def _set_coefficients(self): """Extracts the drizzle coefficients.""" try: self.imwcs = HSTWCS(self.image, ext=self.detector) #self.xcoeffs, self.ycoeffs = coeff_converter.sip2idc(self.imwcs) except ValueError: raise aXeError( "Could not determine distorsion coefficients from header.") # dictionary with the fixed names for the orders fixed_orders = { 1: 'constant', 2: 'linear', 3: 'quadratic', 4: 'cubic', 5: 'quintic' } self.xcoeffs = np.array([[0.0], [1.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]) self.ycoeffs = np.array([[0.0], [0.0], [1.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]) # return the order # for HST the a and b orders should always match # sip.ap_order is the inverse # if (self.imwcs.sip.a_order != self.imwcs.sip.b_order): # raise aXeError("SIP a and b orders don't match!") # self.order = fixed_orders[self.imwcs.sip.a_order] try: self.order = fixed_orders[len(self.xcoeffs) / 2] except KeyError: raise aXeError( f'Coefficient order not available: {self.order} in {fixed_orders}' )
def build(self, expnames): for exposure in expnames: blank = np.zeros(self.meta_wcs.array_shape, dtype=np.int16) exp = fits.open(exposure) sci_extns = wcs_functions.get_extns(exp) for sci in sci_extns: wcs = HSTWCS(exp, ext=sci) edges_x = [0]*wcs.naxis2 + [wcs.naxis1-1]*wcs.naxis2 + list(range(wcs.naxis1)) * 2 edges_y = list(range(wcs.naxis2)) * 2 + [0]*wcs.naxis1 + [wcs.naxis2-1]*wcs.naxis1 sky_edges = wcs.pixel_to_world_values(np.vstack([edges_x, edges_y]).T) meta_edges = self.meta_wcs.world_to_pixel_values(sky_edges).astype(np.int32) # Account for rounding problems with creating meta_wcs meta_edges[:,1] = np.clip(meta_edges[:,1], 0, self.meta_wcs.array_shape[0]-1) meta_edges[:,0] = np.clip(meta_edges[:,0], 0, self.meta_wcs.array_shape[1]-1) # apply meta_edges to blank mask # Use PIL to create mask parray = np.array(meta_edges.T) polygon = list(zip(parray[0], parray[1])) nx = self.meta_wcs.array_shape[1] ny = self.meta_wcs.array_shape[0] img = Image.new('L', (nx, ny) , 0) ImageDraw.Draw(img).polygon(polygon, outline=1, fill=1) blank = np.array(img) self.total_mask += blank.astype(np.int16)
def applyShiftsSA(visit): sa_out = '%s_simplematch.out' % visit drzs = {} print('Reading %s...' % sa_out) for i in [j.split() for j in open(sa_out).readlines()]: drz = i[0].replace('_sa.cat', '.fits') drzs[drz] = [float(i[1]), float(i[2]), float(i[3])] print("Applying shifts...") with open('sa_shifts.txt', 'a') as sas: for d, s in drzs.items(): if os.path.exists(d): if d[:6] == visit: if s: dx, dy, dt = s wcs = HSTWCS(fits.open(d)) dxp = round(dx / wcs.pscale, 3) dyp = round(dy / wcs.pscale, 3) dtp = round(dt, 3) offsets = [d, dxp, dyp, dtp] sas.write('%s %.3f %.3f %.3f\n' % (d, dxp, dyp, dtp)) print(d, dxp, dyp, dtp) updatehdr.updatewcs_with_shift(d, d, wcsname='DRZWCS', xsh=dxp, ysh=dyp, rot=dtp, scale=1.0, force=True)
def match_to_gaia(imcat, refcat, product, output, searchrad=5.0): """Create a catalog with sources matched to GAIA sources Parameters ---------- imcat : str or obj Filename or astropy.Table of source catalog written out as ECSV file refcat : str Filename of GAIA catalog files written out as ECSV file product : str Filename of drizzled product used to derive the source catalog output : str Rootname for matched catalog file to be written as an ECSV file """ if isinstance(imcat, str): imtab = Table.read(imcat, format='ascii.ecsv') imtab.rename_column('X-Center', 'x') imtab.rename_column('Y-Center', 'y') else: imtab = imcat if 'X-Center' in imtab.colnames: imtab.rename_column('X-Center', 'x') imtab.rename_column('Y-Center', 'y') reftab = Table.read(refcat, format='ascii.ecsv') # define WCS for matching tpwcs = tweakwcs.FITSWCS(HSTWCS(product, ext=1)) # define matching parameters tpmatch = tweakwcs.TPMatch(searchrad=searchrad) # perform match ref_indx, im_indx = tpmatch(reftab, imtab, tpwcs) print('Found {} matches'.format(len(ref_indx))) # Obtain tangent plane positions for both image sources and reference sources im_x, im_y = tpwcs.det_to_tanp(imtab['x'][im_indx], imtab['y'][im_indx]) ref_x, ref_y = tpwcs.world_to_tanp(reftab['RA'][ref_indx], reftab['DEC'][ref_indx]) if 'RA' not in imtab.colnames: im_ra, im_dec = tpwcs.det_to_world(imtab['x'][im_indx], imtab['y'][im_indx]) else: im_ra = imtab['RA'][im_indx] im_dec = imtab['DEC'][im_indx] # Compile match table match_tab = Table(data=[im_x, im_y, im_ra, im_dec, ref_x, ref_y, reftab['RA'][ref_indx], reftab['DEC'][ref_indx]], names=['img_x','img_y', 'img_RA', 'img_DEC', 'ref_x', 'ref_y', 'ref_RA', 'ref_DEC']) if not output.endswith('.ecsv'): output = '{}.ecsv'.format(output) match_tab.write(output, format='ascii.ecsv')
def build(self, expnames): for exposure in expnames: blank = np.zeros(self.meta_wcs.array_shape, dtype=np.int16) exp = fits.open(exposure) sci_extns = wcs_functions.get_extns(exp) for sci in sci_extns: wcs = HSTWCS(exp, ext=sci) edges_x = [0] * wcs.naxis2 + [wcs.naxis1 - 1 ] * wcs.naxis2 + list( range(wcs.naxis1)) * 2 edges_y = list(range(wcs.naxis2)) * 2 + [0] * wcs.naxis1 + [ wcs.naxis2 - 1 ] * wcs.naxis1 sky_edges = wcs.pixel_to_world_values( np.vstack([edges_x, edges_y]).T) meta_edges = self.meta_wcs.world_to_pixel_values( sky_edges).astype(np.int32) blank[meta_edges[:, 1], meta_edges[:, 0]] = 1 # Fill in outline of each chip blank = morphology.binary_dilation(blank, structure=NDIMAGE_STRUCT2) blank = morphology.binary_fill_holes(blank) blank = morphology.binary_erosion(blank, structure=NDIMAGE_STRUCT2) self.total_mask += blank.astype(np.int16)
def generate_source_catalogs(imglist, **pars): """Generates a dictionary of source catalogs keyed by image name. Parameters ---------- imglist : list List of one or more calibrated fits images that will be used for source detection. Returns ------- sourcecatalogdict : dictionary a dictionary (keyed by image name) of two element dictionaries which in tern contain 1) a dictionary of the detector-specific processing parameters and 2) an astropy table of position and photometry information of all detected sources """ output = pars.get('output', False) sourcecatalogdict = {} for imgname in imglist: print("Image name: ", imgname) sourcecatalogdict[imgname] = {} # open image imghdu = fits.open(imgname) imgprimaryheader = imghdu[0].header instrument = imgprimaryheader['INSTRUME'].lower() detector = imgprimaryheader['DETECTOR'].lower() # get instrument/detector-specific image alignment parameters if instrument in detector_specific_params.keys(): if detector in