コード例 #1
0
    def visualize_embeddings(self, sess, tensor, name):
        """
        Visualises an embedding vector into Tensorboard

        :param sess: Tensorflow session object
        :param tensor:  The embedding tensor to be visualizd
        :param name: Name of the tensor
        """

        # make directory if not exist
        if not tf.os.path.exists(self.save_dir):
            tf.os.makedirs(self.save_dir)

        # summary writer
        summary_writer = tf.summary.FileWriter(self.save_dir,
                                               graph=tf.get_default_graph())

        # embedding visualizer
        config = projector.ProjectorConfig()
        emb = config.embeddings.add()
        emb.tensor_name = name  # tensor
        emb.metadata_path = tf.os.path.join(self.DEFAULT_META_DATA_DIR,
                                            self.meta_file)  # metadata file
        print(tf.os.path.abspath(emb.metadata_path))
        projector.visualize_embeddings(summary_writer, config)
コード例 #2
0
    def visualize_embeddings(self, sess, tensor, name):
        """
        Visualises an embedding vector into Tensorboard

        :param sess: Tensorflow session object
        :param tensor:  The embedding tensor to be visualizd
        :param name: Name of the tensor
        """

        # make directory if not exist
        if not tf.os.path.exists(self.save_dir):
            tf.os.makedirs(self.save_dir)

        # summary writer
        summary_writer = tf.summary.FileWriter(self.save_dir, graph=tf.get_default_graph())

        # embedding visualizer
        config = projector.ProjectorConfig()
        emb = config.embeddings.add()
        emb.tensor_name = name  # tensor
        emb.metadata_path = tf.os.path.join(self.DEFAULT_META_DATA_DIR, self.meta_file)  # metadata file
        print(tf.os.path.abspath(emb.metadata_path))
        projector.visualize_embeddings(summary_writer, config)
コード例 #3
0
ファイル: export_wave_pb.py プロジェクト: akshayjh/speech
voca_size = data.voca_size
x = tf.placeholder(dtype=tf.sg_floatx, shape=(batch_size, None, 20))
# sequence length except zero-padding
seq_len = tf.not_equal(x.sg_sum(axis=2), 0.).sg_int().sg_sum(axis=1)
# encode audio feature
logit = get_logit(x, voca_size)
# ctc decoding
decoded, _ = tf.nn.ctc_beam_search_decoder(logit.sg_transpose(perm=[1, 0, 2]), seq_len, merge_repeated=False)
# to dense tensor
y = tf.add(tf.sparse_to_dense(decoded[0].indices, decoded[0].dense_shape, decoded[0].values), 1, name="output")

with tf.Session() as sess:
     tf.sg_init(sess)
     saver = tf.train.Saver()
     saver.restore(sess, tf.train.latest_checkpoint('asset/train'))

graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()

with tf.Session() as sess:
     tf.sg_init(sess)
     saver = tf.train.Saver()
     saver.restore(sess, tf.train.latest_checkpoint('asset/train'))
     # Output model's graph details for reference.
     tf.train.write_graph(sess.graph_def, '/root/speech-to-text-wavenet/asset/train', 'graph.txt', as_text=True)
     # Freeze the output graph.
     output_graph_def = graph_util.convert_variables_to_constants(sess,input_graph_def,"output".split(","))
     # Write it into .pb file.
     with tfw.gfile.GFile("/root/speech-to-text-wavenet/asset/train/wavenet_model.pb", "wb") as f:
            f.write(output_graph_def.SerializeToString())
コード例 #4
0
ファイル: sg_train.py プロジェクト: joastern/sugartensor
    def wrapper(**kwargs):
        opt = tf.sg_opt(kwargs)

        # default training options
        opt += tf.sg_opt(lr=0.001,
                         save_dir='asset/train',
                         max_ep=1000,
                         ep_size=100000,
                         save_interval=600,
                         log_interval=60,
                         early_stop=True,
                         lr_reset=False,
                         eval_metric=[],
                         max_keep=5,
                         keep_interval=1,
                         tqdm=True,
                         console_log=False)

