemaskinfos = nimg * [None]
    for img in imageList:
        user_fnames.append(img._original_file_name)
        loaded_fnames.append(img._filename)

    # parse sky mask catalog file (if any):
    catfile = paramDict['skymask_cat']
    if catfile:
        #extname = imageList[0].scienceExt
        #assert(extname is not None and extname != '')
        catfile = catfile.strip()
        mfindx = parse_at_file(fname=catfile,
                               default_ext=('SCI', '*'),
                               default_mask_ext=0,
                               clobber=False,
                               fnamesOnly=True,
                               doNotOpenDQ=True,
                               match2Images=user_fnames,
                               im_fmode='update',
                               dq_fmode='readonly',
                               msk_fmode='readonly',
                               logfile=MultiFileLog(console=True),
                               verbose=True)
        for p in mfindx:
            filemaskinfos[p[1]] = p[0]

    # step through the list of input images and create
    # combined (static + DQ + user supplied, if any) mask, and
    # create a list of FileExtMaskInfo objects to be passed
    # to 'skymatch' function.
    #
    # This needs to be done in several steps, mostly due to the fact that
    # the mask catalogs use "original" (e.g., GEIS, WAIVER FITS) file names
    # while ultimately we want to open the version converted to MEF. Second
    # reason is that we want to combine user supplied masks with DQ+static
    # masks provided by astrodrizzle.
    new_fi = []
    sky_bits = bitmask.interpret_bits_value(paramDict['sky_bits'])
    for i in range(nimg):
        # extract extension information:
        extname = imageList[i].scienceExt
        extver = imageList[i].group
        if extver is None:
            extver = imageList[i].getExtensions()
        assert (extname is not None and extname != '')
        assert (extver)

        # create a new FileExtMaskInfo object
        fi = FileExtMaskInfo(default_ext=(extname, '*'),
                             default_mask_ext=0,
                             clobber=False,
                             doNotOpenDQ=True,
                             fnamesOnly=False,
                             im_fmode='update',
                             dq_fmode='readonly',
                             msk_fmode='readonly')

        # set image file and extensions:
        fi.image = loaded_fnames[i]
        extlist = [(extname, ev) for ev in extver]
        fi.append_ext(extlist)

        # set user masks if any (this will open the files for a later use):
        fi0 = filemaskinfos[i]
        if fi0 is not None:
            nmask = len(fi0.mask_images)
            for m in range(nmask):
                mask = fi0.mask_images[m]
                ext = fi0.maskext[m]
                fi.append_mask(mask, ext)
        fi.finalize()

        # combine user masks with static masks:
        assert (len(extlist) == fi.count
                )  #TODO: <-- remove after thorough testing

        masklist = []
        mextlist = []

        for k in range(fi.count):
            if fi.mask_images[k].closed:
                umask = None
            else:
                umask = fi.mask_images[k].hdu[fi.maskext[k]].data
            (mask, mext) = _buildStaticDQUserMask(imageList[i], extlist[k],
                                                  sky_bits,
                                                  paramDict['use_static'],
                                                  fi.mask_images[k],
                                                  fi.maskext[k], in_memory)

            masklist.append(mask)
            mextlist.append(mext)

        # replace the original user-supplied masks with the
        # newly computed combined static+DQ+user masks:
        fi.clear_masks()
        for k in range(fi.count):
            if in_memory and mask is not None:
                # os.stat() on the "original_fname" of the mask will fail
                # since this is a "virtual" mask. Therefore we need to compute
                # mask_stat ourselves. We will simply use id(data) for this:
                mstat = os.stat_result((0, id(mask.hdu)) + 8 * (0, ))
                fi.append_mask(masklist[k], mextlist[k], mask_stat=mstat)
            else:
                fi.append_mask(masklist[k], mextlist[k])
            if masklist[k]:
                masklist[k].release()
        fi.finalize()

        new_fi.append(fi)

