コード例 #1
0
ファイル: dataset_tool.py プロジェクト: johndpope/BA
def extract(tfrecord_dir, output_dir):
    print('Loading dataset "%s"' % tfrecord_dir)
    tflib.init_tf({'gpu_options.allow_growth': True})
    dset = dataset.TFRecordDataset(tfrecord_dir,
                                   max_label_size=0,
                                   repeat=False,
                                   shuffle_mb=0)
    tflib.init_uninitialized_vars()

    print('Extracting images to "%s"' % output_dir)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)
    idx = 0
    while True:
        if idx % 10 == 0:
            print('%d\r' % idx, end='', flush=True)
        try:
            images, _labels = dset.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            break
        if images.shape[1] == 1:
            img = PIL.Image.fromarray(images[0][0], 'L')
        else:
            img = PIL.Image.fromarray(images[0].transpose(1, 2, 0), 'RGB')
        img.save(os.path.join(output_dir, 'img%08d.png' % idx))
        idx += 1
    print('Extracted %d images.' % idx)
コード例 #2
0
ファイル: dataset_tool.py プロジェクト: johndpope/BA
def display(tfrecord_dir):
    print('Loading dataset "%s"' % tfrecord_dir)
    tflib.init_tf({'gpu_options.allow_growth': True})
    dset = dataset.TFRecordDataset(tfrecord_dir,
                                   max_label_size='full',
                                   repeat=False,
                                   shuffle_mb=0)
    tflib.init_uninitialized_vars()
    import cv2  # pip install opencv-python

    idx = 0
    while True:
        try:
            images, labels = dset.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            break
        if idx == 0:
            print('Displaying images')
            cv2.namedWindow('dataset_tool')
            print('Press SPACE or ENTER to advance, ESC to exit')
        print('\nidx = %-8d\nlabel = %s' % (idx, labels[0].tolist()))
        cv2.imshow('dataset_tool', images[0].transpose(
            1, 2, 0)[:, :, ::-1])  # CHW => HWC, RGB => BGR
        idx += 1
        if cv2.waitKey() == 27:
            break
    print('\nDisplayed %d images.' % idx)
コード例 #3
0
ファイル: run_metrics.py プロジェクト: johndpope/BA
def run(network_pkl, metrics, dataset, data_dir, mirror_augment):
    print('Evaluating metrics "%s" for "%s"...' %
          (','.join(metrics), network_pkl))
    tflib.init_tf()
    network_pkl = pretrained_networks.get_path_or_url(network_pkl)
    dataset_args = EasyDict(tfrecord_dir=dataset, shuffle_mb=0)
    num_gpus = submit_config.num_gpus
    metric_group = metric_base.MetricGroup(
        [metric_defaults[metric] for metric in metrics])
    metric_group.run(network_pkl,
                     data_dir=data_dir,
                     dataset_args=dataset_args,
                     mirror_augment=mirror_augment,
                     num_gpus=num_gpus)
コード例 #4
0
ファイル: pretrained_networks.py プロジェクト: johndpope/BA
def load_networks(path_or_gdrive_path):
    path_or_url = get_path_or_url(path_or_gdrive_path)
    if path_or_url in _cached_networks:
        return _cached_networks[path_or_url]
    if util.is_url(path_or_url):
        stream = util.open_url(path_or_url, cache_dir='.stylegan2-cache')
    else:
        stream = open(path_or_url, 'rb')
    tflib.init_tf()
    with stream:
        G, D, Gs = pickle.load(stream, encoding='latin1')

    _cached_networks[path_or_url] = G, D, Gs
    return G, D, Gs
コード例 #5
0
ファイル: dataset_tool.py プロジェクト: johndpope/BA
def compare(tfrecord_dir_a, tfrecord_dir_b, ignore_labels):
    max_label_size = 0 if ignore_labels else 'full'
    print('Loading dataset "%s"' % tfrecord_dir_a)
    tflib.init_tf({'gpu_options.allow_growth': True})
    dset_a = dataset.TFRecordDataset(tfrecord_dir_a,
                                     max_label_size=max_label_size,
                                     repeat=False,
                                     shuffle_mb=0)
    print('Loading dataset "%s"' % tfrecord_dir_b)
    dset_b = dataset.TFRecordDataset(tfrecord_dir_b,
                                     max_label_size=max_label_size,
                                     repeat=False,
                                     shuffle_mb=0)
    tflib.init_uninitialized_vars()