        # make directory if not exist
        if not os.path.exists(opt.save_dir + '/log'):
            os.makedirs(opt.save_dir + '/log')
        if not os.path.exists(opt.save_dir + '/ckpt'):
            os.makedirs(opt.save_dir + '/ckpt')

        # find last checkpoint
        last_file = tf.train.latest_checkpoint(opt.save_dir + '/ckpt')
        if last_file:
            ep = start_ep = int(last_file.split('-')[1]) + 1
            start_step = int(last_file.split('-')[2])
        else:
            ep = start_ep = 1
            start_step = 0

        # checkpoint saver
        saver = tf.train.Saver(max_to_keep=opt.max_keep,
                               keep_checkpoint_every_n_hours=opt.keep_interval)

        # summary writer
        summary_writer = tf.train.SummaryWriter(opt.save_dir + '/log',
                                                graph=tf.get_default_graph())

        # add learning rate summary
        with tf.name_scope('summary'):
            tf.scalar_summary('60. learning_rate/learning_rate',
                              _learning_rate)

        # add evaluation metric summary
        for m in opt.eval_metric:
            tf.sg_summary_metric(m)

        # summary op
        summary_op = tf.merge_all_summaries()

        # create session
        if opt.sess:
            sess = opt.sess
        else:
            # session with multiple GPU support
            sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
            # initialize variables
            sg_init(sess)

        # restore last checkpoint
        if last_file:
            saver.restore(sess, last_file)

        # set learning rate
        if start_ep == 1 or opt.lr_reset:
            sess.run(_learning_rate.assign(opt.lr))

        # logging
        tf.sg_info('Training started from epoch[%03d]-step[%d].' %
                   (start_ep, start_step))

        try:
            # start data queue runner
            with tf.sg_queue_context(sess):

                # set session mode to train
                tf.sg_set_train(sess)

                # loss history for learning rate decay
                loss, loss_prev, early_stopped = None, None, False

                # time stamp for saving and logging
                last_saved = last_logged = time.time()

                # epoch loop
                for ep in range(start_ep, opt.max_ep + 1):

                    # show progressbar
                    if opt.tqdm:
                        iterator = tqdm(range(opt.ep_size),
                                        desc='train',
                                        ncols=70,
                                        unit='b',
                                        leave=False)
                    else:
                        iterator = range(opt.ep_size)

                    # batch loop
                    for _ in iterator:

                        # call train function
                        batch_loss = func(sess, opt)

                        # loss history update
                        if batch_loss is not None:
                            if loss is None:
                                loss = np.mean(batch_loss)
                            else:
                                loss = loss * 0.9 + np.mean(batch_loss) * 0.1

                        # saving
                        if time.time() - last_saved > opt.save_interval:
                            last_saved = time.time()
                            saver.save(sess,
                                       opt.save_dir + '/ckpt/model-%03d' % ep,
                                       write_meta_graph=False,
                                       global_step=sess.run(
                                           tf.sg_global_step()))

                        # logging
                        if time.time() - last_logged > opt.log_interval:
                            last_logged = time.time()

                            # set session mode to infer
                            tf.sg_set_infer(sess)

                            # run evaluation op
                            if len(opt.eval_metric) > 0:
                                sess.run(opt.eval_metric)

                            if opt.console_log:  # console logging
                                # log epoch information
                                tf.sg_info(
                                    '\tEpoch[%03d:lr=%7.5f:gs=%d] - loss = %s'
                                    % (ep, sess.run(_learning_rate),
                                       sess.run(tf.sg_global_step()),
                                       ('NA' if loss is None else '%8.6f' %
                                        loss)))
                            else:  # tensorboard logging
                                # run logging op
                                summary_writer.add_summary(
                                    sess.run(summary_op),
                                    global_step=sess.run(tf.sg_global_step()))

                            # learning rate decay
                            if opt.early_stop and loss_prev:
                                # if loss stalling
                                if loss >= 0.95 * loss_prev:
                                    # early stopping
                                    current_lr = sess.run(_learning_rate)
                                    if current_lr < 5e-6:
                                        early_stopped = True
                                        break
                                    else:
                                        # decrease learning rate by half
                                        sess.run(
                                            _learning_rate.assign(current_lr /
                                                                  2.))