detector_specific_params[instrument].keys(): detector_pars = detector_specific_params[instrument][detector] # to allow generate_source_catalog to get detector specific parameters detector_pars.update(pars) sourcecatalogdict[imgname]["params"] = detector_pars else: sys.exit("ERROR! Unrecognized detector '{}'. Exiting...".format(detector)) else: sys.exit("ERROR! Unrecognized instrument '{}'. Exiting...".format(instrument)) # Identify sources in image, convert coords from chip x, y form to reference WCS sky RA, Dec form. imgwcs = HSTWCS(imghdu, 1) fwhmpsf_pix = sourcecatalogdict[imgname]["params"]['fwhmpsf']/imgwcs.pscale #Convert fwhmpsf from arsec to pixels sourcecatalogdict[imgname]["catalog_table"] = amutils.generate_source_catalog(imghdu, fwhm=fwhmpsf_pix, **detector_pars) # write out coord lists to files for diagnostic purposes. Protip: To display the sources in these files in DS9, # set the "Coordinate System" option to "Physical" when loading the region file. imgroot = os.path.basename(imgname).split('_')[0] numSci = amutils.countExtn(imghdu) # Allow user to decide when and how to write out catalogs to files if output: for chip in range(1,numSci+1): regfilename = "{}_sci{}_src.reg".format(imgroot, chip) out_table = Table(sourcecatalogdict[imgname]["catalog_table"][chip]) out_table.write(regfilename, include_names=["xcentroid", "ycentroid"], format="ascii.fast_commented_header") print("Wrote region file {}\n".format(regfilename)) imghdu.close() return(sourcecatalogdict)
def test_prihdu_with_extver_no_extname(): hdulist = fits.HDUList([ fits.PrimaryHDU(header=fits.Header([('extver', 7)])), fits.ImageHDU(header=fits.Header([('time', 6)])) ]) extname = HSTWCS(hdulist).extname assert extname == ('PRIMARY', 7) assert hdulist[extname] is hdulist[0]
def _get_sci_group(i, index): d = Data("%s_%i" % (label, index)) d.coords = coordinates_from_wcs(HSTWCS(hdulist, i)) index = index + 1 d.add_component(hdulist[i].data, hdulist[i].name) for h in hdulist[i:]: if h.name == 'SCI': break # new science grp if h.name not in ['ERR', 'DQ']: continue d.add_component(h.data, h.name) return d
def getFootprint(fitsfile): """Get footprint of image""" instdet = getInstDet(fitsfile) fin = fits.open(fitsfile) exts = sciexts[instdet] wcs = HSTWCS(fin, exts[0]) points = wcs.calc_footprint() if len(exts) > 1: wcs = HSTWCS(fin, exts[1]) points = np.vstack((points, wcs.calc_footprint())) else: points = wcs.calc_footprint() hull = ConvexHull(points) vertices = np.take(points, hull.vertices, axis=0).flatten().tolist() fltr = getFilter(fitsfile).upper() dsn = fitsfile[:9] with open(fitsfile.replace('.fits', '_footprint.reg'), 'w') as reg: reg.write('global color=green font="helvetica 8 normal" edit=1 move=1 delete=1 include=1 fixed=0\nfk5\n') if fltr in list(filters.keys()): c = filters[fltr] else: c = 'white' reg.write('polygon(%s) # color=%s text={%s}\n' % (str(vertices)[1:-1], c, dsn))
def stars2cat(drzfile, refwcs): """ Makes catalog file from a superalign .stars file """ wcs = HSTWCS(fits.open(drzfile)) starsfile = drzfile.replace('.fits', '_sa.cat.stars') catfile = '%s.cat' % starsfile rcat = np.genfromtxt(starsfile, usecols=(1, 2)) rrdcat = wcs.all_pix2world( (rcat / wcs.pscale) + [wcs.naxis1 / 2, wcs.naxis2 / 2], 1).tolist() xy = refwcs.all_world2pix(rrdcat, 1).tolist() with open(catfile, 'w') as catout: for i, rd in enumerate(rrdcat): catout.write('%d %.8f %.8f %.3f %.3f %d\n' % (i, rd[0], rd[1], xy[i][0], xy[i][1], i))
def makeSAin(visit, imgs, refwcs, refcat_sa): sa_file = '%s_superalign.in' % visit print('Creating %s' % sa_file) sa_in = open(sa_file, 'w') sa_in.write('%s 1\n' % str(len(imgs) + 1)) sa_in.write('%s 0.000 0.000 0.000\n' % refcat_sa) for drz in imgs: f = os.path.basename(drz) wcs = HSTWCS(fits.open(drz)) sky = wcs.all_pix2world([[wcs.naxis1 / 2, wcs.naxis2 / 2]], 1) arc = (refwcs.all_world2pix(sky, 1) - [refwcs.naxis1 / 2, refwcs.naxis2 / 2]) * refwcs.pscale rot = round(refwcs.orientat - wcs.orientat, 3) sa_in.write('%s %s %s %s\n' % (f.replace('.fits', '_sa.cat'), round( arc[0][0], 3), round(arc[0][1], 3), rot)) sa_in.close()
def cli(ctx, itype, otype, ptask): """ Drizzles and individual images to be used for alignment """ dsn = ctx.dataset_name ctx.log('Running task %s for dataset %s', task, dsn) procdir = os.path.join(ctx.rundir, dsn) os.chdir(procdir) cfgf = '%s_cfg.json' % dsn cfg = hutils.rConfig(cfgf) tcfg = cfg['tasks'][task] = {} tcfg['ptask'] = ptask tcfg['itype'] = itype tcfg['otype'] = otype tcfg['stime'] = ctx.dt() tcfg['completed'] = False if ctx.refimg: refimg = str(ctx.refimg) refwcs = HSTWCS(refimg) cfg['refimg'] = refimg pscale = refwcs.pscale orientat = refwcs.orientat else: # use native pixel scale pscale = None orientat = 0 images = hutils.imgList(cfg['images']) infiles = [str('%s%s' % (i, itype)) for i in images] n = len(infiles) with click.progressbar(infiles, label='Generating single drizzled images') as pbar: for i, f in enumerate(pbar): ctx.vlog('\n\nDrizzling image %s - %s of %s', f, i + 1, n) try: drizzle_image.drzImage(f, pscale, orientat) except Exception as e: hutils.wConfig(cfg, cfgf) print(e) raise tcfg['etime'] = ctx.dt() tcfg['completed'] = True ctx.vlog('Writing configuration file %s for %s task', cfgf, task) hutils.wConfig(cfg, cfgf)
def makeSACat(self, imgfile, extref=False): """ Makes a catalog of objects to be used for input to superalign from a external reference catalog. Catalog should be of form: ID RA(deg) Dec(deg) Mag Output appends _sa """ if extref: wcs = self.refwcs else: wcs = HSTWCS(imgfile) cat = imgfile.replace('.fits', '.cat') outcat = imgfile.replace('.fits', '_sa.cat') data = ascii.read(cat, names=['id', 'ra', 'dec', 'x', 'y', 'mag']) arcs = (wcs.all_world2pix(list(zip(data['ra'], data['dec'])), 1) - [wcs.naxis1 / 2, wcs.naxis2 / 2]) * wcs.pscale ascii.write([data['id'], arcs[:, 0], arcs[:, 1], data['mag']], outcat, format='no_header', overwrite=True) return
