コード例 #1
0
def test_stratify_transition_flows__with_dest_only_stratified__with_adjustments():
    """
    Ensure transition flows are stratified correctly when only the flow destination is stratified.
    Expect adjustments to override the automatic person-conserving adjustment.
    """
    model = CompartmentalModel(
        times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"]
    )
    model.add_sojourn_flow("recovery", 7, "I", "R")

    expected_flows = [
        SojournFlow("recovery", C("I"), C("R"), 7),
    ]
    assert len(expected_flows) == len(model._flows)
    assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])

    # Apply stratification
    strat = Stratification("location", ["urban", "rural"], ["R"])
    strat.add_flow_adjustments("recovery", {"urban": Overwrite(0.7), "rural": Overwrite(0.1)})
    model.stratify_with(strat)

    expected_flows = [
        SojournFlow("recovery", C("I"), C("R", {"location": "urban"}), 7, [Overwrite(0.7)]),
        SojournFlow("recovery", C("I"), C("R", {"location": "rural"}), 7, [Overwrite(0.1)]),
    ]
    assert len(expected_flows) == len(model._flows)
    assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])
コード例 #2
0
def _build_organ_strat(params):
    organ_strat = Stratification(
        "organ", ["smear_positive", "smear_negative", "extra_pulmonary"],
        INFECTIOUS_COMPS)
    organ_strat.set_population_split(params["organ"]["props"])
    # Add infectiousness adjustments
    for comp in INFECTIOUS_COMPS:
        organ_strat.add_infectiousness_adjustments(
            comp, _adjust_all_multiply(params["organ"]["foi"]))

    organ_strat.add_flow_adjustments(
        "early_activation", _adjust_all_multiply(params["organ"]["props"]))
    organ_strat.add_flow_adjustments(
        "late_activation", _adjust_all_multiply(params["organ"]["props"]))
    organ_strat.add_flow_adjustments(
        "detection",
        _adjust_all_multiply(params["detection_rate_stratified"]["organ"]),
    )
    organ_strat.add_flow_adjustments(
        "self_recovery_infectious",
        _adjust_all_multiply(params["self_recovery_rate_stratified"]["organ"]),
    )
    organ_strat.add_flow_adjustments(
        "self_recovery_detected",
        _adjust_all_multiply(params["self_recovery_rate_stratified"]["organ"]),
    )
    return organ_strat
コード例 #3
0
def test_stratify_exit_flows():
    """
    Ensure exit flows are stratified correctly.
    """
    model = CompartmentalModel(
        times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"]
    )
    model.add_death_flow("d_S", 3, "S")
    model.add_death_flow("d_I", 5, "I")
    model.add_death_flow("d_R", 7, "R")

    expected_flows = [
        DeathFlow("d_S", C("S"), 3),
        DeathFlow("d_I", C("I"), 5),
        DeathFlow("d_R", C("R"), 7),
    ]
    assert len(expected_flows) == len(model._flows)
    assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])

    # Apply partial stratification
    strat = Stratification("location", ["urban", "rural"], ["S", "I"])
    model.stratify_with(strat)

    expected_flows = [
        DeathFlow("d_S", C("S", {"location": "urban"}), 3),
        DeathFlow("d_S", C("S", {"location": "rural"}), 3),
        DeathFlow("d_I", C("I", {"location": "urban"}), 5),
        DeathFlow("d_I", C("I", {"location": "rural"}), 5),
        DeathFlow("d_R", C("R"), 7),
    ]
    assert len(expected_flows) == len(model._flows)
    assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])