                            # update loss history
                            loss_prev = loss

                            # revert session mode to train
                            tf.sg_set_train(sess)

                    # log epoch information
                    if not opt.console_log:
                        tf.sg_info(
                            '\tEpoch[%03d:lr=%7.5f:gs=%d] - loss = %s' %
                            (ep, sess.run(_learning_rate),
                             sess.run(tf.sg_global_step()),
                             ('NA' if loss is None else '%8.6f' % loss)))

                    if early_stopped:
                        tf.sg_info('\tEarly stopped ( no loss progress ).')
                        break
        finally:
            # save last epoch
            saver.save(sess,
                       opt.save_dir + '/ckpt/model-%03d' % ep,
                       write_meta_graph=False,
                       global_step=sess.run(tf.sg_global_step()))

            # set session mode to infer
            tf.sg_set_infer(sess)

            # logging
            tf.sg_info('Training finished at epoch[%d]-step[%d].' %
                       (ep, sess.run(tf.sg_global_step())))

            # close session
            if opt.sess is None:
                sess.close()
コード例 #5
0
    def wrapper(**kwargs):
        r""" Manages arguments of `tf.sg_opt`.

        Args:
          **kwargs:
            lr: A Python Scalar (optional). Learning rate. Default is .001.

            eval_metric: A list of tensors containing the value to evaluate. Default is [].
            early_stop: Boolean. If True (default), the training should stop when the following two conditions are met.
              i. Current loss is less than .95 * previous loss.
              ii. Current learning rate is less than 5e-6.
            lr_reset: Boolean. If True, learning rate is set to opt.lr. when training restarts.
              Otherwise (Default), the value of the stored `_learning_rate` is taken.
            save_dir: A string. The root path to which checkpoint and log files are saved.
              Default is `asset/train`.
            max_ep: A positive integer. Maximum number of epochs. Default is 1000.
            ep_size: A positive integer. Number of Total batches in an epoch.
              For proper display of log. Default is 1e5.

            save_interval: A Python scalar. The interval of saving checkpoint files.
              By default, for every 600 seconds, a checkpoint file is written.
            log_interval: A Python scalar. The interval of recoding logs.
              By default, for every 60 seconds, logging is executed.
            max_keep: A positive integer. Maximum number of recent checkpoints to keep. Default is 5.
            keep_interval: A Python scalar. How often to keep checkpoints. Default is 1 hour.

            tqdm: Boolean. If True (Default), progress bars are shown.
            console_log: Boolean. If True, a series of loss will be shown
              on the console instead of tensorboard. Default is False.
        """
        opt = tf.sg_opt(kwargs)

        # default training options
        opt += tf.sg_opt(lr=0.001,
                         save_dir='asset/train',
                         max_ep=1000, ep_size=100000,
                         save_interval=600, log_interval=60,
                         early_stop=True, lr_reset=False,
                         eval_metric=[],
                         max_keep=5, keep_interval=1,
                         tqdm=True, console_log=False)

        # make directory if not exist
        if not os.path.exists(opt.save_dir):
            os.makedirs(opt.save_dir)

        # find last checkpoint
        last_file = tf.train.latest_checkpoint(opt.save_dir)
        if last_file:
            ep = start_ep = int(last_file.split('-')[1]) + 1
            start_step = int(last_file.split('-')[2])
        else:
            ep = start_ep = 1
            start_step = 0

        # checkpoint saver
        saver = tf.train.Saver(max_to_keep=opt.max_keep,
                               keep_checkpoint_every_n_hours=opt.keep_interval)

