コード例 #1
0
ファイル: test_core.py プロジェクト: saraalsaheel/stumpy
def test_mass(Q, T):
    m = Q.shape[0]
    left = np.linalg.norm(core.z_norm(core.rolling_window(T, m), 1) -
                          core.z_norm(Q),
                          axis=1)
    right = core.mass(Q, T)
    npt.assert_almost_equal(left, right)
コード例 #2
0
def test_stumpi_self_join():
    m = 3
    zone = int(np.ceil(m / 4))

    seed = np.random.randint(100000)
    np.random.seed(seed)

    T = np.random.rand(30)
    stream = stumpi(T, m, egress=False)
    for i in range(34):
        t = np.random.rand()
        stream.update(t)

    comp_P = stream.P_
    comp_I = stream.I_
    comp_left_P = stream.left_P_
    comp_left_I = stream.left_I_

    ref_mp = naive.stamp(stream.T_, m, exclusion_zone=zone)
    ref_P = ref_mp[:, 0]
    ref_I = ref_mp[:, 1]
    ref_left_P = np.empty(ref_P.shape)
    ref_left_P[:] = np.inf
    ref_left_I = ref_mp[:, 2]
    for i, j in enumerate(ref_left_I):
        if j >= 0:
            D = core.mass(stream.T_[i:i + m], stream.T_[j:j + m])
            ref_left_P[i] = D[0]

    naive.replace_inf(ref_P)
    naive.replace_inf(ref_left_P)
    naive.replace_inf(comp_P)
    naive.replace_inf(comp_left_P)

    npt.assert_almost_equal(ref_P, comp_P)
    npt.assert_almost_equal(ref_I, comp_I)
    npt.assert_almost_equal(ref_left_P, comp_left_P)
    npt.assert_almost_equal(ref_left_I, comp_left_I)

    np.random.seed(seed)
    T = np.random.rand(30)
    T = pd.Series(T)
    stream = stumpi(T, m, egress=False)
    for i in range(34):
        t = np.random.rand()
        stream.update(t)

    comp_P = stream.P_
    comp_I = stream.I_
    comp_left_P = stream.left_P_
    comp_left_I = stream.left_I_

    naive.replace_inf(comp_P)
    naive.replace_inf(comp_left_P)

    npt.assert_almost_equal(ref_P, comp_P)
    npt.assert_almost_equal(ref_I, comp_I)
    npt.assert_almost_equal(ref_left_P, comp_left_P)
    npt.assert_almost_equal(ref_left_I, comp_left_I)
コード例 #3
0
ファイル: test_stumpi.py プロジェクト: sayed6201/stumpy
def test_stumpi_self_join():
    m = 3
    zone = int(np.ceil(m / 4))

    seed = np.random.randint(100000)
    np.random.seed(seed)

    T = np.random.rand(30)
    stream = stumpi(T, m)
    for i in range(34):
        t = np.random.rand()
        stream.update(t)

    right_P = stream.P_
    right_I = stream.I_
    right_left_P = stream.left_P_
    right_left_I = stream.left_I_

    left = naive.stamp(stream.T_, m, exclusion_zone=zone)
    left_P = left[:, 0]
    left_I = left[:, 1]
    left_left_P = np.empty(left_P.shape)
    left_left_P[:] = np.inf
    left_left_I = left[:, 2]
    for i, j in enumerate(left_left_I):
        if j >= 0:
            D = core.mass(stream.T_[i:i + m], stream.T_[j:j + m])
            left_left_P[i] = D[0]

    naive.replace_inf(left_P)
    naive.replace_inf(left_left_P)
    naive.replace_inf(right_P)
    naive.replace_inf(right_left_P)

    npt.assert_almost_equal(left_P, right_P)
    npt.assert_almost_equal(left_I, right_I)
    npt.assert_almost_equal(left_left_P, right_left_P)
    npt.assert_almost_equal(left_left_I, right_left_I)

    np.random.seed(seed)
    T = np.random.rand(30)
    T = pd.Series(T)
    stream = stumpi(T, m)
    for i in range(34):
        t = np.random.rand()
        stream.update(t)

    right_P = stream.P_
    right_I = stream.I_
    right_left_P = stream.left_P_
    right_left_I = stream.left_I_

    naive.replace_inf(right_P)
    naive.replace_inf(right_left_P)

    npt.assert_almost_equal(left_P, right_P)
    npt.assert_almost_equal(left_I, right_I)
    npt.assert_almost_equal(left_left_P, right_left_P)
    npt.assert_almost_equal(left_left_I, right_left_I)
コード例 #4
0
ファイル: test_core.py プロジェクト: tylerwmarrs/stumpy
def test_mass(Q, T):
    Q = Q.copy()
    T = T.copy()
    m = Q.shape[0]
    ref = np.linalg.norm(core.z_norm(core.rolling_window(T, m), 1) -
                         core.z_norm(Q),
                         axis=1)
    comp = core.mass(Q, T)
    npt.assert_almost_equal(ref, comp)
コード例 #5
0
ファイル: test_core.py プロジェクト: sayed6201/stumpy
def test_mass_inf(Q, T):
    T[1] = np.inf
    m = Q.shape[0]

