コード例 #1
0
def save_Anomaly_as_npz(fy, ly, var, product_n = 3):
	a = subroutine.read_meta_data('var')
	formal_name = subroutine.celldata(a, 'var', var, 'formal_name')
	dim = subroutine.celldata(a, 'var', var, 'dim')
	_,title_name,_=subroutine.product_n_to_name(product_n)
	tmpyear = 2000

	for month in range(1,13):
		_,strmonth=subroutine.strym(2000,month)
		Clim=subroutine.load_npz('Ave_of_' + formal_name + '_m'+strmonth+'_' + str(fy) + '-' + str(ly) + '_'+title_name)

		print 'month = ', month
		start = time.time()

		for year in range(fy,ly+1):
			stryear,strmonth=subroutine.strym(year,month)
			j=year-fy
			if dim == '3D':
				data=subroutine.get_data(year,month,var,0,title_name)
			elif dim == '2D':
				data=subroutine.get_data(year,month,var,1,title_name)
			else:
				raise Exception('your dim is not valid!')

			Anomaly=data-Clim
			DIR = subroutine.get_DIR(year, month, formal_name, product_n)
			subroutine.check_and_make_DIR(DIR)
			subroutine.save_npz(Anomaly,DIR+'Anomaly_from_Mean_Annual_Cycle_Year'+str(fy)+'-'+str(ly),data_dir_flg='NO')

		print 'elapsed time:', time.time() - start
コード例 #2
0
ファイル: WOA01.py プロジェクト: AnchorBlues/python_for_study
def get_grid_value(var):
	import netCDF4
	import subroutine
	a=subroutine.read_meta_data('var')
	fn=subroutine.celldata(a,'var',var,'WOA01_fn')
	vn=subroutine.celldata(a,'var',var,'WOA01_vn')
	ncfile=subroutine.dat_dir()+'WOA01/'+filen+'.nc'
	nc=netCDF4.Dataset(ncfile,'r')
	var_p=nc.variables['Z'][:]
	xgrid=nc.variables['X'][:]
	ygrid=nc.variables['Y'][:]
	nc.close()
	return [xgrid,ygrid,var_p]
コード例 #3
0
ファイル: ORAS4.py プロジェクト: AnchorBlues/python_for_study
def compare_40_Interim(month,var):
	import netCDF4
	import numpy as np
	import subroutine
	import datetime as dt
	a=subroutine.read_meta_data('var')
	filename=subroutine.celldata(a,'var',var,'ORAS4_fn')
	ncfile40=subroutine.dat_dir()+'ORAS4/NetCDF/ERA-40_1989.nc'
	ncfileInterim=subroutine.dat_dir()+'ORAS4/NetCDF/ERA-Interim_1989.nc'

	nc40=netCDF4.Dataset(ncfile40,'r')
	ncInterim=netCDF4.Dataset(ncfileInterim,'r')
	if filename=='tp':
		# 1988年以前の降水量のデータは、convectiveとlargescaleの和で算出する
		data40=nc40.variables['lsp'][month-1,:,:]+nc40.variables['cp'][month-1,:,:]
		dataInterim=ncInterim.variables['lsp'][month-1,:,:]+ncInterim.variables['cp'][month-1,:,:]
	else:
		data40=nc40.variables[filename][month-1,:,:]
		dataInterim=ncInterim.variables[filename][month-1,:,:]
	# add_offset=nc.variables[filename].add_offset
	# scale_factor=nc.variables[filename].scale_factor
	# data=data*scale_factor+add_offset
	# print 'scale_factor=',scale_factor
	# print 'add_offset=',add_offset

	nc40.close()
	ncInterim.close()

