コード例 #1
0
def test_studentpdf():
    x = asarray([0.0608528, 0.1296728, -0.2238741, 0.79862108])
    mu = asarray([-0.85759774, 0.70178911, -0.29351646, 1.60215909])
    var = asarray([0.82608497, 0.75882319, 0.86101641, 0.73113357])
    nu = asarray([0.71341641, 0.52532607, 0.20685246, 0.02304925])

    p = studentpdf(x, mu, var, nu, nargout=1)
    assert allclose(p, asarray([0.1521209, 0.1987373, 0.21214484, 0.01335992]))

    (p, dp) = studentpdf(x, mu, var, nu, nargout=2)
    assert allclose(p, asarray([0.1521209, 0.1987373, 0.21214484, 0.01335992]))
    assert allclose(
        dp,
        asarray([[1.67068098e-01, 8.00695192e-04, 9.07088043e-02],
                 [-2.38903047e-01, -4.08902709e-02, 1.76043126e-01],
                 [9.74584714e-02, -1.19253012e-01, 4.08675818e-01],
                 [-1.65769327e-02, -2.71641034e-05, 5.45223728e-01]]))
    print 'studentpdf Test PASSED'
コード例 #2
0
ファイル: test_studentpdf.py プロジェクト: mathDR/abocpd
def test_studentpdf():
    x   = asarray([0.0608528,   0.1296728,  -0.2238741,   0.79862108])
    mu  = asarray([-0.85759774,  0.70178911, -0.29351646,  1.60215909])
    var = asarray([0.82608497,  0.75882319,  0.86101641,  0.73113357])
    nu  = asarray([0.71341641,  0.52532607,  0.20685246,  0.02304925])

    p = studentpdf(x, mu, var, nu, nargout=1)
    assert allclose(
        p, asarray([0.1521209,   0.1987373,   0.21214484,  0.01335992]))

    (p, dp) = studentpdf(x, mu, var, nu, nargout=2)
    assert allclose(
        p, asarray([0.1521209,   0.1987373,   0.21214484,  0.01335992]))
    assert allclose(
        dp, asarray([[1.67068098e-01,   8.00695192e-04,   9.07088043e-02],
                        [-2.38903047e-01,  -4.08902709e-02,   1.76043126e-01],
                        [9.74584714e-02,  -1.19253012e-01,   4.08675818e-01],
                        [-1.65769327e-02,  -2.71641034e-05,   5.45223728e-01]]))
    print 'studentpdf Test PASSED'
コード例 #3
0
    def predict(self,X,needDerivatives=False):
      N = self.post_params.shape[0] # 1 x 1

      mus    = self.post_params[0] # N x 1. [x]
      kappas = self.post_params[1] # N x 1. [points]
      alphas = self.post_params[2] # N x 1. [points]
      betas  = self.post_params[3] # N x 1. [x^2]

      # TODO verify this is correct by citing reference with posterior predictive
      # However, probably correct since we get the same lml under random
      # permutations of the data => coherence.
      # N x 1. [x^2]
      predictive_variance = betas*(kappas+1)/(alphas*kappas)
      df                  = 2.0*alphas # N x 1. [points]

      if not needDerivatives:
        self.predprobs = studentpdf(xnew, mus, predictive_variance, df) # N x 1. [P/x]
      else:
        self.predprobs, dtpdf = studentpdf(X, mus, predictive_variance, df, nargout=2) # N x 1. [P/x]
        dmu_dtheta    = np.transpose(self.dpost_params[0,:,:], axes=[2,1,0]) # N x 4
        dkappa_dtheta = np.transpose(self.dpost_params[1,:,:], axes=[2,1,0]) # N x 4
        dalpha_dtheta = np.transpose(self.dpost_params[2,:,:], axes=[2,1,0]) # N x 4
        dbeta_dtheta  = np.transpose(self.dpost_params[3,:,:], axes=[2,1,0]) # N x 4

        dnu_dtheta = 2.0 * dalpha_dtheta # N x 4

        # TODO use rmult and eliminate the for loop
        dpv_dtheta = np.zeros((N, 4))
        for ii in range(4):
          QRpart = (dbeta_dtheta[:,ii]*alphas - betas*dalpha_dtheta[:,ii])/ alphas**2 # N x 1
          dpv_dtheta[:,ii] = -(betas/(alphas*kappas**2))*dkappa_dtheta[:,ii] + (1 + 1/kappas)*QRpart # N x 1