    # Run skymatch algorithm:
    skymatch(new_fi,
             skymethod=paramDict['skymethod'],
             skystat=paramDict['skystat'],
             lower=paramDict['skylower'],
             upper=paramDict['skyupper'],
             nclip=paramDict['skyclip'],
             lsigma=paramDict['skylsigma'],
             usigma=paramDict['skyusigma'],
             binwidth=paramDict['skywidth'],
             skyuser_kwd=skyKW,
             units_kwd='BUNIT',
             readonly=not paramDict['skysub'],
             dq_bits=None,
             optimize='inmemory' if in_memory else 'balanced',
             clobber=True,
             clean=clean,
             verbose=True,
             flog=MultiFileLog(console=True, enableBold=False),
             _taskname4history='AstroDrizzle')

    # Populate 'subtractedSky' and 'computedSky' of input image objects:
    for i in range(nimg):
        assert (not new_fi[i].fnamesOnly and not new_fi[i].image.closed)
        image = imageList[i]
        skysubimage = new_fi[i].image.hdu
        numchips = image._numchips
        extname = image.scienceExt
        assert (os.path.samefile(image._filename, skysubimage.filename()))

        for extver in range(1, numchips + 1, 1):
            chip = image[extname, extver]
            if not chip.group_member:
                continue
            subtracted_sky = skysubimage[extname, extver].header[skyKW]
            chip.subtractedSky = subtracted_sky
            chip.computedSky = subtracted_sky

    # clean-up:
    for fi in new_fi:
        fi.release_all_images()
コード例 #13
0
def destripe_plus(inputfile, suffix='strp', stat='pmode1', maxiter=15,
                  sigrej=2.0, lower=None, upper=None, binwidth=0.3,
                  scimask1=None, scimask2=None,
                  dqbits=None, rpt_clean=0, atol=0.01,
                  cte_correct=True, clobber=False, verbose=True):
    """Calibrate post-SM4 ACS/WFC exposure(s) and use
    standalone :ref:`acsdestripe`.

    This takes a RAW image and generates a FLT file containing
    its calibrated and destriped counterpart.
    If CTE correction is performed, FLC will also be present.

    Parameters
    ----------
    inputfile : str or list of str
        Input filenames in one of these formats:

            * a Python list of filenames
            * a partial filename with wildcards ('\*raw.fits')
            * filename of an ASN table ('j12345670_asn.fits')
            * an at-file (``@input``)

    suffix : str
        The string to use to add to each input file name to
        indicate an output product of ``acs_destripe``.
        This only affects the intermediate output file that will
        be automatically renamed to ``*blv_tmp.fits`` during the processing.

    stat : { 'pmode1', 'pmode2', 'mean', 'mode', 'median', 'midpt' } (Default = 'pmode1')
        Specifies the statistics to be used for computation of the
        background in image rows:

        * 'pmode1' - SEXTRACTOR-like mode estimate based on a
          modified `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_:
          ``2.5*median-1.5*mean``;
        * 'pmode2' - mode estimate based on
          `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_:
          ``3*median-2*mean``;
        * 'mean' - the mean of the distribution of the "good" pixels (after
          clipping, masking, etc.);
        * 'mode' - the mode of the distribution of the "good" pixels;
        * 'median' - the median of the distribution of the "good" pixels;
        * 'midpt' - estimate of the median of the distribution of the "good"
          pixels based on an algorithm similar to IRAF's `imagestats` task
          (``CDF(midpt)=1/2``).

        .. note::
            The midpoint and mode are computed in two passes through the
            image. In the first pass the standard deviation of the pixels
            is calculated and used with the *binwidth* parameter to compute
            the resolution of the data histogram. The midpoint is estimated
            by integrating the histogram and computing by interpolation
            the data value at which exactly half the pixels are below that
            data value and half are above it. The mode is computed by
            locating the maximum of the data histogram and fitting the peak
            by parabolic interpolation.

    maxiter : int
        This parameter controls the maximum number of iterations
        to perform when computing the statistics used to compute the
        row-by-row corrections.

    sigrej : float
        This parameters sets the sigma level for the rejection applied
        during each iteration of statistics computations for the
        row-by-row corrections.

    lower : float, None (Default = None)
        Lower limit of usable pixel values for computing the background.
        This value should be specified in the units of the input image(s).