def makeCat(self, imgfile, instdet, weightfile=None, extref=False): """Makes a catalog of objects to be used for input to superalign and creates a DS9 region file of objects""" imgfile_cat = '%s_all.cat' % imgfile.replace('.fits', '') imgfile_reg = '%s_all.reg' % imgfile.replace('.fits', '') o_radec = [] ext = 0 objectlist = self.findSources('%s[%s]' % (imgfile, ext), imgfile_cat, instdet, weightfile, extref=extref) cleanobjectlist = self.removeCloseSources(objectlist) print('Found %s sources' % len(cleanobjectlist)) wcs = HSTWCS(str(imgfile)) for obj in cleanobjectlist: sky = wcs.all_pix2world(np.array([[obj.x, obj.y]]), 1) o_radec.append([obj.ra[0], obj.dec[0]]) obj.ra = sky[0][0] obj.dec = sky[0][1] # Write out a ds9 region file of object selected for alignment regout = open(imgfile_reg, 'w') regout.write( 'global color=green font="helvetica 8 normal" edit=1 move=1 delete=1 include=1 fixed=0\nfk5\n' ) for i, rd in enumerate(o_radec): oid = i + 1 regout.write('circle(%s,%s,%s") # color=%s text={%s}\n' % (rd[0], rd[1], 0.5, 'red', oid)) regout.close() # Now we need to write out the catalog in the reference image coords in arcseconds with respect to center of the image catout = open(imgfile_cat, 'w') for i, obj in enumerate(cleanobjectlist): oid = i + 1 catout.write('%i %.9f %.9f %.4f %.4f %.4f\n' % (oid, obj.ra, obj.dec, obj.x, obj.y, obj.mag)) catout.close() return
def __init__(self, filename): if isinstance(filename, str): self.imghdu = fits.open(filename) self.imgname = filename else: self.imghdu = filename self.imgname = filename.filename() if 'rootname' in self.imghdu[0].header: self.rootname = self.imghdu[0].header['rootname'] else: self.rootname = self.imgname.rstrip('.fits') # Fits file read self.num_sci = amutils.countExtn(self.imghdu) self.num_wht = amutils.countExtn(self.imghdu, extname='WHT') self.data = np.concatenate( [self.imghdu[('SCI', i + 1)].data for i in range(self.num_sci)]) if not self.num_wht: self.dqmask = self.build_dqmask() else: self.dqmask = None self.wht_image = self.build_wht_image() # Get the HSTWCS object from the first extension self.imgwcs = HSTWCS(self.imghdu, 1) self.pscale = self.imgwcs.pscale self._wht_image = None self.bkg = {} self.bkg_dao_rms = {} self.bkg_rms_mean = {} self.threshold = {} self.kernel = None self.kernel_fwhm = None self.kernel_psf = False self.fwhmpsf = None self.catalog_table = {}
def restoreWCSdrz(img, ext): wcs = HSTWCS(img, ext=ext, wcskey='A') print('Removing any previous alternative WCS for image %s[%s]' % (img, ext)) names = wcsnames(img, ext) for k, n in names.items(): if k not in [' ', 'O']: deleteWCS(img, ext, wcskey=k, wcsname=n) with fits.open(img, mode='update') as hdu: hdu[ext].header['CD1_1'] = wcs.wcs.cd[0][0] hdu[ext].header['CD1_2'] = wcs.wcs.cd[0][1] hdu[ext].header['CD2_1'] = wcs.wcs.cd[1][0] hdu[ext].header['CD2_2'] = wcs.wcs.cd[1][1] hdu[ext].header['CRVAL1'] = wcs.wcs.crval[0] hdu[ext].header['CRVAL2'] = wcs.wcs.crval[1] hdu[ext].header['CRPIX1'] = wcs.wcs.crpix[0] hdu[ext].header['CRPIX2'] = wcs.wcs.crpix[1] hdu[ext].header['ORIENTAT'] = 0.0 hdu[ext].header['WCSNAME'] = 'DRZWCS' del hdu[ext].header['LATPOLE'] del hdu[ext].header['LONPOLE']
def refineShiftMCMC(drzfile): """ Refine shifts using MCMC """ dsn = drzfile[:9] wcs = HSTWCS(fits.open(drzfile)) wcsn = fits.getval(drzfile, 'wcsname') try: refcat = np.loadtxt('%s_drz_sci_sa_ref_match.cat' % dsn, usecols=(1, 2)) imgcat = np.loadtxt('%s_drz_sci_sa_match.cat' % dsn, usecols=(1, 2)) refcatw = wcs.all_world2pix(refcat, 1) imgcatw = wcs.all_world2pix(imgcat, 1) ox, oy = wcs.wcs.crpix.tolist() offset, err = mcmcShifts.findOffsetMCMC(imgcatw, refcatw, maxShift=(10, 10, 0.3), rotOrigin=(ox, oy), precision=0.01, visualize=False) print(drzfile, offset, err) dxp, dyp, dtp = offset updatehdr.updatewcs_with_shift(drzfile, drzfile, wcsname='DRZWCS', xsh=dxp, ysh=dyp, rot=dtp, scale=1.0, force=True) return offset except UserWarning: pass
def __init__(self, filename): if isinstance(filename, str): self.imghdu = fits.open(filename) self.imgname = filename else: self.imghdu = filename self.imgname = filename.filename() # Get header information to annotate the output catalogs if "total" in self.imgname: self.ghd_product = "tdp" else: self.ghd_product = "fdp" # Fits file read self.data = self.imghdu[('SCI', 1)].data self.wht_image = self.imghdu['WHT'].data.copy() # Get the HSTWCS object from the first extension self.imgwcs = HSTWCS(self.imghdu, 1) self.keyword_dict = self._get_header_data() self.bkg = None
def __init__(self, refimg): super(MakeCat, self).__init__() self.refimg = str(refimg) self.refwcs = HSTWCS(self.refimg)
def getPScale(fitsfile): """Get plate scale of image""" wcs = HSTWCS(fits.open(fitsfile)) return wcs.pscale
def create_sextractor_like_sourcelists(source_filename, catalog_filename, param_dict, se_debug=False): """Use photutils to find sources in image based on segmentation. Parameters ---------- source_filename : string Filename of the "white light" drizzled image (aka the total detection product) which is used for the detection of sources catalog_filename : string Name of the output source catalog for the total detection product param_dict : dictionary dictionary of drizzle, source finding, and photometric parameters se_debug : bool, optional Specify whether or not to plot the image and segmentation image for visualization and debugging purposes Returns ------- segm : `photutils.segmentation.SegmentationImage` Two-dimensional segmentation image where found source regions are labeled with unique, non-zero positive integers. kernel : bkg : `~photutils.background.Background2D` or None A background map based upon the `~photutils.background.SExtractorBackground` estimator bkg_rms_mean : float Mean bkg.background FIX """ # Open the "white light" image and get the SCI image data imghdu = fits.open(source_filename) imgarr = imghdu['sci', 1].data # Get the HSTWCS object from the first extension imgwcs = HSTWCS(imghdu, 1) # Get header information to annotate the output catalogs keyword_dict = _get_header_data(imghdu) # Get the instrument/detector-specific values from the param_dict fwhm = param_dict["sourcex"]["fwhm"] size_source_box = param_dict["sourcex"]["source_box"] threshold_flag = param_dict["sourcex"]["thresh"] # Report configuration values to log log.info("{}".format("=" * 80)) log.info("") log.info( "SExtractor-like source finding settings for Photutils segmentation") log.info("Total Detection Product - Input Parameters") log.info("FWHM: {}".format(fwhm)) log.info("size_source_box: {}".format(size_source_box)) log.info("threshold_flag: {}".format(threshold_flag)) log.info("") log.info("{}".format("=" * 80)) # Only use a single kernel for now kernel_list = [Gaussian2DKernel, MexicanHat2DKernel] kernel_in_use = kernel_list[0] bkg, bkg_dao_rms, threshold = _compute_background( imgarr, nsigma=5., threshold_flag=threshold_flag) # FIX imgarr should be background subtracted, sextractor uses the filtered_data image imgarr_bkgsub = imgarr - bkg.background # *** FIX: should size_source_box size be used in all these places? *** # Create a 2D filter kernel - this will be