    print('Comparing datasets')
    idx = 0
    identical_images = 0
    identical_labels = 0
    while True:
        if idx % 100 == 0:
            print('%d\r' % idx, end='', flush=True)
        try:
            images_a, labels_a = dset_a.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            images_a, labels_a = None, None
        try:
            images_b, labels_b = dset_b.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            images_b, labels_b = None, None
        if images_a is None or images_b is None:
            if images_a is not None or images_b is not None:
                print('Datasets contain different number of images')
            break
        if images_a.shape == images_b.shape and np.all(images_a == images_b):
            identical_images += 1
        else:
            print('Image %d is different' % idx)
        if labels_a.shape == labels_b.shape and np.all(labels_a == labels_b):
            identical_labels += 1
        else:
            print('Label %d is different' % idx)
        idx += 1
    print('Identical images: %d / %d' % (identical_images, idx))
    if not ignore_labels:
        print('Identical labels: %d / %d' % (identical_labels, idx))
コード例 #6
0
ファイル: training_loop.py プロジェクト: johndpope/BA
def training_loop(
    G_args={},  # Options for generator network.
    D_args={},  # Options for discriminator network.
    G_opt_args={},  # Options for generator optimizer.
    D_opt_args={},  # Options for discriminator optimizer.
    G_loss_args={},  # Options for generator loss.
    D_loss_args={},  # Options for discriminator loss.
    dataset_args={},  # Options for dataset.load_dataset().
    sched_args={},  # Options for train.TrainingSchedule.
    grid_args={},  # Options for train.setup_snapshot_image_grid().
    metric_arg_list=[],  # Options for MetricGroup.
    tf_config={},  # Options for tflib.init_tf().
    data_dir=None,  # Directory to load datasets from.
    G_smoothing_kimg=10.0,  # Half-life of the running average of generator weights.
    minibatch_repeats=4,  # Number of minibatches to run before adjusting training parameters.
    lazy_regularization=True,  # Perform regularization as a separate training step?
    G_reg_interval=4,  # How often the perform regularization for G? Ignored if lazy_regularization=False.
    D_reg_interval=16,  # How often the perform regularization for D? Ignored if lazy_regularization=False.
    reset_opt_for_new_lod=True,  # Reset optimizer internal state (e.g. Adam moments) when new layers are introduced?
    total_kimg=25000,  # Total length of the training, measured in thousands of real images.
    mirror_augment=False,  # Enable mirror augment?
    drange_net=[
        -1, 1
    ],  # Dynamic range used when feeding image data to the networks.
    image_snapshot_ticks=50,  # How often to save image snapshots? None = only save 'reals.png' and 'fakes-init.png'.
    network_snapshot_ticks=50,  # How often to save network snapshots? None = only save 'networks-final.pkl'.
    save_tf_graph=False,  # Include full TensorFlow computation graph in the tfevents file?
    save_weight_histograms=False,  # Include weight histograms in the tfevents file?
    resume_pkl=None,  # Network pickle to resume training from, None = train from scratch.
    resume_kimg=0.0,  # Assumed training progress at the beginning. Affects reporting and training schedule.
    resume_time=0.0,  # Assumed wallclock time at the beginning. Affects reporting.
    resume_with_new_nets=False
):  # Construct new networks according to G_args and D_args before resuming training?

    # Initialize dnnlib and TensorFlow.
    tflib.init_tf(tf_config)
    num_gpus = submit_config.num_gpus

    # Load training set.
    training_set = dataset.load_dataset(data_dir=convert_path(data_dir),
                                        verbose=True,
                                        **dataset_args)
    grid_size, grid_reals, grid_labels = misc.setup_snapshot_image_grid(
        training_set, **grid_args)
    misc.save_image_grid(grid_reals,
                         make_run_dir_path('reals.png'),
                         drange=training_set.dynamic_range,
                         grid_size=grid_size)