	return data40[::-1,:],dataInterim[::-1,:]
コード例 #4
0
ファイル: ORAS4.py プロジェクト: AnchorBlues/python_for_study
def nc_read(year,month,var,depth):
	# 1地点につき1つのデータしかないものに関してはdepthに何を入れても構わない。
	# 46層あるデータに関しては、depth=1とすると、5メートル水深でのデータが得られるようにする。
	import netCDF4
	import numpy as np
	import subroutine
	import scipy as sp
	a=subroutine.read_meta_data('var')
	filename=subroutine.celldata(a,'var',var,'ORAS4_fn')
	ncfile=subroutine.dat_dir()+'ORAS4/NetCDF/'+filename+'_oras4_1m_'+\
			str(year)+'_grid_1x1.nc'
	# print ncfile
	nc=netCDF4.Dataset(ncfile,'r')

	if var=='ht':				# 海面高度の時だけ、データが2次元になる。
		data=nc.variables[filename][month-1,:,:]
	else:						# それ以外のデータは3次元。
		if depth != 0:
			data=nc.variables[filename][month-1,depth-1,:,:]
		else:
			data=np.ones((ny,nx,nz))
			for k in range(0,nz):
				data[:,:,k]=nc.variables[filename][month-1,k,:,:]

	nc.close()
	data[np.where(data>=10000)]=sp.nan # 欠損値のところはnanに。
	return data
def save_climatology_or_interannual_variation_as_npz(data_allmonth, fy, ly, var, Ave_or_Std, product_n = 3):
	a=subroutine.read_meta_data('var')
	formal_name = subroutine.celldata(a, 'var', var, 'formal_name')
	_, title_name, _ = subroutine.product_n_to_name(product_n)
	for month in range(1, 13):
		_, strmonth = subroutine.strym(2000, month)
		subroutine.save_npz(data_allmonth[:, :, :, month - 1], Ave_or_Std + '_of_' + \
							formal_name + '_m' + strmonth + '_' + str(fy) + '-' + str(ly) + \
							'_' + title_name)
コード例 #6
0
ファイル: WOA01.py プロジェクト: AnchorBlues/python_for_study
def nc_read(month,var,depth):
	import numpy as np
	import netCDF4
	import subroutine
	a=subroutine.read_meta_data('var')
	fn=subroutine.celldata(a,'var',var,'WOA01_fn')
	vn=subroutine.celldata(a,'var',var,'WOA01_vn')
	ncfile=subroutine.dat_dir()+'WOA01/'+filen+'.nc'
	nc=netCDF4.Dataset(ncfile,'r')
	if depth != 0:
		data=nc.variables[vn][month-1,depth-1,:,:]
	else:
		x,y,z=get_grid_value()
		nz,nx,ny=z.size,x.size,y.size
		data=np.ones((ny,nx,nz))
		for k in range(0,nz):
			data_2D=nc.variables[vn][month-1,k,:,:]
			data[:,:,k]=np.reshape(data_2D,(ny,nx))
	nc.close()
	return data
コード例 #7
0
ファイル: ERA.py プロジェクト: AnchorBlues/python_for_study
def get_data(year,month,var):
	import netCDF4
	import numpy as np
	import subroutine
	import datetime as dt
	a=subroutine.read_meta_data('var')
	filename=subroutine.celldata(a,'var',var,'ERA_fn')
	if year <= 1967:
		ncfile=subroutine.dat_dir()+'ERA/NetCDF/ERA-40_1958-1967.nc'
	elif year >= 1968 and year <= 1977:
		ncfile=subroutine.dat_dir()+'ERA/NetCDF/ERA-40_1968-1977.nc'
	elif year >= 1978 and year<=1988:
		ncfile=subroutine.dat_dir()+'ERA/NetCDF/ERA-40_1978-1988.nc'
	else:
		ncfile=subroutine.dat_dir()+'ERA/NetCDF/ERA-Interim.nc'

