コード例 #1
0
    style_model = Model(vgg.input, symbolic_conv_outputs)

    # calculate the targets that are output at each layer
    style_layers_outputs = [
        K.variable(y) for y in style_model.predict(style_img)
    ]

    # we will assume the weight of the content loss is 1
    # and only weight the style losses
    style_weights = [0.2, 0.4, 0.3, 0.5, 0.2]

    # create the total loss which is the sum of content + style loss
    loss = K.mean(K.square(content_model.output - content_target))

    for w, symbolic, actual in zip(style_weights, symbolic_conv_outputs,
                                   style_layers_outputs):
        # gram_matrix() expects a (H, W, C) as input
        loss += w * style_loss(symbolic[0], actual[0])

    # once again, create the gradients and loss + grads function
    # note: it doesn't matter which model's input you use
    # they are both pointing to the same Keras Input layer in memory
    grads = K.gradients(loss, vgg.input)

    # just like theano.function
    get_loss_and_grads = K.function(inputs=[vgg.input], outputs=[loss] + grads)

    final_img = minimize(get_loss_and_grads_wrapper, 10, batch_shape)
    plt.imshow(scale_img(final_img))
    plt.show()
コード例 #2
0

# create the total loss which is the sum of content + style loss
loss = K.mean(K.square(content_model.output - content_target))

for w, symbolic, actual in zip(style_weights, symbolic_conv_outputs, style_layers_outputs):
  # gram_matrix() expects a (H, W, C) as input
  loss += w * style_loss(symbolic[0], actual[0])


# once again, create the gradients and loss + grads function
# note: it doesn't matter which model's input you use
# they are both pointing to the same keras Input layer in memory
grads = K.gradients(loss, vgg.input)

# just like theano.function
get_loss_and_grads = K.function(
  inputs=[vgg.input],
  outputs=[loss] + grads
)


def get_loss_and_grads_wrapper(x_vec):
  l, g = get_loss_and_grads([x_vec.reshape(*batch_shape)])
  return l.astype(np.float64), g.flatten().astype(np.float64)


final_img = minimize(get_loss_and_grads_wrapper, 10, batch_shape)
plt.imshow(scale_img(final_img))
plt.show()