    # Construct or load networks.
    with tf.device('/gpu:0'):
        if resume_pkl is None or resume_with_new_nets:
            print('Constructing networks...')
            G = tflib.Network('G',
                              num_channels=training_set.shape[0],
                              resolution=training_set.shape[1],
                              label_size=training_set.label_size,
                              **G_args)
            D = tflib.Network('D',
                              num_channels=training_set.shape[0],
                              resolution=training_set.shape[1],
                              label_size=training_set.label_size,
                              **D_args)
            Gs = G.clone('Gs')
        if resume_pkl is not None:
            print('Loading networks from "%s"...' % resume_pkl)
            rG, rD, rGs = misc.load_pkl(resume_pkl)
            if resume_with_new_nets:
                G.copy_vars_from(rG)
                D.copy_vars_from(rD)
                Gs.copy_vars_from(rGs)
            else:
                G = rG
                D = rD
                Gs = rGs

    # Print layers and generate initial image snapshot.
    G.print_layers()
    D.print_layers()
    sched = training_schedule(cur_nimg=total_kimg * 1000,
                              training_set=training_set,
                              **sched_args)
    grid_latents = np.random.randn(np.prod(grid_size), *G.input_shape[1:])
    grid_fakes = Gs.run(grid_latents,
                        grid_labels,
                        is_validation=True,
                        minibatch_size=sched.minibatch_gpu)
    misc.save_image_grid(grid_fakes,
                         make_run_dir_path('fakes_init.png'),
                         drange=drange_net,
                         grid_size=grid_size)

    # Setup training inputs.
    print('Building TensorFlow graph...')
    with tf.name_scope('Inputs'), tf.device('/cpu:0'):
        lod_in = tf.placeholder(tf.float32, name='lod_in', shape=[])
        lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[])
        minibatch_size_in = tf.placeholder(tf.int32,
                                           name='minibatch_size_in',
                                           shape=[])
        minibatch_gpu_in = tf.placeholder(tf.int32,
                                          name='minibatch_gpu_in',
                                          shape=[])
        minibatch_multiplier = minibatch_size_in // (minibatch_gpu_in *
                                                     num_gpus)
        Gs_beta = 0.5**tf.div(tf.cast(minibatch_size_in,
                                      tf.float32), G_smoothing_kimg *
                              1000.0) if G_smoothing_kimg > 0.0 else 0.0

    # Setup optimizers.
    G_opt_args = dict(G_opt_args)
    D_opt_args = dict(D_opt_args)
    for args, reg_interval in [(G_opt_args, G_reg_interval),
                               (D_opt_args, D_reg_interval)]:
        args['minibatch_multiplier'] = minibatch_multiplier
        args['learning_rate'] = lrate_in
        if lazy_regularization:
            mb_ratio = reg_interval / (reg_interval + 1)
            args['learning_rate'] *= mb_ratio
            if 'beta1' in args: args['beta1'] **= mb_ratio
            if 'beta2' in args: args['beta2'] **= mb_ratio
    G_opt = tflib.Optimizer(name='TrainG', **G_opt_args)
    D_opt = tflib.Optimizer(name='TrainD', **D_opt_args)
    G_reg_opt = tflib.Optimizer(name='RegG', share=G_opt, **G_opt_args)
    D_reg_opt = tflib.Optimizer(name='RegD', share=D_opt, **D_opt_args)

    # Build training graph for each GPU.
    data_fetch_ops = []
    for gpu in range(num_gpus):
        with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):

            # Create GPU-specific shadow copies of G and D.
            G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow')
            D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')

            # Fetch training data via temporary variables.
            with tf.name_scope('DataFetch'):
                sched = training_schedule(cur_nimg=int(resume_kimg * 1000),
                                          training_set=training_set,
                                          **sched_args)
                reals_var = tf.Variable(
                    name='reals',
                    trainable=False,
                    initial_value=tf.zeros([sched.minibatch_gpu] +
                                           training_set.shape))
                labels_var = tf.Variable(name='labels',
                                         trainable=False,
                                         initial_value=tf.zeros([
                                             sched.minibatch_gpu,
                                             training_set.label_size
                                         ]))
                reals_write, labels_write = training_set.get_minibatch_tf()
                reals_write, labels_write = process_reals(
                    reals_write, labels_write, lod_in, mirror_augment,
                    training_set.dynamic_range, drange_net)
                reals_write = tf.concat(
                    [reals_write, reals_var[minibatch_gpu_in:]], axis=0)
                labels_write = tf.concat(
                    [labels_write, labels_var[minibatch_gpu_in:]], axis=0)
                data_fetch_ops += [tf.assign(reals_var, reals_write)]
                data_fetch_ops += [tf.assign(labels_var, labels_write)]
                reals_read = reals_var[:minibatch_gpu_in]
                labels_read = labels_var[:minibatch_gpu_in]