used to smooth the input # image prior to thresholding in detect_sources(). sigma = fwhm * gaussian_fwhm_to_sigma kernel = kernel_in_use(sigma, x_size=size_source_box, y_size=size_source_box) kernel.normalize() # Source segmentation/extraction # If the threshold includes the background level, then the input image # should NOT be background subtracted. # Note: SExtractor has "connectivity=8" which is the default for this function segm = detect_sources(imgarr, threshold, npixels=size_source_box, filter_kernel=kernel) # For debugging purposes... if se_debug: # Write out a catalog which can be used as an overlay for image in ds9 cat = source_properties(imgarr_bkgsub, segm, background=bkg.background, filter_kernel=kernel, wcs=imgwcs) table = cat.to_table() # Copy out only the X and Y coordinates to a "debug table" and # cast as an Astropy Table tbl = Table(table["xcentroid", "ycentroid"]) # Construct the debug output filename and write the catalog indx = catalog_filename.find("ecsv") outname = catalog_filename[0:indx] + "reg" tbl["xcentroid"].info.format = ".10f" # optional format tbl["ycentroid"].info.format = ".10f" # Add one to the X and Y table values to put the data onto a one-based system, # particularly for display with DS9 tbl["xcentroid"] = tbl["xcentroid"] + 1 tbl["ycentroid"] = tbl["ycentroid"] + 1 tbl.write(outname, format="ascii.commented_header") log.info("Wrote debug source catalog: {}".format(outname)) """ # Generate a graphic of the image and the segmented image norm = ImageNormalize(stretch=SqrtStretch()) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12.5)) ax1.imshow(imgarr, origin="lower", cmap="Greys_r", norm=norm) ax1.set_title("Data") ax2.imshow(segm, origin="lower", cmap=segm.cmap(random_state=12345)) ax2.set_title("Segmentation Image") plt.show() """ # TROUBLESOME at this time # Deblending is a combination of multi-thresholding and watershed # segmentation. Sextractor uses a multi-thresholding technique. # npixels = number of connected pixels in source # npixels and filter_kernel should match those used by detect_sources() # Note: SExtractor has "connectivity=8" which is the default for this function """ segm = deblend_sources(imgarr, segm, npixels=size_source_box, filter_kernel=kernel, nlevels=32, contrast=0.005) print("after deblend. ", segm) """ """ if se_debug: # Generate a graphic of the image and the segmented image norm = ImageNormalize(stretch=SqrtStretch()) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12.5)) ax1.imshow(imgarr, origin="lower", cmap="Greys_r", norm=norm) ax1.set_title("Data") ax2.imshow(segm, origin="lower", cmap=segm.cmap(random_state=12345)) ax2.set_title("Segmentation Image") plt.show() """ # Regenerate the source catalog with presumably now only good sources seg_cat = source_properties(imgarr_bkgsub, segm, background=bkg.background, filter_kernel=kernel, wcs=imgwcs) _write_catalog(seg_cat, keyword_dict, catalog_filename) return segm, kernel, bkg_dao_rms
def _a_blot_image(self, image_to_blot, tempname, x_excess, y_excess, interp): """ Blot one image. Thats just a simple wrapper around the task blot in astrodrizzle Parameters ---------- image_to_blot: str the input image name, either the grism or direct drizzled image tempname: str the name of the output blotted image """ # the drizzle coeff information for adriz is taken # from the self.data image, excess_x = 0 excess_y = 0 # use the current data as reference image for output # self.data comes from the header of the input grism or flux image # and is one of the input images used to make the drizzled # image_to_blot input_image = (self.data).split("[")[0] bunit = fits.getval(image_to_blot, 'BUNIT') flt_header = fits.getheader(input_image) flt_wcs = HSTWCS(self.data) # now look at the image to blot, this is a drizzled image ftype = fileutil.isFits(image_to_blot)[1] if (ftype == 'mef'): blot_wcs = HSTWCS(image_to_blot, ext=(str(self.fcube_info["ext_nam"]), str(self.fcube_info["ext_ver"]))) image_data = fits.getdata(image_to_blot, extname=str(self.fcube_info["ext_nam"]), extver=int(self.fcube_info["ext_nam"])) elif (ftype is 'simple'): blot_wcs = HSTWCS(image_to_blot) # assume simple image_data = fits.getdata(image_to_blot) else: return IOError("File type of fits image is not " "supported {0:s}".format(image_to_blot)) # edit the wcs header information to add any dim_info shifts that # we need, expanding the size of the output image # make sure this gets saved to the output extension header. # The lambda image will be bigger than the segment image if x_excess > 0: excess_x = int(flt_wcs.naxis1 + x_excess * 2.) flt_wcs.naxis1 = excess_x crpix = flt_wcs.wcs.crpix newx = int(crpix[0]) + x_excess flt_wcs.wcs.crpix = np.array([newx, int(crpix[1])]) flt_wcs.sip.crpix[0] = newx if y_excess > 0: excess_y = int(flt_wcs.naxis2 + y_excess * 2.) flt_wcs.naxis2 = excess_y crpix = flt_wcs.wcs.crpix newy = int(crpix[1]) + y_excess flt_wcs.wcs.crpix = np.array([int(crpix[0]), newy]) flt_wcs.sip.crpix[1] = newy # outimage is just the data array outimage = astrodrizzle.ablot.do_blot(image_data.astype(np.float32), blot_wcs, flt_wcs, 1., interp=interp, sinscl=1., coeffs=True, wcsmap=None, stepsize=10) # update the flt_header with the flt_wcs information I created flt_header['CRPIX1'] = flt_wcs.wcs.crpix[0] flt_header['CRPIX2'] = flt_wcs.wcs.crpix[1] try: newimage = fits.PrimaryHDU() newimage.data = outimage newimage.header = flt_header newimage.header['BUNIT'] = bunit newimage.header.update(flt_wcs.to_header()) newimage.verify('silentfix') newimage.writeto(tempname) except: raise IOError("Problem writing fits image {0:s}".format(tempname))
