def make(self): curr_path = os.getcwd() all_path = curr_path + "/all" if os.path.exists(all_path): os.system('rm -r ./all') os.makedirs(all_path) if self.n_s0 > 0: self.copy_s0() self.select_coord_many() self.copy() if self.n_ci > 0: self.copy_ci() # """Save the list to a file named list_file.dat""" list_file = self.list_file num = self.num sl = self.savelist curr_path = os.getcwd() all_path = curr_path + "/all" workfile = all_path + "/" + list_file fp = open(workfile, "w") for i in range(num): print("%10d%10d%10d" % (sl[i][0], sl[i][1], sl[i][2]), file=fp) fp.close() print("The total geom selected is %10d" % self.num) self.inp['n_geom'] = self.num json.dump_json('inp.json', self.inp) print("The select work is done")
def make(self): curr_path = os.getcwd() work_path = curr_path + '/all' os.chdir(work_path) self.rmsd_matrix = np.loadtxt('rmsd_all.dat') self.savelist = np.loadtxt('list_file_save.dat') command1 = 'cp rmsd_all.dat rmsd_all.dat_old' command2 = 'cp list_file_save.dat list_file_save.dat_old' os.system(command1) os.system(command2) if self.inp['job_select'] == 'isomap': self.isomap_epsilon() else: self.classical_analy() os.chdir(curr_path) json.dump_json('inp.json', self.inp)
#! /usr/bin/env python import rmsd_analys import mds_cla import mds_analys import sub_inp_json as json import os import shutil inp = json.load_json('inp.json') inp['job_select'] = raw_input( "which job do u choose,classical or isomap(classical/isomap):") inp['rmsd_cutoff'] = raw_input("Input the rmsd_cutoff value:") if inp['job_select'] == 'isomap': inp['mds_cutoff'] = raw_input("Input the mds_cutoff value:") inp['mds_dimension'] = raw_input("Choose mds dimension:") json.dump_json('inp.json', inp) if inp['job_select'] == 'isomap': file_name = inp['job_select'] + '_rmsdcut_' + inp[ 'rmsd_cutoff'] + '_mdscut_' + inp['mds_cutoff'] if inp['job_select'] == 'classical': file_name = inp['job_select'] + '_rmsdcut_' + inp['rmsd_cutoff'] curr_dir = os.getcwd() workdir = curr_dir + '/' + file_name if os.path.exists(workdir): shutil.rmtree(workdir) os.mkdir(workdir) command1 = 'cp -r all ' + workdir command2 = 'cp inp.json ' + workdir os.system(command1) os.system(command2)
#!/usr/bin/env python import os import sub_inp_json import numpy as np from sub_kkr_prediction_tool import kkr_single_all_step filename = 'kkr.input' xxx = sub_inp_json.read_dat_with_label(filename) sub_inp_json.dump_json('kkr.json', xxx) def kkr_single_geom_all(): kkrname = "kkr.json" xxx_input = sub_inp_json.load_json(kkrname) n_x_dim = int(xxx_input['n_x_dim']) n_y_dim = int(xxx_input['n_y_dim']) label_x_descriptor = int(xxx_input['label_x_descriptor']) para_kernel = xxx_input['para_kernel'] rescale = xxx_input['rescale'] label_grad = xxx_input['label_grad'] para_alpha = float(xxx_input['para_alpha']) para_gamma = float(xxx_input['para_gamma']) energy_zero = float(xxx_input['energy_zero']) curr_dir = os.getcwd() kkr_path = './kkr' x_train = np.loadtxt('./kkr/x_train.dat')
#!/usr/bin/env python import os import sub_inp_json filename = 'fitting.input' xxx = sub_inp_json.read_dat_with_label(filename) sub_inp_json.dump_json('input_initial.json', xxx) os.system('cp input_initial.json ../input_initial.json')