            # Evaluate loss functions.
            lod_assign_ops = []
            if 'lod' in G_gpu.vars:
                lod_assign_ops += [tf.assign(G_gpu.vars['lod'], lod_in)]
            if 'lod' in D_gpu.vars:
                lod_assign_ops += [tf.assign(D_gpu.vars['lod'], lod_in)]
            with tf.control_dependencies(lod_assign_ops):
                with tf.name_scope('G_loss'):
                    G_loss, G_reg = util.call_func_by_name(
                        G=G_gpu,
                        D=D_gpu,
                        opt=G_opt,
                        training_set=training_set,
                        minibatch_size=minibatch_gpu_in,
                        **G_loss_args)
                with tf.name_scope('D_loss'):
                    D_loss, D_reg = util.call_func_by_name(
                        G=G_gpu,
                        D=D_gpu,
                        opt=D_opt,
                        training_set=training_set,
                        minibatch_size=minibatch_gpu_in,
                        reals=reals_read,
                        labels=labels_read,
                        **D_loss_args)

            # Register gradients.
            if not lazy_regularization:
                if G_reg is not None: G_loss += G_reg
                if D_reg is not None: D_loss += D_reg
            else:
                if G_reg is not None:
                    G_reg_opt.register_gradients(
                        tf.reduce_mean(G_reg * G_reg_interval),
                        G_gpu.trainables)
                if D_reg is not None:
                    D_reg_opt.register_gradients(
                        tf.reduce_mean(D_reg * D_reg_interval),
                        D_gpu.trainables)
            G_opt.register_gradients(tf.reduce_mean(G_loss), G_gpu.trainables)
            D_opt.register_gradients(tf.reduce_mean(D_loss), D_gpu.trainables)

    # Setup training ops.
    data_fetch_op = tf.group(*data_fetch_ops)
    G_train_op = G_opt.apply_updates()
    D_train_op = D_opt.apply_updates()
    G_reg_op = G_reg_opt.apply_updates(allow_no_op=True)
    D_reg_op = D_reg_opt.apply_updates(allow_no_op=True)
    Gs_update_op = Gs.setup_as_moving_average_of(G, beta=Gs_beta)

    # Finalize graph.
    with tf.device('/gpu:0'):
        try:
            peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse()
        except tf.errors.NotFoundError:
            peak_gpu_mem_op = tf.constant(0)
    tflib.init_uninitialized_vars()

    print('Initializing logs...')
    summary_log = tf.summary.FileWriter(make_run_dir_path())
    if save_tf_graph:
        summary_log.add_graph(tf.get_default_graph())
    if save_weight_histograms:
        G.setup_weight_histograms()
        D.setup_weight_histograms()
    metrics = metric_base.MetricGroup(metric_arg_list)

    print('Training for %d kimg...\n' % total_kimg)
    RunContext.get().update('', cur_epoch=resume_kimg, max_epoch=total_kimg)
    maintenance_time = RunContext.get().get_last_update_interval()
    cur_nimg = int(resume_kimg * 1000)
    cur_tick = -1
    tick_start_nimg = cur_nimg
    prev_lod = -1.0
    running_mb_counter = 0
    while cur_nimg < total_kimg * 1000:
        if RunContext.get().should_stop(): break

        # Choose training parameters and configure training ops.
        sched = training_schedule(cur_nimg=cur_nimg,
                                  training_set=training_set,
                                  **sched_args)
        assert sched.minibatch_size % (sched.minibatch_gpu * num_gpus) == 0
        training_set.configure(sched.minibatch_gpu, sched.lod)
        if reset_opt_for_new_lod:
            if np.floor(sched.lod) != np.floor(prev_lod) or np.ceil(
                    sched.lod) != np.ceil(prev_lod):
                G_opt.reset_optimizer_state()
                D_opt.reset_optimizer_state()
        prev_lod = sched.lod