def cli(ctx, itype, ofile, ptask): """ Runs superalign on catalogs for alignment """ dsn = ctx.dataset_name ctx.log('Running task %s for dataset %s', task, dsn) procdir = os.path.join(ctx.rundir, dsn) os.chdir(procdir) cfgf = '%s_cfg.json' % dsn cfg = hutils.rConfig(cfgf) tcfg = cfg['tasks'][task] = {} tcfg['ptask'] = ptask tcfg['itype'] = itype tcfg['ofile'] = cfg['sfile'] = ofile tcfg['stime'] = ctx.dt() tcfg['completed'] = False images = hutils.imgList(cfg['images']) infiles = [str('%s%s' % (i, itype)) for i in images] refimg = cfg['refimg'] refcat = cfg['refcat'] refcat_sa = cfg['refcat_sa'] refwcs = HSTWCS(fits.open(refimg)) mkcat = make_catalog.MakeCat(refimg) sa_hlf = find_executable('superalign_hlfred') if not sa_hlf: ctx.elog( 'Unable to find "superalign_hlfred" executable. Make sure it is in your PATH.' ) sys.exit(1) ctx.vlog('Grouping images by visit for alignment') visits = set([i[:6] for i in infiles]) vdata = {} for v in visits: vdata[v] = [] for e in infiles: if e[:6] == v: vdata[v].append(e) # Run superalign on all visits ctx.vlog('Generating the superalign input') with open('superalign_failed_visits.txt', 'w') as sfv: for visit, inf in vdata.items(): super_align.makeSAin(visit, inf, refwcs, refcat_sa) try: sa_cmd = '%s %s_superalign.in %s_sources.cat %s_offsets.cat' % ( sa_hlf, visit, visit, visit) ctx.vlog('Running: %s', sa_cmd) ecode = super_align.runSuperAlign(sa_cmd) if ecode != 0: print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') print('Superalign FAILED on %s' % visit) print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') sfv.write('%s\n' % visit) else: print('----------------------------------') print('Completed superalign on %s' % visit) print('----------------------------------') super_align.makeSourceCat(visit, refwcs) ctx.vlog('Running simplematch') super_align.runSimpleMatch(visit) ctx.vlog('Running applyshifts') super_align.applyShiftsSA(visit) except Exception as e: sfv.close() hutils.wConfig(cfg, cfgf) print(e) raise # Refine the shifts with MCMC ctx.vlog('Refining shifts...') with open('mcmc_shifts.txt', 'a') as ms: for drz in infiles: super_align.stars2cat(drz, refwcs) for visit, inf in vdata.items(): ctx.vlog('Generating matched catalogs for visit %s', visit) for c1 in glob.glob('%s???_drz_sci_sa.cat.stars.cat' % visit): c2 = refcat c1m = c1.replace('.cat.stars.cat', '_match.cat') c2m = c1.replace('.cat.stars.cat', '_ref_match.cat') super_align.nn_match(c1, c2, refwcs, c1m, c2m) for drz in infiles: with fits.open(drz) as hdu: wn = hdu[0].header['wcsname'] if wn == 'DRZWCS_1': ctx.vlog('Refining shifts for %s' % drz) offset = super_align.refineShiftMCMC(drz) dxp, dyp, dtp = offset ms.write('%s %.3f %.3f %.3f\n' % (drz, dxp, dyp, dtp)) ctx.vlog('Generating catalogs for checking alignment for %s', drz) whtf = drz.replace('sci', 'wht') instdet = hutils.getInstDet(drz) micat = drz.replace('.fits', '_all.cat') os.rename(micat, micat.replace('_all.cat', '_all_orig.cat')) omrcat = drz.replace('.fits', '_ref.cat') os.rename(omrcat, omrcat.replace('_ref.cat', '_ref_orig.cat')) os.rename(drz.replace('.fits', '.cat'), drz.replace('.fits', '_orig.cat')) mkcat.makeCat(drz, instdet, weightfile=whtf) omicat = drz.replace('.fits', '.cat') # create new catalogs with only maching pairs hutils.nn_match_radec(micat, refcat, omicat, omrcat) ctx.vlog('Calculating total shifts from shift files...') sasd = {} with open('sa_shifts.txt') as sas: sasl = [i.split() for i in sas.read().splitlines()] for sasi in sasl: ffn, sdx, sdy, sdt = sasi sasd[ffn] = [float(sdx), float(sdy), float(sdt)] mcsd = {} with open('mcmc_shifts.txt') as mcs: mcsl = [i.split() for i in mcs.read().splitlines()] for mcsi in mcsl: ffn, mdx, mdy, mdt = mcsi mcsd[ffn] = [float(mdx), float(mdy), float(mdt)] with open('{}_total_shifts.txt'.format(dsn), 'w') as tsf: for ff, sas in sasd.items(): mcs = mcsd[ff] tsh = [sum(i) for i in zip(sas, mcs)] ash = sas + mcs + tsh tshifts = [ff] + ash tsf.write( '{} {: .3f} {: .3f} {: .3f} {: .3f} {: .3f} {: .3f} {: .3f} {: .3f} {: .3f}\n' .format(*tshifts)) tcfg['etime'] = ctx.dt() tcfg['completed'] = True ctx.vlog('Writing configuration file %s for %s task', cfgf, task) hutils.wConfig(cfg, cfgf)
def characterize_gaia_distribution(hap_obj, log_level=logutil.logging.NOTSET): """Statistically describe distribution of GAIA sources in footprint. Computes and writes the file to a json file: - Number of GAIA sources - X centroid location - Y centroid location - X offset of centroid from image center - Y offset of centroid from image center - X standard deviation - Y standard deviation - minimum closest neighbor distance - maximum closest neighbor distance - mean closest neighbor distance - standard deviation of closest neighbor distances Parameters ---------- hap_obj : drizzlepac.hlautils.Product.FilterProduct hap product object to process log_level : int, optional The desired level of verboseness in the log statements displayed on the screen and written to the .log file. Default value is 'NOTSET'. Returns ------- Nothing """ log.setLevel(log_level) # get table of GAIA sources in footprint gaia_table = generate_gaia_catalog( hap_obj, columns_to_remove=['mag', 'objID', 'GaiaID']) # if log_level is either 'DEBUG' or 'NOTSET', write out GAIA sources to DS9 region file if log_level <= logutil.logging.DEBUG: reg_file = "{}_gaia_sources.reg".format(hap_obj.drizzle_filename[:-9]) gaia_table.write(reg_file, format='ascii.csv') log.debug( "Wrote GAIA source RA and Dec positions to DS9 region file '{}'". format(reg_file)) # convert RA, Dec to image X, Y outwcs = HSTWCS(hap_obj.drizzle_filename + "[1]") x, y = outwcs.all_world2pix(gaia_table['RA'], gaia_table['DEC'], 1) # compute stats for the distribution centroid = [np.mean(x), np.mean(y)] centroid_offset = [] for idx in range(0, 2): centroid_offset.append(outwcs.wcs.crpix[idx] - centroid[idx]) std_dev = [np.std(x), np.std(y)] # Find straight-line distance to the closest neighbor for each GAIA source xys = np.array([x, y]) xys = xys.reshape(len(x), 2) tree = KDTree(xys) neighborhood = tree.query(xys, 2) min_seps = np.empty([0]) for sep_pair in neighborhood[0]: min_seps = np.append(min_seps, sep_pair[1]) # add statistics to out_dict out_dict = collections.OrderedDict() out_dict["units"] = "pixels" out_dict["Number of GAIA sources"] = len(gaia_table) axis_list = ["X", "Y"] title_list = [ "centroid", "offset of centroid from image center", "standard deviation" ] for item_value, item_title in zip([centroid, centroid_offset, std_dev], title_list): for axis_item in enumerate(axis_list): log.info("{} {} ({}): {}".format(axis_item[1], item_title, out_dict["units"], item_value[axis_item[0]])) out_dict["{} {}".format(axis_item[1], item_title)] = item_value[axis_item[0]] min_sep_stats = [ min_seps.min(), min_seps.max(), min_seps.mean(), min_seps.std() ] min_sep_title_list = [ "minimum closest neighbor distance", "maximum closest neighbor distance", "mean closest neighbor distance", "standard deviation of closest neighbor distances" ] for item_value, item_title in zip(min_sep_stats, min_sep_title_list): log.info("{} ({}): {}".format(item_title, out_dict["units"], item_value)) out_dict[item_title] = item_value # write catalog to HapDiagnostic-formatted .json file. diag_obj = du.HapDiagnostic(log_level=log_level) diag_obj.instantiate_from_hap_obj( hap_obj, data_source="{}.characterize_gaia_distribution".format(__taskname__), description= "A statistical characterization of the distribution of GAIA sources in image footprint" ) diag_obj.add_data_item(out_dict, "distribution characterization statistics") diag_obj.write_json_file(hap_obj.drizzle_filename[:-9] + "_svm_gaia_distribution_characterization.json", clobber=True)