    upper : float, None (Default = None)
        Upper limit of usable pixel values for computing the background.
        This value should be specified in the units of the input image(s).

    binwidth : float (Default = 0.1)
        Histogram's bin width, in sigma units, used to sample the
        distribution of pixel brightness values in order to compute the
        background statistics. This parameter is aplicable *only* to *stat*
        parameter values of `'mode'` or `'midpt'`.

    clobber : bool
        Specify whether or not to 'clobber' (delete then replace)
        previously generated products with the same names.

    scimask1 : str or list of str
        Mask images for *calibrated* ``SCI,1``, one for each input file.
        Pixels with zero values will be masked out, in addition to clipping.

    scimask2 : str or list of str
        Mask images for *calibrated* ``SCI,2``, one for each input file.
        Pixels with zero values will be masked out, in addition to clipping.
        This is not used for subarrays.

    dqbits : int, str, None (Default = None)
        Integer sum of all the DQ bit values from the input image's DQ array
        that should be considered "good" when building masks for de-striping
        computations. For example, if pixels in the DQ array can be
        combinations of 1, 2, 4, and 8 flags and one wants to consider
        DQ "defects" having flags 2 and 4 as being acceptable for de-striping
        computations, then `dqbits` should be set to 2+4=6. Then a DQ pixel
        having values 2,4, or 6 will be considered a good pixel, while a DQ
        pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged
        as a "bad" pixel.

        Alternatively, one can enter a comma- or '+'-separated list of
        integer bit flags that should be added to obtain the final
        "good" bits. For example, both ``4,8`` and ``4+8`` are equivalent to
        setting `dqbits` to 12.

        | Set `dqbits` to 0 to make *all* non-zero pixels in the DQ
          mask to be considered "bad" pixels, and the corresponding image
          pixels not to be used for de-striping computations.

        | Default value (`None`) will turn off the use of image's DQ array
          for de-striping computations.

        | In order to reverse the meaning of the `dqbits`
          parameter from indicating values of the "good" DQ flags
          to indicating the "bad" DQ flags, prepend '~' to the string
          value. For example, in order not to use pixels with
          DQ flags 4 and 8 for sky computations and to consider
          as "good" all other pixels (regardless of their DQ flag),
          set `dqbits` to ``~4+8``, or ``~4,8``. To obtain the
          same effect with an `int` input value (except for 0),
          enter -(4+8+1)=-9. Following this convention,
          a `dqbits` string value of ``'~0'`` would be equivalent to
          setting ``dqbits=None``.

        .. note::
            DQ masks (if used), *will be* combined with user masks specified
            in the `scimask1` and `scimask2` parameters (if any).

    rpt_clean : int
        An integer indicating how many *additional* times stripe cleaning
        should be performed on the input image. Default = 0.

    atol : float, None
        The threshold for maximum absolute value of bias stripe correction
        below which repeated cleanings can stop. When `atol` is `None`
        cleaning will be repeated `rpt_clean` number of times.
        Default = 0.01 [e].

    cte_correct : bool
        Perform CTE correction.

    verbose : bool
        Print informational messages. Default = True.

    Raises
    ------
    IOError
        Input file does not exist.

    ValueError
        Invalid header values or CALACS version.

    """
    # process input file(s) and if we have multiple input files - recursively
    # call acs_destripe_plus for each input image:
    flist = parseinput.parseinput(inputfile)[0]

    if isinstance(scimask1, str):
        mlist1 = parseinput.parseinput(scimask1)[0]
    elif isinstance(scimask1, np.ndarray):
        mlist1 = [ scimask1.copy() ]
    elif scimask1 is None:
        mlist1 = []
    elif isinstance(scimask1, list):
        mlist1 = []
        for m in scimask1:
            if isinstance(m, np.ndarray):
                mlist1.append(m.copy())
            elif isinstance(m, str):
                mlist1 += parseinput.parseinput(m)[0]
            else:
                raise TypeError("'scimask1' must be a list of str or "
                                "numpy.ndarray values.")
    else:
        raise TypeError("'scimask1' must be either a str, or a "
                        "numpy.ndarray, or a list of the two type of "
                        "values.")