    # Apply partial stratification with flow adjustments
    strat = Stratification("age", ["young", "old"], ["I", "R"])
    strat.add_flow_adjustments("d_I", {"young": Multiply(0.5), "old": Multiply(2)})
    strat.add_flow_adjustments("d_R", {"young": Multiply(0.5), "old": Multiply(2)})
    model.stratify_with(strat)

    expected_flows = [
        DeathFlow("d_S", C("S", {"location": "urban"}), 3),
        DeathFlow("d_S", C("S", {"location": "rural"}), 3),
        DeathFlow("d_I", C("I", {"location": "urban", "age": "young"}), 5, [Multiply(0.5)]),
        DeathFlow("d_I", C("I", {"location": "urban", "age": "old"}), 5, [Multiply(2)]),
        DeathFlow("d_I", C("I", {"location": "rural", "age": "young"}), 5, [Multiply(0.5)]),
        DeathFlow("d_I", C("I", {"location": "rural", "age": "old"}), 5, [Multiply(2)]),
        DeathFlow("d_R", C("R", {"age": "young"}), 7, [Multiply(0.5)]),
        DeathFlow("d_R", C("R", {"age": "old"}), 7, [Multiply(2)]),
    ]
    assert len(expected_flows) == len(model._flows)
    assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])
コード例 #4
0
def _build_retention_strat(params):
    strat = Stratification("retained", ["yes", "no"], [Compartment.DETECTED])
    strat.add_flow_adjustments(
        "detection",
        {
            "yes": Multiply(params["retention_prop"]),
            "no": Multiply(1 - params["retention_prop"]),
        },
    )
    strat.add_flow_adjustments(
        "missed_to_active",
        {
            "yes": Multiply(0),
            "no": Multiply(1)
        },
    )
    strat.add_flow_adjustments(
        "treatment_commencement",
        {
            "yes": Multiply(1),
            "no": Multiply(0)
        },
    )

    strat.add_flow_adjustments(
        "failure_retreatment",
        {
            "yes": Multiply(1),
            "no": Multiply(0)
        },
    )
    return strat
コード例 #5
0
def test_get_flow_adjustments__with_one_adjustment():
    other_flow = TransitionFlow("other", Compartment("S"), Compartment("I"), 1)
    trans_flow = TransitionFlow("flow", Compartment("S"), Compartment("I"), 1)
    entry_flow = EntryFlow("flow", Compartment("S"), 1)
    exit_flow = ExitFlow("flow", Compartment("I"), 1)

    strat = Stratification(name="location",
                           strata=["rural", "urban"],
                           compartments=["S", "I", "R"])
    strat.add_flow_adjustments("flow", {"rural": Multiply(1), "urban": None})

    assert strat.get_flow_adjustment(other_flow) is None
    for flow in [trans_flow, entry_flow, exit_flow]:
        adj = strat.get_flow_adjustment(flow)
        assert adj["urban"] is None
        assert adj["rural"]._is_equal(Multiply(1))
コード例 #6
0
ファイル: cluster.py プロジェクト: thecapitalistcycle/AuTuMN
def get_cluster_strat(params: Parameters) -> Stratification:
    cluster_strat = Stratification("cluster", CLUSTER_STRATA, COMPARTMENTS)
    country = params.country
    vic = params.victorian_clusters

    # Determine how to split up population by cluster
    # There is -0.5% to +4% difference per age group between sum of region population in 2018 and
    # total VIC population in 2020
    region_pops = {
        region: sum(
            inputs.get_population_by_agegroup(AGEGROUP_STRATA,
                                              country.iso3,
                                              region.upper(),
                                              year=2018))
        for region in CLUSTER_STRATA
    }
    sum_region_props = sum(region_pops.values())
    cluster_split_props = {
        region: pop / sum_region_props
        for region, pop in region_pops.items()
    }
    cluster_strat.set_population_split(cluster_split_props)

    # Adjust contact rate multipliers
    contact_rate_adjustments = {}
    for cluster in Region.VICTORIA_METRO + [Region.BARWON_SOUTH_WEST]:
        cluster_name = cluster.replace("-", "_")
        contact_rate_multiplier = getattr(
            vic, f"contact_rate_multiplier_{cluster_name}")
        contact_rate_adjustments[cluster_name] = Multiply(
            contact_rate_multiplier)
    for cluster in Region.VICTORIA_RURAL:
        if cluster != Region.BARWON_SOUTH_WEST:
            cluster_name = cluster.replace("-", "_")
            contact_rate_multiplier = getattr(
                vic, "contact_rate_multiplier_regional")
            contact_rate_adjustments[cluster_name] = Multiply(
                contact_rate_multiplier)