        # summary writer
        summary_writer = tf.summary.FileWriter(opt.save_dir, graph=tf.get_default_graph())

        # add learning rate summary
        tf.summary.scalar('learning_r', _learning_rate)

        # add evaluation metric summary
        for m in opt.eval_metric:
            tf.sg_summary_metric(m)

        # summary op
        summary_op = tf.summary.merge_all()

        # create session
        if opt.sess:
            sess = opt.sess
        else:
            # session with multiple GPU support
            sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
        # initialize variables
        sg_init(sess)

        # restore last checkpoint
        if last_file:
            saver.restore(sess, last_file)

        # set learning rate
        if start_ep == 1 or opt.lr_reset:
            sess.run(_learning_rate.assign(opt.lr))

        # logging
        tf.sg_info('Training started from epoch[%03d]-step[%d].' % (start_ep, start_step))

        try:
            # start data queue runner
            with tf.sg_queue_context(sess):

                # set session mode to train
                tf.sg_set_train(sess)

                # loss history for learning rate decay
                loss, loss_prev, early_stopped = None, None, False

                # time stamp for saving and logging
                last_saved = last_logged = time.time()

                # epoch loop
                for ep in range(start_ep, opt.max_ep + 1):

                    # show progressbar
                    if opt.tqdm:
                        iterator = tqdm(range(opt.ep_size), desc='train', ncols=70, unit='b', leave=False)
                    else:
                        iterator = range(opt.ep_size)

                    # batch loop
                    for _ in iterator:

                        # call train function
                        batch_loss = func(sess, opt)

                        # loss history update
                        if batch_loss is not None:
                            if loss is None:
                                loss = np.mean(batch_loss)
                            else:
                                loss = loss * 0.9 + np.mean(batch_loss) * 0.1

                        # saving
                        if time.time() - last_saved > opt.save_interval:
                            last_saved = time.time()
                            saver.save(sess, opt.save_dir + '/model-%03d' % ep,
                                       write_meta_graph=False,
                                       global_step=sess.run(tf.sg_global_step()))

                        # logging
                        if time.time() - last_logged > opt.log_interval:
                            last_logged = time.time()

                            # set session mode to infer
                            tf.sg_set_infer(sess)

                            # run evaluation op
                            if len(opt.eval_metric) > 0:
                                sess.run(opt.eval_metric)

                            if opt.console_log:   # console logging
                                # log epoch information
                                tf.sg_info('\tEpoch[%03d:lr=%7.5f:gs=%d] - loss = %s' %
                                           (ep, sess.run(_learning_rate), sess.run(tf.sg_global_step()),
                                            ('NA' if loss is None else '%8.6f' % loss)))
                            else:   # tensorboard logging
                                # run logging op
                                summary_writer.add_summary(sess.run(summary_op),
                                                           global_step=sess.run(tf.sg_global_step()))

                            # learning rate decay
                            if opt.early_stop and loss_prev:
                                # if loss stalling
                                if loss >= 0.95 * loss_prev:
                                    # early stopping
                                    current_lr = sess.run(_learning_rate)
                                    if current_lr < 5e-6:
                                        early_stopped = True
                                        break
                                    else:
                                        # decrease learning rate by half
                                        sess.run(_learning_rate.assign(current_lr / 2.))

                            # update loss history
                            loss_prev = loss

                            # revert session mode to train
                            tf.sg_set_train(sess)

                    # log epoch information
                    if not opt.console_log:
                        tf.sg_info('\tEpoch[%03d:lr=%7.5f:gs=%d] - loss = %s' %
                                   (ep, sess.run(_learning_rate), sess.run(tf.sg_global_step()),
                                    ('NA' if loss is None else '%8.6f' % loss)))

                    if early_stopped:
                        tf.sg_info('\tEarly stopped ( no loss progress ).')
                        break
        finally:
            # save last epoch
            saver.save(sess, opt.save_dir + '/model-%03d' % ep,
                       write_meta_graph=False,
                       global_step=sess.run(tf.sg_global_step()))

            # set session mode to infer
            tf.sg_set_infer(sess)

            # logging
            tf.sg_info('Training finished at epoch[%d]-step[%d].' % (ep, sess.run(tf.sg_global_step())))

            # close session
            if opt.sess is None:
                sess.close()
コード例 #6
0
def sg_tsne(tensor, meta_file='metadata.tsv', save_dir='asset/tsne'):
    r""" Manages arguments of `tf.sg_opt`.