	nc=netCDF4.Dataset(ncfile,'r')
	time=nc.variables['time'][:]
	units=nc.variables['time'].units
	dtime=netCDF4.num2date(time,units=units)
	for i in range(0,dtime.size):
		if getattr(dtime[i],'year')==year and  getattr(dtime[i],'month')==month:
			if year <=1988 and filename=='tp':
				# 1988年以前の降水量のデータは、convectiveとlargescaleの和で算出する
				data=nc.variables['lsp'][i,:,:]+nc.variables['cp'][i,:,:]
			elif year<=1988 and filename=='sff':
				data=(nc.variables['e'][i,:,:]+nc.variables['ro'][i,:,:]+\
					  nc.variables['lsp'][i,:,:]+nc.variables['cp'][i,:,:])*2 # 何故か2倍することで丁度いい
			elif filename=='sff':
				# 淡水フラックス
				data=nc.variables['e'][i,:,:]+nc.variables['ro'][i,:,:]+\
					  nc.variables['tp'][i,:,:]
			elif filename=='q':
				# 熱フラックス
				data=nc.variables['sshf'][i,:,:]+nc.variables['slhf'][i,:,:]+\
					  nc.variables['ssr'][i,:,:]+nc.variables['str'][i,:,:]
			else:
				data=nc.variables[filename][i,:,:]
			# print i,dtime[i]
			# add_offset=nc.variables[filename].add_offset
			# scale_factor=nc.variables[filename].scale_factor
			# data=data*scale_factor+add_offset
			# print 'scale_factor=',scale_factor
			# print 'add_offset=',add_offset
			if filename=='sff':	# 何故か100倍することでオーダーが合う
				data=data*100

			break

	nc.close()
	return data[::-1,:]
コード例 #8
0
ファイル: RG.py プロジェクト: AnchorBlues/python_for_study
def get_grid_value(var):
	import netCDF4
	import subroutine
	import numpy as np
	a=subroutine.read_meta_data('var')
	fn=subroutine.celldata(a,'var',var,'RG_fn')
	ncfile=subroutine.dat_dir()+'Roemmich_Gilson/NetCDF/RG_ArgoClim_'+fn+'_2015.nc'
	nc=netCDF4.Dataset(ncfile,'r')
	zgrid=nc.variables['PRESSURE'][:]
	xgrid=nc.variables['LONGITUDE'][:]
	xgrid=np.r_[-360+xgrid[340:],xgrid[:340]]
	ygrid=nc.variables['LATITUDE'][:]
	nc.close()
	return [xgrid,ygrid,zgrid]
コード例 #9
0
ファイル: RG.py プロジェクト: AnchorBlues/python_for_study
def nc_read(year,month,var,depth):
	import numpy as np
	import scipy as sp
	import netCDF4
	import subroutine
	Threshold=-999
	a=subroutine.read_meta_data('var')
	fn=subroutine.celldata(a,'var',var,'RG_fn')
	ncfile=subroutine.dat_dir()+'Roemmich_Gilson/NetCDF/RG_ArgoClim_'+fn+'_2015.nc'
	nc=netCDF4.Dataset(ncfile,'r')


	vn1=subroutine.celldata(a,'var',var,'RG_vn1')
	vn2=subroutine.celldata(a,'var',var,'RG_vn2')

	time=(year-2004)*12+month-1	# 2004年1月であれば、time=0、2014年12月であれば、time=131
	if depth != 0:
		meandata=nc.variables[vn1][depth-1,:,:]
		meandata[np.where(meandata<=Threshold)]=sp.nan # 欠損値のところはnanに。
		anomdata=nc.variables[vn2][time,depth-1,:,:]
		anomdata[np.where(anomdata<=Threshold)]=sp.nan # 欠損値のところはnanに。
		data=meandata+anomdata
		data=np.c_[data[:,340:],data[:,:340]]
	else:
		data=np.ones((ny,nx,nz))
		meandata=nc.variables[vn1][:,:,:]
		meandata[np.where(meandata<=Threshold)]=sp.nan # 欠損値のところはnanに。
		anomdata=nc.variables[vn2][time,:,:,:]
		anomdata[np.where(anomdata<=Threshold)]=sp.nan # 欠損値のところはnanに。
		ndata=meandata+anomdata
		ndata=np.c_[ndata[:,:,340:],ndata[:,:,:340]]
		for k in range(0,nz):
			data[:,:,k]=ndata[k,:,:]