    # Add in flow adjustments per-region so we can calibrate the contact rate for each region.
    cluster_strat.add_flow_adjustments("infection", contact_rate_adjustments)

    # Use an identity mixing matrix to temporarily declare no inter-cluster mixing, which will then be over-written
    cluster_mixing_matrix = np.eye(len(CLUSTER_STRATA))
    cluster_strat.set_mixing_matrix(cluster_mixing_matrix)

    return cluster_strat
コード例 #7
0
def test_transition_flow_stratify_dest_but_not_source__with_flow_adjustments():
    """
    Ensure flow is adjusted to account for fan out.
    """
    flow = TransitionFlow(
        name="flow",
        source=Compartment("I"),
        dest=Compartment("R"),
        param=2,
        adjustments=[adjust.Multiply(0.1)],
    )
    strat = Stratification(
        name="age",
        strata=["1", "2"],
        compartments=["S", "R"],
    )
    strat.add_flow_adjustments(
        "flow",
        {
            "1": adjust.Multiply(0.2),
            "2": adjust.Multiply(0.3),
        },
    )
    new_flows = flow.stratify(strat)
    assert len(new_flows) == 2
    assert new_flows[0]._is_equal(
        TransitionFlow(
            name="flow",
            param=2,
            source=Compartment("I"),
            dest=Compartment("R", {"age": "1"}),
            adjustments=[adjust.Multiply(0.1), adjust.Multiply(0.2)],
        )
    )
    assert new_flows[1]._is_equal(
        TransitionFlow(
            name="flow",
            param=2,
            source=Compartment("I"),
            dest=Compartment("R", {"age": "2"}),
            adjustments=[adjust.Multiply(0.1), adjust.Multiply(0.3)],
        )
    )
コード例 #8
0
ファイル: agegroup.py プロジェクト: thecapitalistcycle/AuTuMN
def get_agegroup_strat(params: Parameters,
                       total_pops: List[int]) -> Stratification:
    """
    Age stratification
    """
    # We use "Stratification" instead of "AgeStratification" for this model, to avoid triggering
    # automatic demography features (which work on the assumption that the time unit is years, so would be totally wrong)
    age_strat = Stratification("agegroup", AGEGROUP_STRATA, COMPARTMENTS)
    country = params.country

    # Dynamic heterogeneous mixing by age
    if params.elderly_mixing_reduction and not params.mobility.age_mixing:
        # Apply eldery protection to the age mixing parameters
        params.mobility.age_mixing = preprocess.elderly_protection.get_elderly_protection_mixing(
            params.elderly_mixing_reduction)

    static_mixing_matrix = inputs.get_country_mixing_matrix(
        "all_locations", country.iso3)
    dynamic_mixing_matrix = preprocess.mixing_matrix.build_dynamic_mixing_matrix(
        static_mixing_matrix,
        params.mobility,
        country,
    )

    age_strat.set_mixing_matrix(dynamic_mixing_matrix)

    # Set distribution of starting population
    age_split_props = {
        agegroup: prop
        for agegroup, prop in zip(AGEGROUP_STRATA,
                                  normalise_sequence(total_pops))
    }
    age_strat.set_population_split(age_split_props)

    # Adjust flows based on age group.
    age_strat.add_flow_adjustments(
        "infection", {
            s: Multiply(v)
            for s, v in params.age_stratification.susceptibility.items()
        })
    return age_strat
コード例 #9
0
def test_entry_flow_stratify_with_adjustments():
    flow = EntryFlow(
        name="flow",
        dest=Compartment("I"),
        param=2,
        adjustments=[adjust.Overwrite(0.2)],
    )
    strat = Stratification(
        name="location",
        strata=["1", "2"],
        compartments=["I", "R"],
    )
    strat.add_flow_adjustments("flow", {
        "1": adjust.Multiply(0.1),
        "2": adjust.Multiply(0.3)
    })

    new_flows = flow.stratify(strat)

    assert len(new_flows) == 2

    assert new_flows[0]._is_equal(
        EntryFlow(
            name="flow",
            param=2,
            dest=Compartment("I", {"location": "1"}),
            adjustments=[adjust.Overwrite(0.2),
                         adjust.Multiply(0.1)],
        ))
    assert new_flows[1]._is_equal(
        EntryFlow(
            name="flow",
            param=2,
            dest=Compartment("I", {"location": "2"}),
            adjustments=[adjust.Overwrite(0.2),
                         adjust.Multiply(0.3)],
        ))
コード例 #10
0
def _build_vac_strat(params):
    vac_strat = Stratification("vac", ["unvaccinated", "vaccinated"],
                               [Compartment.SUSCEPTIBLE])
    vac_strat.set_population_split({"unvaccinated": 1.0, "vaccinated": 0.0})