        # TODO use rmult and eliminate the for loop
        dp_dtheta = np.zeros((N, 4))
        for ii in range(4):
          # dp/dtheta_i = dp/dmu * dmu/dtheta_i + dp/dsigma2 * dsigma2/dtheta_i +
          # dp/dnu + dnu/dtheta_i
          # N x 1
          dp_dtheta[:,ii] = dtpdf[:,0]*dmu_dtheta[:,ii] + dtpdf[:, 1]*dpv_dtheta[:,ii] + dtpdf[:, 2]*dnu_dtheta[:,ii]
        self.dpredprobs = dp_dtheta
コード例 #4
0
ファイル: bocpdGPT.py プロジェクト: time-series-tools/gpts
def bocpdGPT(
    X,
    model,
    theta_m,
    theta_h,
    scalePrior,
    dt,
):

    # Maximum numbers of points considered for predicting the next one regardless of
    # the run length and cov function. Set to Inf is we don't care about speed.

    maxPossibleLen = 500

    num_hazard_params = len(theta_h)
    num_model_params = len(theta_m)

    assert isKosher(X)
    assert dt > 0

    (T, D) = X.shape

    # Number of time point observed. 1 x 1. [s]
    # TODO extend to higher D

    assert D == 1

    # Never need to consider more than T points in the past. 1 x 1. [points]

    maxPossibleLen = min(T, maxPossibleLen)

    # Ensure the gamma prior parameters are positive(as required). 2 x 1. []

    scalePrior = np.exp(scalePrior)
    alpha0 = scalePrior[0]
    beta0 = scalePrior[1]

    # Evaluate the hazard function:

    # H(r) = P(runlength_t=0 | runlength_t - 1=r - 1)
    # Pre - computed the hazard in preperation for steps 4 & 5, alg 1, of[RPA]

    (H, dH) = logistic_h2(np.asarray(range(1, T + 1)), theta_h)

    R = np.zeros((T + 1, T + 1))
    S = np.zeros((T, T))

    # The standardized square error (SSE) for each runlength.
    SSE = np.zeros((T + 1, D))

    # The evidence at each time step = > Z(t) = P(X_t | X_1: t - 1).
    Z = np.zeros((T, 1))
    predMeans = np.zeros((T, 1))
    predMed = np.zeros((T, 1))

    # At time t = 1, we have complete knowledge about the run length. This assumes
    # there was surely a change point right before the first data point not at the
    # first data point. Implements step 1, alg 1, of[RPA].
    # = > P(runglenth_0=0 | nothing) = 1
    R[0, 0] = 1

    # Initialize first SSE to contribution from gamma prior.
    SSE[0] = 2 * beta0

    # Precompute all the gpr aspects of algorithm.
    (alpha, sigma2, dalpha, dsigma2) = gpr1step5(theta_m, model,
                                                 maxPossibleLen, dt)

    maxLen = alpha.shape[0]

    sigma2 = np.concatenate((sigma2, sigma2[-1, 0] * np.ones(
        (T - sigma2.shape[0], 1))))

    for t in range(1, T + 1):
        # Implictly Implements step 2, alg 1, of[RPA]: oberserve new datum, simply
        # by incrementing the loop index.

        # Evaluate the predictive distribution for the new datum under each of the
        # parameters. Implements step 3, alg 1, of[RPA]. predprobs(r)
        # = p(X(t) | X(1: t - 1), runlength_t - 1=r - 1). t x 1. [P]
        MRC = min(maxLen, t)  # How many points back to look when predicting

        mu = np.dot(alpha[:MRC, :MRC - 1], X[t - MRC:t - 1,
                                             0][::-1])  # MRC x 1. [x]