	nc.close()
	return data
コード例 #10
0
def nc_read(year,month,var,depth):
	import numpy as np
	import scipy as sp
	import netCDF4
	import subroutine
	a=subroutine.read_meta_data('var')
	vn=subroutine.celldata(a,'var',var,'MOAA_GPV_vn')
	stryear,strmonth=subroutine.strym(year,month)
	ncfile=subroutine.dat_dir()+'MOAA_GPV/NetCDF/TS_'+stryear+strmonth+'_GLB.nc'
	nc=netCDF4.Dataset(ncfile,'r')
	if depth != 0:
		data=nc.variables[vn][depth-1,:,:]
	else:
		data=np.ones((ny,nx,nz))
		for k in range(0,nz):
			data[:,:,k]=nc.variables[vn][k,:,:]

	nc.close()
	data[np.where(data>=10000)]=sp.nan # 欠損値のところはnanに。
	return data
def make_climatology_or_interannual_variation_of_all_month_and_depth(fy, ly, var, Ave_or_Std, product_n = 3):
	xgrid, ygrid, zgrid = subroutine.product_grid_info(var, 'data', product_n)
	a=subroutine.read_meta_data('var')
	d=subroutine.celldata(a,'var',var,'dim')
	if d == '2D':
		data_allmonth = np.zeros((ygrid.size, xgrid.size, 12))
		depth_d = 1
	elif d == '3D':
		data_allmonth = np.zeros((ygrid.size, xgrid.size, zgrid.size, 12))
		depth_d = 0
	else:
		raise Exception('data dimension is not valid!')

	for month in range(1, 13):
		data = make_climatology_or_interannual_variation_of_a_month(fy, ly, month, var, depth_d, Ave_or_Std, product_n)
		if data.ndim ==  3:
			data_allmonth[:, :, :, month - 1] = data[:, :, :]
		elif data.ndim ==  2:
			data_allmonth[:, :, month - 1] = data[:, :]

	return data_allmonth
コード例 #12
0
ファイル: ORAS4.py プロジェクト: AnchorBlues/python_for_study
def get_grid_value(var):
	import netCDF4
	import subroutine
	import numpy as np
	if var=='w':
		filename='thetao'
	else:
		a=subroutine.read_meta_data('var')
		filename=subroutine.celldata(a,'var',var,'ORAS4_fn')

	ncfile=subroutine.dat_dir()+'ORAS4/NetCDF/'+filename+'_oras4_1m_1958_grid_1x1.nc'
	nc=netCDF4.Dataset(ncfile,'r')
	var_p=nc.variables['depth'][:]
	xgrid=nc.variables['lon'][:]
	ygrid=nc.variables['lat'][:]
	nc.close()
	if var=='w':
		var_h=np.zeros(var_p.size)
		for i in range(var_p.size):
			var_h[i]=2*var_p[i] if i==0 else 2*var_p[i]-var_h[i-1]
		var_p=var_h
	return [xgrid,ygrid,var_p]
コード例 #13
0
def load_Anomaly_of_npz(year, month, var, fy = 1990, ly = 2011, product_n = 3):
	a = subroutine.read_meta_data('var')
	formal_name = subroutine.celldata(a, 'var', var, 'formal_name')
	DIR = subroutine.get_DIR(year, month, formal_name, product_n)
	data = subroutine.load_npz(DIR + 'Anomaly_from_Mean_Annual_Cycle_Year' + str(fy) + '-' + str(ly), data_dir_flg = 'NO')
	return data