    # Apply flow adjustments
    vac_strat.add_flow_adjustments(
        "infection",
        {
            "unvaccinated": Multiply(1.0),
            "vaccinated": Multiply(params["bcg"]["rr_infection_vaccinated"]),
        },
    )
    vac_strat.add_flow_adjustments(
        "treatment_early",
        {
            "unvaccinated": Multiply(0.0),
            "vaccinated": Multiply(1.0)
        },
    )
    vac_strat.add_flow_adjustments("treatment_late", {
        "unvaccinated": Multiply(0.0),
        "vaccinated": Multiply(1.0)
    })

    def time_varying_vaccination_coverage(t):
        return params["bcg"][
            "coverage"] if t > params["bcg"]["start_time"] else 0.0

    def time_varying_unvaccinated_coverage(t):
        return 1 - params["bcg"]["coverage"] if t > params["bcg"][
            "start_time"] else 1.0

    vac_strat.add_flow_adjustments(
        "birth",
        {
            "unvaccinated": Multiply(time_varying_unvaccinated_coverage),
            "vaccinated": Multiply(time_varying_vaccination_coverage),
        },
    )
    return vac_strat
コード例 #11
0
ファイル: history.py プロジェクト: thecapitalistcycle/AuTuMN
def get_history_strat(
    params: Parameters,
    compartment_periods: Dict[str, float],
) -> Stratification:
    """
    Infection history stratification
    """
    history_strat = Stratification(
        "history",
        ["naive", "experienced"],
        [Compartment.SUSCEPTIBLE, Compartment.EARLY_EXPOSED],
    )
    # Everyone starts out naive.
    history_strat.set_population_split({"naive": 1.0, "experienced": 0.0})
    # Waning immunity makes recovered individuals transition to the 'experienced' stratum
    history_strat.add_flow_adjustments("warning_immunity", {
        "naive": Multiply(0.0),
        "experienced": Multiply(1.0)
    })

    # Get the proportion of people in each clinical stratum, relative to total people in compartment.
    clinical_params = params.clinical_stratification
    symptomatic_props = get_proportion_symptomatic(params)
    abs_props = get_absolute_strata_proportions(
        symptomatic_props=symptomatic_props,
        icu_props=clinical_params.icu_prop,
        hospital_props=clinical_params.props.hospital.props,
        symptomatic_props_multiplier=clinical_params.props.symptomatic.
        multiplier,
        hospital_props_multiplier=clinical_params.props.hospital.multiplier,
    )

    # Adjust parameters defining progression from early exposed to late exposed to obtain the requested proportion
    for age_idx, agegroup in enumerate(AGEGROUP_STRATA):
        # Collect existing rates of progressions for symptomatic vs non-symptomatic
        rate_non_sympt = (abs_props[Clinical.NON_SYMPT][age_idx] /
                          compartment_periods[Compartment.EARLY_EXPOSED])
        total_progression_rate = 1.0 / compartment_periods[
            Compartment.EARLY_EXPOSED]
        rate_sympt = total_progression_rate - rate_non_sympt
        # Multiplier for symptomatic is rel_prop_symptomatic_experienced
        sympt_multiplier = params.rel_prop_symptomatic_experienced
        # Multiplier for asymptomatic rate is 1 + rate_sympt / rate_non_sympt * (1 - sympt_multiplier) in order to preserve aggregated exit flow.
        non_sympt_multiplier = 1 + rate_sympt / rate_non_sympt * (
            1.0 - sympt_multiplier)
        # Create adjustment requests
        for clinical in CLINICAL_STRATA:
            experienced_multiplier = (non_sympt_multiplier
                                      if clinical == Clinical.NON_SYMPT else
                                      sympt_multiplier)
            adjustments = {
                "naive": Multiply(1.0),
                # Sojourn flow, divide by proportion.
                "experienced": Multiply(1.0 / experienced_multiplier),
            }
            history_strat.add_flow_adjustments(
                "infect_onset",
                adjustments,
                dest_strata={
                    "agegroup": agegroup,
                    "clinical": clinical
                },
            )