        # Extend the mu (mean) prediction for the older (> MRC) run length
        # hypothesis
        if MRC < t:
            mu = np.append(mu, mu[-1] *
                           np.ones(t - mu.shape[0]))  # t - MRC x 1. [x]

        df = np.asarray([2 * alpha0]) + np.asarray(range(t))
        pred_var = sigma2[:t, 0] * SSE[:t, 0] / df

        predprobs = studentpdf(X[t - 1, 0], mu, pred_var, df, 1)

        # Update the SSE for each run length
        SSE[1:t + 1, 0] = SSE[:t, 0] + (mu - X[t - 1, 0])**2 / sigma2[:t, 0]
        SSE[0, 0] = 2 * beta0  # 1 x 1. []

        predMeans[t - 1] = np.dot(R[:mu.shape[0], t - 1].T, mu)

        # The following is pretty slow
        #np.median(MoTrnd(R[:mu.shape[0], t - 1], mu, pred_var[:mu.shape[0]], df[:mu.shape[0]], 1000))
        predMed[t - 1] = 0

        # Evaluate the growth probabilities - shift the probabilities up and to the
        # right, scaled by the hazard function and the predictive
        # probabilities.
        R[1:t + 1, t] = R[:t, t - 1] * predprobs * (1 - H[:t])

        # Evaluate the probability that there * was * a changepoint and we're
        # accumulating the mass back down at r = 0.

        R[0, t] = (R[:t, t - 1] * predprobs * H[:t]).sum()

        # Renormalize the run length probabilities for improved numerical stability.
        # Note that unlike in [RPA] which keeps track of P(r_t, X_1: t), we keep track
        # of P(r_t | X_1: t) = > unnormalized R(i, t + 1) = P(runlength_t=i - 1 | X_1: t)
        # * P(X_t | X_1: t - 1) = > normalization const Z(t) = P(X_t | X_1: t - 1). Sort of
        # Implements step 6, alg 1, of[RPA].

        Z[t - 1] = R[:t + 1, t].sum()

        R[:t + 1, t] /= Z[t - 1]

        # Get the S matrix
        S[:t, t - 1] = R[:t, t - 1] * predprobs
        S[:, t - 1] = S[:, t - 1] / S[:, t - 1].sum()

    # endTloop

    # Get the negative log marginal likelihood of the data, X(1: end), under
    # the model = P(X_1: T), integrating out all the runlengths. 1 x 1. [log
    # P]

    nlml = -sum(np.log(Z))

    return (R, S, nlml, Z, predMeans, predMed)
コード例 #5
0
ファイル: bocpdGPT_trunc.py プロジェクト: mathDR/gpts
def bocpdGPT_trunc(
    X,
    model,
    theta_m,
    theta_h,
    scalePrior,
    dt,
):

    # Maximum numbers of points considered for predicting the next one regardless of
    # the run length and cov function. Set to Inf is we don't care about speed.

    maxPossibleLen = 500

    num_hazard_params = len(theta_h)
    num_model_params = len(theta_m)

    assert isKosher(X)
    assert dt > 0

    (T, D) = X.shape

    # Number of time point observed. 1 x 1. [s]
    # TODO extend to higher D

    assert D == 1

    # Never need to consider more than T points in the past. 1 x 1. [points]

    maxPossibleLen = min(T, maxPossibleLen)

    # Ensure the gamma prior parameters are positive(as required). 2 x 1. []

    scalePrior = np.exp(scalePrior)
    alpha0 = scalePrior[0]
    beta0 = scalePrior[1]

    # Precompute all the gpr aspects of algorithm. [maxLen x maxLen, maxLen x
    # 1]

    (alpha, sigma2, dalpha, dsigma2) = gpr1step5(theta_m, model,
                                                 maxPossibleLen, dt)

    maxLen = alpha.shape[0]
    assert maxLen >= 1

    # Evaluate the hazard function:

    # H(r) = P(runlength_t=0 | runlength_t - 1=r - 1)
    # Pre - computed the hazard in preperation for steps 4 & 5, alg 1, of[RPA]

    (H, dH) = logistic_h2(np.asarray(range(1, maxLen + 1)), theta_h)

    R = np.zeros((maxLen + 1, T + 1))