    left = np.linalg.norm(core.z_norm(core.rolling_window(T, m), 1) -
                          core.z_norm(Q),
                          axis=1)
    left[np.isnan(left)] = np.inf

    right = core.mass(Q, T)
    npt.assert_almost_equal(left, right)
コード例 #6
0
ファイル: test_core.py プロジェクト: tylerwmarrs/stumpy
def test_mass_T_nan(Q, T):
    Q = Q.copy()
    T = T.copy()
    T[1] = np.nan
    m = Q.shape[0]

    ref = np.linalg.norm(core.z_norm(core.rolling_window(T, m), 1) -
                         core.z_norm(Q),
                         axis=1)
    ref[np.isnan(ref)] = np.inf

    comp = core.mass(Q, T)
    npt.assert_almost_equal(ref, comp)
コード例 #7
0
    def __init__(self, T, m, excl_zone=None):
        self._T = np.asarray(T)
        self._T = self._T.copy()
        self._T_isfinite = np.isfinite(self._T)
        self._m = m
        if excl_zone is None:
            self._excl_zone = int(np.ceil(self._m / 4))

        self._l = self._T.shape[0] - m + 1
        mp = stump(T, m)
        self.P_ = mp[:, 0]
        self.I_ = mp[:, 1].astype(np.int64)
        self.left_P_ = np.full(self.P_.shape, np.inf)
        self.left_I_ = mp[:, 2].astype(np.int64)
        for i, j in enumerate(self.left_I_):
            if j >= 0:
                D = core.mass(self._T[i : i + self._m], self._T[j : j + self._m])
                self.left_P_[i] = D[0]

        self._n_appended = 0
コード例 #8
0
    def update(self, t):
        self._T[:] = np.roll(self._T, -1)
        self._T_isfinite[:] = np.roll(self._T_isfinite, -1)
        if np.isfinite(t):
            self._T_isfinite[-1] = True
            self._T[-1] = t
        else:
            self._T_isfinite[-1] = False
            self._T[-1] = 0
        self._n_appended += 1

        self.P_[:] = np.roll(self.P_, -1)
        self.I_[:] = np.roll(self.I_, -1)
        self.left_P_[:] = np.roll(self.left_P_, -1)
        self.left_I_[:] = np.roll(self.left_I_, -1)

        D = core.mass(self._T[-self._m :], self._T)
        T_subseq_isfinite = np.all(
            core.rolling_window(self._T_isfinite, self._m), axis=1
        )
        D[~T_subseq_isfinite] = np.inf
        if np.any(~self._T_isfinite[-self._m :]):
            D[:] = np.inf

        apply_exclusion_zone(D, D.shape[0] - 1, self._excl_zone)
        for j in range(D.shape[0]):
            if D[j] < self.P_[j]:
                self.I_[j] = D.shape[0] - 1 + self._n_appended
                self.P_[j] = D[j]

        I_last = np.argmin(D)

        if np.isinf(D[I_last]):
            self.I_[-1] = -1
            self.P_[-1] = np.inf
        else:
            self.I_[-1] = I_last + self._n_appended
            self.P_[-1] = D[I_last]

        self.left_I_[-1] = I_last + self._n_appended
        self.left_P_[-1] = D[I_last]
コード例 #9
0
    def __init__(self, T, m, excl_zone=None):
        """
        Initialize the `stumpi` object

        Parameters
        ----------
        T : ndarray
            The time series or sequence for which the matrix profile and matrix profile
            indices will be returned

        m : int
            Window size

        excl_zone : int
            The half width for the exclusion zone relative to the current
            sliding window
        """
        self._T = T
        self._m = m
        if excl_zone is not None:  # pragma: no cover
            self._excl_zone = excl_zone
        else:
            self._excl_zone = int(np.ceil(self._m / 4))
        self._illegal = np.logical_or(np.isinf(self._T), np.isnan(self._T))

        mp = stumpy.stump(self._T, self._m)
        self._P = mp[:, 0]
        self._I = mp[:, 1]
        self._left_I = mp[:, 2]
        self._left_P = np.empty(self._P.shape)
        self._left_P[:] = np.inf

        self._T, self._M_T, self._Σ_T = core.preprocess(self._T, self._m)
        # Retrieve the left matrix profile values
        for i, j in enumerate(self._left_I):
            if j >= 0:
                D = core.mass(self._T[i:i + self._m], self._T[j:j + self._m])
                self._left_P[i] = D[0]

        Q = self._T[-m:]
        self._QT = core.sliding_dot_product(Q, self._T)