コード例 #1
0
def test_roundtrip_resinsight(filename, readonly_testdata_dir):
    """Test converting all test data sets in testdir into resinsight and back again.

    ResInsight only supports SUMMARY_OBSERVATION.
    """
    dframe = autoparse_file(filename)[1]

    # Reduce to the subset supported by yaml:
    dframe = dframe[dframe["CLASS"] == "SUMMARY_OBSERVATION"].dropna(
        axis="columns", how="all")
    # Drop observations with no date:
    dframe = dframe[~dframe["DATE"].isna()].dropna(axis=1, how="all")

    # Convert to ResInsight dataframe format and back again:
    ri_dframe = df2resinsight_df(dframe)
    ri_roundtrip_dframe = resinsight_df2df(ri_dframe)

    # LABEL is not part of the ResInsight format, and a made-up label
    # is obtained through the roundtrip (when importing back). Skip it
    # when comparing.

    pd.testing.assert_frame_equal(
        ri_roundtrip_dframe.sort_index(axis="columns").drop(
            ["LABEL", "COMMENT", "SUBCOMMENT"],
            axis="columns",
            errors="ignore"),
        dframe.sort_index(axis="columns").drop(
            ["LABEL", "COMMENT", "SUBCOMMENT"],
            axis="columns",
            errors="ignore"),
        check_like=True,
    )
コード例 #2
0
ファイル: fmuobs.py プロジェクト: tklov11/subscript
def dump_results(
    dframe, csvfile=None, yamlfile=None, resinsightfile=None, ertfile=None
):
    """Dump dataframe with ERT observations to CSV and/or YML
    format to disk. Writes to stdout if filenames are "-". Skips
    export if filenames are empty or None.

    Args:
        dframe (pd.DataFrame)
        csvfile (str): Filename
        yamlfile (str): Filename
        resinsightfile (str): Filename
        ertfile (str): Filename
    """

    if not (csvfile or yamlfile or resinsightfile or ertfile):
        logger.warning("No output filenames provided")
    if csvfile:
        if csvfile != __MAGIC_STDOUT__:
            logger.info("Writing observations as CSV to %s", csvfile)
            dframe.to_csv(csvfile, index=False)
        else:
            # Ignore pipe errors when writing to stdout:
            signal.signal(signal.SIGPIPE, signal.SIG_DFL)
            dframe.to_csv(sys.stdout, index=False)

    if yamlfile and yamlfile:
        obs_dict_for_yaml = df2obsdict(dframe)
        if not obs_dict_for_yaml and not dframe.empty:
            logger.error("None of your observations are supported in YAML")
        yaml_str = yaml.safe_dump(obs_dict_for_yaml)

        if yamlfile != __MAGIC_STDOUT__:
            logger.info(
                "Writing observations in YAML (webviz) format to file: %s",
                resinsightfile,
            )
            with open(yamlfile, "w") as f_handle:
                f_handle.write(yaml_str)
        else:
            print(yaml_str)

    if resinsightfile:
        ri_dframe = df2resinsight_df(dframe)
        if resinsightfile != __MAGIC_STDOUT__:
            logger.info(
                "Writing observations in ResInsight format to CSV-file: %s",
                resinsightfile,
            )
            ri_dframe.to_csv(resinsightfile, index=False, sep=";")
        else:
            # Ignore pipe errors when writing to stdout:
            signal.signal(signal.SIGPIPE, signal.SIG_DFL)
            ri_dframe.to_csv(sys.stdout, index=False, sep=";")

    if ertfile:
        ertobs_str = df2ertobs(dframe)
        if ertfile != __MAGIC_STDOUT__:
            with open(ertfile, "w") as f_handle:
                logger.info("Writing ERT observation format to %s", ertfile)
                f_handle.write(ertobs_str)
        else:
            print(ertobs_str)
コード例 #3
0
def test_df2resinsight_df(obs_df, expected_ri_df):
    """Test that we can go from internal dataframe representation
    to the resinsight dataframe representation of observations
    (which only supports a subset of ERT observations)"""
    pd.testing.assert_frame_equal(df2resinsight_df(obs_df), expected_ri_df)