    if isinstance(scimask2, str):
        mlist2 = parseinput.parseinput(scimask2)[0]
    elif isinstance(scimask2, np.ndarray):
        mlist2 = [ scimask2.copy() ]
    elif scimask2 is None:
        mlist2 = []
    elif isinstance(scimask2, list):
        mlist2 = []
        for m in scimask2:
            if isinstance(m, np.ndarray):
                mlist2.append(m.copy())
            elif isinstance(m, str):
                mlist2 += parseinput.parseinput(m)[0]
            else:
                raise TypeError("'scimask2' must be a list of str or "
                                "numpy.ndarray values.")
    else:
        raise TypeError("'scimask2' must be either a str, or a "
                        "numpy.ndarray, or a list of the two type of "
                        "values.")

    n_input = len(flist)
    n_mask1 = len(mlist1)
    n_mask2 = len(mlist2)

    if n_input == 0:
        raise ValueError(
            'No input file(s) provided or the file(s) do not exist')

    if n_mask1 == 0:
        mlist1 = [None] * n_input
    elif n_mask1 != n_input:
        raise ValueError('Insufficient masks for [SCI,1]')

    if n_mask2 == 0:
        mlist2 = [None] * n_input
    elif n_mask2 != n_input:
        raise ValueError('Insufficient masks for [SCI,2]')

    if n_input > 1:
        for img, mf1, mf2 in zip(flist, mlist1, mlist2):
            destripe_plus(
                inputfile=img, suffix=suffix, stat=stat,
                lower=lower, upper=upper, binwidth=binwidth,
                maxiter=maxiter, sigrej=sigrej,
                scimask1=scimask1, scimask2=scimask2, dqbits=dqbits,
                cte_correct=cte_correct, clobber=clobber, verbose=verbose
            )
        return

    inputfile = flist[0]
    scimask1 = mlist1[0]
    scimask2 = mlist2[0]

    # verify that the RAW image exists in cwd
    cwddir = os.getcwd()
    if not os.path.exists(os.path.join(cwddir, inputfile)):
        raise IOError("{0} does not exist.".format(inputfile))

    # get image's primary header:
    header = fits.getheader(inputfile)

    # verify masks defined (or not) simultaneously:
    if header['CCDAMP'] == 'ABCD' and \
       ((scimask1 is not None and scimask2 is None) or \
        (scimask1 is None and scimask2 is not None)):
        raise ValueError("Both 'scimask1' and 'scimask2' must be specified "
                         "or not specified together.")

    calacs_str = subprocess.check_output(['calacs.e', '--version']).split()[0]
    calacs_ver = [int(x) for x in calacs_str.decode().split('.')]
    if calacs_ver < [8, 3, 1]:
        raise ValueError('CALACS {0} is incomptible. '
                         'Must be 8.3.1 or later.'.format(calacs_str))

    # check date for post-SM4 and if 2K subarray or full frame
    is_sub2K = False
    ctecorr = header['PCTECORR']
    aperture = header['APERTURE']
    detector = header['DETECTOR']
    date_obs = Time(header['DATE-OBS'])

    # intermediate filenames
    blvtmp_name = inputfile.replace('raw', 'blv_tmp')
    blctmp_name = inputfile.replace('raw', 'blc_tmp')

    # output filenames
    tra_name = inputfile.replace('_raw.fits', '.tra')
    flt_name = inputfile.replace('raw', 'flt')
    flc_name = inputfile.replace('raw', 'flc')

    if detector != 'WFC':
        raise ValueError("{0} is not a WFC image, please check the 'DETECTOR'"
                         " keyword.".format(inputfile))

    if date_obs < SM4_DATE:
        raise ValueError(
            "{0} is a pre-SM4 image.".format(inputfile))

    if header['SUBARRAY'] and cte_correct:
        if aperture in SUBARRAY_LIST:
            is_sub2K = True
        else:
            LOG.warning('Using non-2K subarray, turning CTE correction off')
            cte_correct = False