        # Run training ops.
        feed_dict = {
            lod_in: sched.lod,
            lrate_in: sched.G_lrate,
            minibatch_size_in: sched.minibatch_size,
            minibatch_gpu_in: sched.minibatch_gpu
        }
        for _repeat in range(minibatch_repeats):
            rounds = range(0, sched.minibatch_size,
                           sched.minibatch_gpu * num_gpus)
            run_G_reg = (lazy_regularization
                         and running_mb_counter % G_reg_interval == 0)
            run_D_reg = (lazy_regularization
                         and running_mb_counter % D_reg_interval == 0)
            cur_nimg += sched.minibatch_size
            running_mb_counter += 1

            # Fast path without gradient accumulation.
            if len(rounds) == 1:
                tflib.run([G_train_op, data_fetch_op], feed_dict)
                if run_G_reg:
                    tflib.run(G_reg_op, feed_dict)
                tflib.run([D_train_op, Gs_update_op], feed_dict)
                if run_D_reg:
                    tflib.run(D_reg_op, feed_dict)

            # Slow path with gradient accumulation.
            else:
                for _round in rounds:
                    tflib.run(G_train_op, feed_dict)
                if run_G_reg:
                    for _round in rounds:
                        tflib.run(G_reg_op, feed_dict)
                tflib.run(Gs_update_op, feed_dict)
                for _round in rounds:
                    tflib.run(data_fetch_op, feed_dict)
                    tflib.run(D_train_op, feed_dict)
                if run_D_reg:
                    for _round in rounds:
                        tflib.run(D_reg_op, feed_dict)

        # Perform maintenance tasks once per tick.
        done = (cur_nimg >= total_kimg * 1000)
        if cur_tick < 0 or cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done:
            cur_tick += 1
            tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0
            tick_start_nimg = cur_nimg
            tick_time = RunContext.get().get_time_since_last_update()
            total_time = RunContext.get().get_time_since_start() + resume_time

            # Report progress.
            print(
                'tick %-5d kimg %-8.1f lod %-5.2f minibatch %-4d time %-12s sec/tick %-7.1f sec/kimg %-7.2f maintenance %-6.1f gpumem %.1f'
                %
                (autosummary('Progress/tick', cur_tick),
                 autosummary('Progress/kimg', cur_nimg / 1000.0),
                 autosummary('Progress/lod', sched.lod),
                 autosummary('Progress/minibatch', sched.minibatch_size),
                 util.format_time(autosummary('Timing/total_sec', total_time)),
                 autosummary('Timing/sec_per_tick', tick_time),
                 autosummary('Timing/sec_per_kimg', tick_time / tick_kimg),
                 autosummary('Timing/maintenance_sec', maintenance_time),
                 autosummary('Resources/peak_gpu_mem_gb',
                             peak_gpu_mem_op.eval() / 2**30)))
            autosummary('Timing/total_hours', total_time / (60.0 * 60.0))
            autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0))

            # Save snapshots.
            if image_snapshot_ticks is not None and (
                    cur_tick % image_snapshot_ticks == 0 or done):
                grid_fakes = Gs.run(grid_latents,
                                    grid_labels,
                                    is_validation=True,
                                    minibatch_size=sched.minibatch_gpu)
                misc.save_image_grid(grid_fakes,
                                     make_run_dir_path('fakes%06d.png' %
                                                       (cur_nimg // 1000)),
                                     drange=drange_net,
                                     grid_size=grid_size)
            if network_snapshot_ticks is not None and (
                    cur_tick % network_snapshot_ticks == 0 or done):
                pkl = make_run_dir_path('network-snapshot-%06d.pkl' %
                                        (cur_nimg // 1000))
                misc.save_pkl((G, D, Gs), pkl)
                metrics.run(pkl,
                            run_dir=make_run_dir_path(),
                            data_dir=convert_path(data_dir),
                            num_gpus=num_gpus,
                            tf_config=tf_config)

            # Update summaries and RunContext.
            metrics.update_autosummaries()
            tflib.autosummary.save_summaries(summary_log, cur_nimg)
            RunContext.get().update('%.2f' % sched.lod,
                                    cur_epoch=cur_nimg // 1000,
                                    max_epoch=total_kimg)
            maintenance_time = RunContext.get().get_last_update_interval(
            ) - tick_time

    # Save final snapshot.
    misc.save_pkl((G, D, Gs), make_run_dir_path('network-final.pkl'))

    # All done.
    summary_log.close()
    training_set.close()