    Args:
      **kwargs:
        lr: A Python Scalar (optional). Learning rate. Default is .001.

        eval_metric: A list of tensors containing the value to evaluate. Default is [].
        early_stop: Boolean. If True (default), the training should stop when the following two conditions are met.
          i. Current loss is less than .95 * previous loss.
          ii. Current learning rate is less than 5e-6.
        lr_reset: Boolean. If True, learning rate is set to opt.lr. when training restarts.
          Otherwise (Default), the value of the stored `_learning_rate` is taken.
        save_dir: A string. The root path to which checkpoint and log files are saved.
          Default is `asset/train`.
        max_ep: A positive integer. Maximum number of epochs. Default is 1000.
        ep_size: A positive integer. Number of Total batches in an epoch.
          For proper display of log. Default is 1e5.

        save_interval: A Python scalar. The interval of saving checkpoint files.
          By default, for every 600 seconds, a checkpoint file is written.
        log_interval: A Python scalar. The interval of recoding logs.
          By default, for every 60 seconds, logging is executed.
        max_keep: A positive integer. Maximum number of recent checkpoints to keep. Default is 5.
        keep_interval: A Python scalar. How often to keep checkpoints. Default is 1 hour.

        tqdm: Boolean. If True (Default), progress bars are shown.
        console_log: Boolean. If True, a series of loss will be shown
          on the console instead of tensorboard. Default is False.
        embeds: List of Tuple. [(Tensor to add, metadata path)]
    """

    # make directory if not exist
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    # checkpoint saver
    saver = tf.train.Saver()

    # summary writer
    summary_writer = tf.summary.FileWriter(save_dir,
                                           graph=tf.get_default_graph())

    # embedding visualizer
    config = projector.ProjectorConfig()
    emb = config.embeddings.add()
    emb.tensor_name = tensor.name  # tensor
    # emb.metadata_path = os.path.join(save_dir, meta_file)   # metadata file
    projector.visualize_embeddings(summary_writer, config)

    # create session
    sess = tf.Session()
    # initialize variables
    sg_init(sess)

    # save tsne
    saver.save(sess, save_dir + '/model-tsne')

    # logging
    tf.sg_info('Tsne saved at %s' % (save_dir + '/model-tsne'))

    # close session
    sess.close()
# ctc decoding
decoded, _ = tf.nn.ctc_beam_search_decoder(logit.sg_transpose(perm=[1, 0, 2]),
                                           seq_len,
                                           merge_repeated=False)
# to dense tensor
y = tf.add(tf.sparse_to_dense(decoded[0].indices, decoded[0].dense_shape,
                              decoded[0].values),
           1,
           name="output")

with tf.Session() as sess:
    tf.sg_init(sess)
    saver = tf.train.Saver()
    saver.restore(sess, tf.train.latest_checkpoint('asset/train'))

graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()

with tf.Session() as sess:
    tf.sg_init(sess)
    saver = tf.train.Saver()
    saver.restore(sess, tf.train.latest_checkpoint('asset/train'))
    # Output model's graph details for reference.
    tf.train.write_graph(sess.graph_def,
                         '/root/speech-to-text-wavenet/asset/train',
                         'graph.txt',
                         as_text=True)
    # Freeze the output graph.
    output_graph_def = graph_util.convert_variables_to_constants(
        sess, input_graph_def, "output".split(","))
    # Write it into .pb file.