    # delete files from previous CALACS runs
    if clobber:
        for tmpfilename in [blvtmp_name, blctmp_name, flt_name, flc_name,
                            tra_name]:
            if os.path.exists(tmpfilename):
                os.remove(tmpfilename)

    # run ACSCCD on RAW subarray
    acsccd.acsccd(inputfile)

    # modify user mask with DQ masks if requested
    dqbits = bitmask.interpret_bits_value(dqbits)
    if dqbits is not None:
        # save 'tra' file in memory to trick the log file
        # not to save first acs2d log as this is done only
        # for the purpose of obtaining DQ masks.
        # WISH: it would have been nice is there was an easy way of obtaining
        #       just the DQ masks as if data were calibrated but without
        #       having to recalibrate them with acs2d.
        if os.path.isfile(tra_name):
            fh = open(tra_name)
            tra_lines = fh.readlines()
            fh.close()
        else:
            tra_lines = None

        # apply flats, etc.
        acs2d.acs2d(blvtmp_name, verbose=False, quiet=True)

        # extract DQ arrays from the FLT image:
        dq1, dq2 = _read_DQ_arrays(flt_name)
        if isinstance(scimask1, str):
            if scimask1.strip() is '':
                mask1 = None
                scimask1 = None
            else:
                mask1 = fits.getdata(scimask1)
        elif isinstance(scimask1, np.ndarray):
            mask1 = scimask1.copy()
        elif scimask1 is None:
            mask1 = None
        else:
            raise TypeError("'scimask1' must be either a str file name, "
                            "a numpy.ndarray, or None.")

        scimask1 = acs_destripe._mergeUserMaskAndDQ(dq1, mask1, dqbits)

        if isinstance(scimask2, str):
            if scimask2.strip() is '':
                mask2 = None
                scimask2 = None
            else:
                mask2 = fits.getdata(scimask2)
        elif isinstance(scimask2, np.ndarray):
            mask2 = scimask2.copy()
        elif scimask2 is None:
            mask2 = None
        else:
            raise TypeError("'scimask2' must be either a str file name, "
                            "a numpy.ndarray, or None.")

        if dq2 is not None:
            scimask2 = acs_destripe._mergeUserMaskAndDQ(dq2, mask2, dqbits)

        # reconstruct trailer file:
        if tra_lines is not None:
            fh = open(tra_name, mode='w')
            fh.writelines(tra_lines)
            fh.close()

        # delete temporary FLT image:
        if os.path.isfile(flt_name):
            os.remove(flt_name)

    # execute destriping of the subarray (post-SM4 data only)
    acs_destripe.clean(
        blvtmp_name, suffix, stat=stat, maxiter=maxiter, sigrej=sigrej,
        lower=lower, upper=upper, binwidth=binwidth,
        mask1=scimask1, mask2=scimask2, dqbits=dqbits,
        rpt_clean=rpt_clean, atol=atol, clobber=clobber, verbose=verbose)
    blvtmpsfx = 'blv_tmp_{0}'.format(suffix)
    os.rename(inputfile.replace('raw', blvtmpsfx), blvtmp_name)

    # update subarray header
    if is_sub2K and cte_correct:
        fits.setval(blvtmp_name, 'PCTECORR', value='PERFORM')
        ctecorr = 'PERFORM'

    # perform CTE correction on destriped image
    if cte_correct:
        if ctecorr == 'PERFORM':
            acscte.acscte(blvtmp_name)
        else:
            LOG.warning(
                "PCTECORR={0}, cannot run CTE correction".format(ctecorr))
            cte_correct = False

    # run ACS2D to get FLT and FLC images
    acs2d.acs2d(blvtmp_name)
    if cte_correct:
        acs2d.acs2d(blctmp_name)

    # delete intermediate files
    os.remove(blvtmp_name)
    if cte_correct:
        os.remove(blctmp_name)

    info_str = 'Done.\nFLT: {0}\n'.format(flt_name)
    if cte_correct:
        info_str += 'FLC: {0}\n'.format(flc_name)
    LOG.info(info_str)