def _align_1image(resample, image, image_ext, primary_cutouts, seg, image_sky=None, wcslin=None, fitgeom='general', nclip=3, sigma=3.0, use_weights=True, cc_type='NCC', combine_seg_mask=True): img_info = { 'file_name': image, 'wcs_info': [], # a list of: [extension, original WCS, corrected WCS] 'fits_ext': [], # image ext. from which an image cutout was extracted 'image_cutouts': [], 'driz_cutouts': [], 'blotted_cutouts': [], # non-shifted blot images of drizzled cutouts 'ICC': [] # interlaced (oversampled) cross-correlation images } drz_sci_fname, drz_sci_ext = parse_file_name(resample.output_sci) with fits.open(drz_sci_fname) as hdulist: drz_sci = hdulist[drz_sci_ext].data drz_wcs = HSTWCS(hdulist, ext=drz_sci_ext) if 'EXPTIME' in hdulist[drz_sci_ext].header: drz_exptime = hdulist[drz_sci_ext].header['EXPTIME'] else: drz_exptime = hdulist[0].header['EXPTIME'] drz_units = hdulist[drz_sci_ext].header['BUNIT'] drz_units = 'rate' if '/' in drz_units else 'counts' # get image data, info and create cutouts: with fits.open(image) as hdulist: for ext in image_ext: img_sci = hdulist[ext].data img_wcs = HSTWCS(hdulist, ext=ext) orig_img_wcs = img_wcs.deepcopy() img_exptime = hdulist[0].header['EXPTIME'] img_units = hdulist[ext].header['BUNIT'] img_units = 'rate' if '/' in img_units else 'counts' if image_sky is not None and image_sky[ext] is not None: img_sci -= image_sky[ext] imgct_ext, drzct_ext = cutout.create_cutouts( primary_cutouts, seg, drz_sci, drz_wcs, img_sci, img_wcs, drz_data_units=drz_units, drz_exptime=drz_exptime, flt_data_units=img_units, flt_exptime=img_exptime, combine_seg_mask=combine_seg_mask) img_info['wcs_info'].append([ext, orig_img_wcs, img_wcs]) img_info['fits_ext'].extend(len(imgct_ext) * [ext]) img_info['image_cutouts'].extend(imgct_ext) img_info['driz_cutouts'].extend(drzct_ext) # find linear fit: fit, interlaced_cc, nonshifted_blts = find_linear_fit( img_cutouts=imgct_ext, drz_cutouts=drzct_ext, wcslin=wcslin, fitgeom=fitgeom, nclip=nclip, sigma=sigma, use_weights=use_weights, cc_type=cc_type) img_info['blotted_cutouts'].extend(nonshifted_blts) img_info['ICC'].extend(interlaced_cc) print("\nComputed '{:s}' fit for image {:s}:".format(fitgeom, image)) if fitgeom == 'shift': print("XSH: {:.4f} YSH: {:.4f}".format(fit['offset'][0], fit['offset'][1])) elif fitgeom == 'rscale' and fit['proper']: print( "XSH: {:.4f} YSH: {:.4f} ROT: {:.10g} SCALE: {:.6f}".format( fit['offset'][0], fit['offset'][1], fit['rot'], fit['scale'][0])) elif (fitgeom == 'general' or (fitgeom == 'rscale' and not fit['proper'])): print("XSH: {:.4f} YSH: {:.4f} PROPER ROT: {:.10g} ".format( fit['offset'][0], fit['offset'][1], fit['rot'])) print("<ROT>: {:.10g} SKEW: {:.10g} ROT_X: {:.10g} " "ROT_Y: {:.10g}".format(fit['rotxy'][2], fit['skew'], fit['rotxy'][0], fit['rotxy'][1])) print("<SCALE>: {:.10g} SCALE_X: {:.10g} SCALE_Y: {:.10g}".format( fit['scale'][0], fit['scale'][1], fit['scale'][2])) print('FIT RMSE: {:.3g} FIT MAE: {:.3g} IMAGE FIT RMSE: {:.3g}\n'. format(fit['rmse'], fit['mae'], fit['irmse'])) nmatch = fit['resids'].shape[0] print('Final solution based on {:d} objects.'.format(nmatch)) # correct WCS: for ext, owcs, wcs in img_info['wcs_info']: correct_wcs(imwcs=wcs, wcslin=drz_wcs, rotmat=fit['matrix'], shifts=fit['offset'], fitgeom=fitgeom) print("\n------- ORIGINAL WCS for '{:s}[{}]': ------".format( image, ext)) print(owcs) print("\n------- CORRECTED WCS for '{:s}[{}]': ------".format( image, ext)) print(wcs) return fit, img_info
def build(self, expnames, scale=False, scale_kw='EXPTIME'): """ Create mask showing where all input exposures overlap the footprint's WCS Notes ----- This method populates the following attributes (initialized as all zeros): - total_mask : shows number of chips per pixel - scaled_mask : if computed, shows (by default) exposure time per pixel Parameters ----------- expnames : list List of filenames for all input exposures that overlap the SkyFootprint WCS scale : bool, optional If specified, scale each chip by the value of the `scale_kw` keyword from the input exposure. scale_kw : str, optional If `scale` is `True`, get the scaling value from this keyword. This keyword is assumed to be in the PRIMARY header. """ for exposure in expnames: blank = np.zeros(self.meta_wcs.array_shape, dtype=np.int16) exp = fits.open(exposure) sci_extns = wcs_functions.get_extns(exp) for sci in sci_extns: wcs = HSTWCS(exp, ext=sci) edges_x = [0] * wcs.naxis2 + [wcs.naxis1 - 1 ] * wcs.naxis2 + list( range(wcs.naxis1)) * 2 edges_y = list(range(wcs.naxis2)) * 2 + [0] * wcs.naxis1 + [ wcs.naxis2 - 1 ] * wcs.naxis1 sky_edges = wcs.pixel_to_world_values( np.vstack([edges_x, edges_y]).T) meta_edges = self.meta_wcs.world_to_pixel_values( sky_edges).astype(np.int32) # Account for rounding problems with creating meta_wcs meta_edges[:, 1] = np.clip(meta_edges[:, 1], 0, self.meta_wcs.array_shape[0] - 1) meta_edges[:, 0] = np.clip(meta_edges[:, 0], 0, self.meta_wcs.array_shape[1] - 1) # apply meta_edges to blank mask # Use PIL to create mask parray = np.array(meta_edges.T) polygon = list(zip(parray[0], parray[1])) nx = self.meta_wcs.array_shape[1] ny = self.meta_wcs.array_shape[0] img = Image.new('L', (nx, ny), 0) ImageDraw.Draw(img).polygon(polygon, outline=1, fill=1) blank = np.array(img) self.total_mask += blank.astype(np.int16) # Compute scaled mask if specified... if scale: scale_val = fits.getval(exposure, scale_kw) self.scaled_mask += blank.astype(np.int16) * scale_val