    # The standardized square error for each runlength.
    SSE = np.zeros((maxLen, D))

    # The evidence at each time step = > Z(t) = P(X_t | X_1: t - 1).
    Z = np.zeros((T, 1))
    predMeans = np.zeros((T, 1))
    predMed = np.zeros((T, 1))

    # At time t = 1, we have complete knowledge about the run length. This assumes
    # there was surely a change point right before the first data point not at the
    # first data point. Implements step 1, alg 1, of[RPA].
    # = > P(runglenth_0=0 | nothing) = 1

    R[0, 0] = 1

    # Initialize first SSE to contribution from gamma prior.

    SSE[0] = 2 * beta0

    # How many degrees of freedom in the prediction for each run length.

    df = np.asarray([2 * alpha0]) + np.asarray(range(maxLen))

    for t in range(1, T + 1):
    # Implictly Implements step 2, alg 1, of[RPA]: oberserve new datum, simply
    # by incrementing the loop index.

    # Evaluate the predictive distribution for the new datum under each of the
    # parameters. Implements step 3, alg 1, of[RPA]. predprobs(r)
    # = p(X(t) | X(1: t - 1), runlength_t - 1=r - 1). t x 1. [P]

        predprobs = np.zeros(maxLen)
        if t < maxLen:
            mu = np.dot(alpha[:t, :t], X[:t, 0][::-1])

            # The predictive variance for each prediction
            pred_var = sigma2[:t, 0] * SSE[:t, 0] / df[:t]

            # get the posterior predictive probability for each run length
            predprobs[:t] = studentpdf(X[t - 1, 0], mu, pred_var, df[:t], 1)

            # Update the SSE for each run length
            SSE[1:t + 1, 0] = SSE[:t, 0] + \
                (mu - X[t - 1, 0]) ** 2 / sigma2[:t, 0]
            SSE[0, 0] = 2 * beta0  # 1 x 1. []
        else:
            mu = np.dot(alpha, X[t - maxLen + 1:t, 0][::-1])

            # The predictive variance for each prediction
            pred_var = sigma2[:, 0] * SSE[:, 0] / df

            # get the posterior predictive probability for each run length
            predprobs = studentpdf(X[t - 1, 0], mu, pred_var, df, 1)

            # Update the SSE for each run length
            SSE[1:maxLen, 0] = SSE[:maxLen - 1, 0] + \
                (mu[:maxLen - 1] - X[maxLen - 1, 0]) ** 2 / \
                sigma2[:maxLen - 1, 0]
            SSE[0, 0] = 2 * beta0

        # endif
        predMeans[t - 1] = np.dot(R[:mu.shape[0], t - 1].T, mu)

        predMed[t - 1] = np.median(
            MoTrnd(R[:mu.shape[0], t - 1], mu, pred_var[:mu.shape[0]], df[:mu.shape[0]], 1000))

        # Evaluate the growth probabilities - shift the probabilities up and to the
        # right, scaled by the hazard function and the predictive
        # probabilities.
        R[1:, t] = R[: maxLen, t - 1] * predprobs * (1 - H[: maxLen])

        # Evaluate the probability that there * was * a changepoint and we're
        # accumulating the mass back down at r = 0.

        R[0, t] = (R[: maxLen, t - 1] * predprobs * H[: maxLen]).sum()

        # Renormalize the run length probabilities for improved numerical stability.
        # Note that unlike in [RPA] which keeps track of P(r_t, X_1: t), we keep track
        # of P(r_t | X_1: t) = > unnormalized R(i, t + 1) = P(runlength_t=i - 1 | X_1: t)
        # * P(X_t | X_1: t - 1) = > normalization const Z(t) = P(X_t | X_1: t - 1). Sort of
        # Implements step 6, alg 1, of[RPA].

        Z[t - 1] = R[:, t].sum()

        R[: maxLen, t] /= Z[t - 1]

        R[maxLen - 1, t] = R[maxLen - 1, t] + R[maxLen, t]
        R[maxLen, t] = 0

    # endTloop

    # Get the negative log marginal likelihood of the data, X(1: end), under
    # the model = P(X_1: T), integrating out all the runlengths. 1 x 1. [log
    # P]

    nlml = -sum(np.log(Z))

    return (R, nlml, Z, predMeans, predMed)