def makecorr(fname, allowed_corr): """ Purpose ======= Applies corrections to the WCS of a single file :Parameters: `fname`: string file name `acorr`: list list of corrections to be applied """ logger.info("Allowed corrections: {0}".format(allowed_corr)) f = fits.open(fname, mode='update') #Determine the reference chip and create the reference HSTWCS object nrefchip, nrefext = getNrefchip(f) wcsutil.restoreWCS(f, nrefext, wcskey='O') rwcs = HSTWCS(fobj=f, ext=nrefext) rwcs.readModel(update=True, header=f[nrefext].header) if 'DET2IMCorr' in allowed_corr: kw2update = det2im.DET2IMCorr.updateWCS(f) for kw in kw2update: f[1].header[kw] = kw2update[kw] for i in range(len(f))[1:]: extn = f[i] if 'extname' in extn.header: extname = extn.header['extname'].lower() if extname == 'sci': wcsutil.restoreWCS(f, ext=i, wcskey='O') sciextver = extn.header['extver'] ref_wcs = rwcs.deepcopy() hdr = extn.header ext_wcs = HSTWCS(fobj=f, ext=i) ### check if it exists first!!! # 'O ' can be safely archived again because it has been restored first. wcsutil.archiveWCS(f, ext=i, wcskey="O", wcsname="OPUS", reusekey=True) ext_wcs.readModel(update=True, header=hdr) for c in allowed_corr: if c != 'NPOLCorr' and c != 'DET2IMCorr': corr_klass = corrections.__getattribute__(c) kw2update = corr_klass.updateWCS(ext_wcs, ref_wcs) for kw in kw2update: hdr[kw] = kw2update[kw] # give the primary WCS a WCSNAME value idcname = f[0].header.get('IDCTAB', " ") if idcname.strip() and 'idc.fits' in idcname: wname = ''.join([ 'IDC_', utils.extract_rootname(idcname, suffix='_idc') ]) else: wname = " " hdr['WCSNAME'] = wname elif extname in ['err', 'dq', 'sdq', 'samp', 'time']: cextver = extn.header['extver'] if cextver == sciextver: hdr = f[('SCI', sciextver)].header w = pywcs.WCS(hdr, f) copyWCS(w, extn.header) else: continue if 'NPOLCorr' in allowed_corr: kw2update = npol.NPOLCorr.updateWCS(f) for kw in kw2update: f[1].header[kw] = kw2update[kw] # Finally record the version of the software which updated the WCS if 'HISTORY' in f[0].header: f[0].header.set('UPWCSVER', value=stwcs.__version__, comment="Version of STWCS used to updated the WCS", before='HISTORY') f[0].header.set('PYWCSVER', value=astropy.__version__, comment="Version of PYWCS used to updated the WCS", before='HISTORY') elif 'ASN_MTYP' in f[0].header: f[0].header.set('UPWCSVER', value=stwcs.__version__, comment="Version of STWCS used to updated the WCS", after='ASN_MTYP') f[0].header.set('PYWCSVER', value=astropy.__version__, comment="Version of PYWCS used to updated the WCS", after='ASN_MTYP') else: # Find index of last non-blank card, and insert this new keyword after that card for i in range(len(f[0].header) - 1, 0, -1): if f[0].header[i].strip() != '': break f[0].header.set('UPWCSVER', stwcs.__version__, "Version of STWCS used to updated the WCS", after=i) f[0].header.set('PYWCSVER', astropy.__version__, "Version of PYWCS used to updated the WCS", after=i) # add additional keywords to be used by headerlets distdict = utils.construct_distname(f, rwcs) f[0].header['DISTNAME'] = distdict['DISTNAME'] f[0].header['SIPNAME'] = distdict['SIPNAME'] # Make sure NEXTEND keyword remains accurate f[0].header['NEXTEND'] = len(f) - 1 f.close()
def measure_source_properties(segm, kernel, source_filename, catalog_filename, param_dict): """Use the positions of the sources identified in the white light image to measure properties of these sources in the filter images An instrument/detector combination may have multiple filter-level products. This routine is called for each filter image which is then measured to generate a filter-level source catalog based on object positions measured in the total detection product image. Parameters ---------- segm : `~astropy.photutils.segmentation` Segmentation image Two-dimensional image of labeled source regions based on the "white light" drizzed product kernel : `~astropy.convolution` Two dimensional function of a specified FWHM used to smooth the image and used in the detection of sources as well as for the determination of the source properties (this routine) source_filename : string Filename of the filter drizzled image (aka the filter detection product) which is used for the measurement of properties of the previously found sources catalog_filename : string Name of the output source catalog for the filter detection product param_dict : dictionary dictionary of drizzle, source finding, and photometric parameters Returns ------- """ # Open the filter-level image imghdu = fits.open(source_filename) imgarr = imghdu['sci', 1].data # Get the HSTWCS object from the first extension imgwcs = HSTWCS(imghdu, 1) # Get header information to annotate the output catalogs keyword_dict = _get_header_data(imghdu, product="fdp") # Get the instrument/detector-specific values from the param_dict fwhm = param_dict["sourcex"]["fwhm"] size_source_box = param_dict["sourcex"]["source_box"] threshold_flag = param_dict["sourcex"]["thresh"] # Report configuration values to log log.info("{}".format("=" * 80)) log.info("") log.info( "SExtractor-like source property measurements based on Photutils segmentation" ) log.info("Filter Level Product - Input Parameters") log.info("FWHM: {}".format(fwhm)) log.info("size_source_box: {}".format(size_source_box)) log.info("threshold_flag: {}".format(threshold_flag)) log.info("") log.info("{}".format("=" * 80)) # The data needs to be background subtracted when computing the source properties bkg, _, _ = _compute_background(imgarr, nsigma=5., threshold_flag=threshold_flag) imgarr_bkgsub = imgarr - bkg.background # Compute source properties... seg_cat = source_properties(imgarr_bkgsub, segm, background=bkg.background, filter_kernel=kernel, wcs=imgwcs) print(Table(seg_cat.to_table()).colnames) # Write the source catalog _write_catalog(seg_cat, keyword_dict, catalog_filename, product="fdp")
def _a_blot_segment_image(self, image_to_blot, tempname, x_excess, y_excess, interp): """Blot the segmentation or other nondrizzled image as if it were assume self.grism_image is always used as the source wcs reference Thats just a simple wrapper around the task blot in astrodrizzle Parameters ---------- image_to_blot: str the input image name, either the grism or direct drizzled image tempname: str the name of the output blotted image Notes ----- exposure time is hard coded to 1 since it was made from the drizzled image and we dont want the id numbers rescaled by the exposure time that was used for blotting """ excess_x = 0 excess_y = 0 # the drizzle coeff information for adriz is taken # from the self.data image # use the current data as reference image input_image = (self.data).split("[")[0] flt_header = fits.getheader(input_image) flt_wcs = HSTWCS(self.data) # check to see if this is a simple fits or MEF and grab # the science information. ftype = fileutil.isFits(self.grism_image_name)[1] if (ftype is 'mef'): grism_wcs = HSTWCS(self.grism_image_name, ext=(str(self.fcube_info["ext_nam"]), self.fcube_info["ext_ver"])) elif (ftype is 'simple'): grism_wcs = HSTWCS(self.grism_image_name) else: return IOError("File type of fits image is not " "supported {0:s}".format(image_to_blot)) ftype = fileutil.isFits(image_to_blot)[1] if (ftype is 'mef'): image_data = fits.getdata(image_to_blot, ext=(str(self.fcube_info["ext_nam"]), self.fcube_info["ext_ver"])) elif (ftype is 'simple'): image_data = fits.getdata(image_to_blot) else: return IOError("Input image is not a supported FITS " "type: {0:s}".format(image_to_blot)) # edit the wcs header information to add any dim_info shifts that we # need the segment image needs to be the same sky area cut without # the added pixels type(x_excess) if x_excess > 0: excess_x = int(flt_wcs.naxis1 + x_excess * 2.) flt_wcs.naxis1 = excess_x crpix = flt_wcs.wcs.crpix newx = int(crpix[0]) + x_excess flt_wcs.wcs.crpix = np.array([newx, crpix[1]]) flt_wcs.sip.crpix[0] = newx if y_excess > 0: excess_y = int(flt_wcs.naxis2 + y_excess * 2.) flt_wcs.naxis2 = excess_y crpix = flt_wcs.wcs.crpix newy = int(crpix[1]) + y_excess flt_wcs.wcs.crpix = np.array([int(crpix[0]), newy]) flt_wcs.sip.crpix[1] = newy # returns a numpy.ndarray which is just the data outimage = astrodrizzle.ablot.do_blot(image_data.astype(np.float32), grism_wcs, flt_wcs, 1., interp=interp, sinscl=1., coeffs=True, wcsmap=None, stepsize=10) # update the flt_header with the flt_wcs information I created flt_header['CRPIX1'] = flt_wcs.wcs.crpix[0] flt_header['CRPIX2'] = flt_wcs.wcs.crpix[1] # if the input flt was an MEF we need to write an MEF out try: newimage = fits.PrimaryHDU() newimage.data = outimage newimage.header = flt_header newimage.header.update(flt_wcs.to_header()) newimage.verify('silentfix') newimage.writeto(tempname) except: raise IOError("Problem writing fits image {0:s}".format(tempname))
def make_grismcat(self, drizzle_image="", catalog=None, hard_angle=False, hard_angle_value=90.): """Make the grism catalog. The method creates a new input object list. The positional information on objects in a drizzled image are projected back into the coordinate system of one input image. A selection is done on the basis of the projected coordinates, and the selected objects are stored to a new IOL file with an updated object angle that is in the projected coordinate system. Parameters ---------- drizzle_image : str The name of the drizzled mosaic image that the catalog was constructed from. catalog : astropy.table.Table A the master catalog which will be used to create the dither image catalog with updated angles hard_angle : bool This will always set the extraction angle to 90degrees. hard_angle_value : float If a specified angle for extraction is preferred then this is the value to use and will replace THETA_IMAGE in the output catalog. It's currently specified in degrees, and is converted appropriately for whatever units are used in the catalog itself. Returns ------- Nothing Notes ----- This method previous took the names of two text files that contained the displayed position and angles calculated from the catalog entry. That functionality has been moved to memory since awtran is no longer in use. The catalog is read directly. """ if not drizzle_image: raise aXeError("IOLPREP: No drizzle image specified.") if catalog is None: raise aXeError("IOLPREP: No input catalog provided.") if not isinstance(catalog, Table): raise aXeError( "IOLPREP: Expected input catalog to be an astropy table") _log.info("\n >>>> Working on Input Object List: {0:s} >>>>\n".format( self.iol_name)) # now translate ra dec to new image pixel points # this must go through the wcs of the mosaic image # and then through the wcs for the individual image _log.info( "Converting coordinates using wcs from grism image {0}\n".format( self.filename)) trad = catalog['THETA_IMAGE'] xcat = catalog['X_IMAGE'] ycat = catalog['Y_IMAGE'] # translate to degrees if necessary if catalog['THETA_IMAGE'].unit.name == 'deg': translate = True elif catalog['THETA_IMAGE'].unit.name == 'rad': translate = False hard_angle_value = math.radians(hard_angle_value) else: raise aXeError("Unknown unit on THETA_IMAGE in input catalog") # 10.0 is a made up scaling length to use to # get the angle precision shifted_x = [] shifted_y = [] for t, x, y in zip(trad, xcat, ycat): if translate: angle = math.radians(t) shifted_x.append(x + 10.0 * math.cos(angle)) shifted_y.append(y + 10.0 * math.sin(angle)) # translate the catalog (x, y) to (ra, dec) mosaic_image_wcs = HSTWCS(drizzle_image, ext=1) mosaic_image_ra, mosaic_image_dec = mosaic_image_wcs.wcs_pix2world( shifted_x, shifted_y, 1) # compute the location in the dithered image using the shifted coords dither_image_wcs = HSTWCS(self.filename) dither_image_x, dither_image_y = dither_image_wcs.all_world2pix( mosaic_image_ra, mosaic_image_dec, 1) trans_ra, trans_dec = mosaic_image_wcs.wcs_pix2world(xcat, ycat, 1) trans_x, trans_y = dither_image_wcs.all_world2pix( trans_ra, trans_dec, 1) output_catalog = deepcopy(catalog) for row in range(len(catalog) - 1, -1, -1): x = trans_x[row] y = trans_y[row] # check whether the object position is # in the range to be stored if ((self.dim_info[0] <= x <= self.dim_info[1]) and (self.dim_info[2] <= y <= self.dim_info[3])): # compute the new object angle dx = xcat[row] - x dy = ycat[row] - y angle = math.atan2(dy, dx) # compute local angle change # return to degrees for catalog if necessary if translate: angle = math.degrees(angle) # _log.info("dx {} dy {} angle {} x,y: ({},{})\n".format(dx, dy, angle, x, y)) # fill in the new position and angle output_catalog['X_IMAGE'][row] = trans_x[row] output_catalog['Y_IMAGE'][row] = trans_y[row] if hard_angle: output_catalog['THETA_IMAGE'][row] = hard_angle_value else: output_catalog['THETA_IMAGE'][row] = angle else: _log.info( f"{x}\t{y}\t{self.dim_info}\t{output_catalog['NUMBER'][row]}" ) output_catalog.remove_row(row) # save the new IOL, this is done especially for the C # code which is expecting Source Extractor style catalog # files. Decided to keep the output here consistent with # the C code so that it can continue to be used separately. # numbers start at 1 not zero. The output formatting allows # the astropy.sextractor formatter to read the catalog file. # There isn't currently an astropy writer for that format. if os.access(self.iol_name, os.F_OK): os.remove(self.iol_name) of = open(self.iol_name, 'w') for num, name in zip(range(len(output_catalog.colnames) + 1), output_catalog.colnames): of.write("# {0:d} {1:s}\t\t{2:s}\t\t[{3:s}]\n".format( num + 1, name, output_catalog[name].description, str(output_catalog[name].unit))) output_catalog.write(of, format='ascii.no_header', overwrite=False) of.close() _log.info( f"\n >>>> Catalog: {self.iol_name} written with {len(catalog)} entries.>>>> \n" )