    return history_strat
コード例 #12
0
def _get_test_model(timestep=1, times=[0, 150]):
    comps = ["S", "EE", "LE", "EA", "LA", "R"]
    infectious_comps = ["LE", "EA", "LA"]
    model = CompartmentalModel(
        times=times,
        compartments=comps,
        infectious_compartments=infectious_comps,
        timestep=timestep,
    )
    model.set_initial_population({"S": int(20e6), "LA": 100})

    # Add flows
    model.add_infection_frequency_flow(name="infection", contact_rate=0.03, source="S", dest="EE")
    model.add_sojourn_flow(name="infect_onset", sojourn_time=7, source="EE", dest="LE")
    model.add_sojourn_flow(name="incidence", sojourn_time=7, source="LE", dest="EA")
    model.add_sojourn_flow(name="progress", sojourn_time=7, source="EA", dest="LA")
    model.add_sojourn_flow(name="recovery", sojourn_time=7, source="LA", dest="R")
    model.add_death_flow(name="infect_death", death_rate=0.005, source="LA")
    model.add_transition_flow(name="warning_immunity", fractional_rate=0.01, source="R", dest="S")

    # Stratify by age
    age_strat = Stratification("age", AGE_STRATA, comps)
    age_strat.set_population_split(AGE_SPLIT_PROPORTIONS)
    age_strat.set_mixing_matrix(AGE_MIXING_MATRIX)
    age_strat.add_flow_adjustments(
        "infection", {s: Multiply(v) for s, v in AGE_SUSCEPTIBILITY.items()}
    )
    model.stratify_with(age_strat)

    # Stratify by clinical status
    clinical_strat = Stratification("clinical", CLINICAL_STRATA, infectious_comps)
    clinical_strat.add_infectiousness_adjustments("LE", {**ADJ_BASE, "non_sympt": Overwrite(0.25)})
    clinical_strat.add_infectiousness_adjustments("EA", {**ADJ_BASE, "non_sympt": Overwrite(0.25)})
    clinical_strat.add_infectiousness_adjustments(
        "LA",
        {
            **ADJ_BASE,
            "non_sympt": Overwrite(0.25),
            "sympt_isolate": Overwrite(0.2),
            "hospital": Overwrite(0.2),
            "icu": Overwrite(0.2),
        },
    )
    clinical_strat.add_flow_adjustments(
        "infect_onset",
        {
            "non_sympt": Multiply(0.26),
            "icu": Multiply(0.01),
            "hospital": Multiply(0.04),
            "sympt_public": Multiply(0.66),
            "sympt_isolate": Multiply(0.03),
        },
    )
    model.stratify_with(clinical_strat)

    # Request derived outputs.
    model.request_output_for_flow(name="incidence", flow_name="incidence")
    model.request_output_for_flow(name="progress", flow_name="progress")
    for age in AGE_STRATA:
        for clinical in NOTIFICATION_STRATA:
            model.request_output_for_flow(
                name=f"progressXage_{age}Xclinical_{clinical}",
                flow_name="progress",
                dest_strata={"age": age, "clinical": clinical},
            )

    hospital_sources = []
    icu_sources = []
    for age in AGE_STRATA:
        icu_sources.append(f"progressXage_{age}Xclinical_icu")
        hospital_sources += [
            f"progressXage_{age}Xclinical_icu",
            f"progressXage_{age}Xclinical_hospital",
        ]

    model.request_aggregate_output(
        name="new_hospital_admissions",
        sources=hospital_sources,
    )
    model.request_aggregate_output(name="new_icu_admissions", sources=icu_sources)

    # Get notifications, which may included people detected in-country as they progress, or imported cases which are detected.
    notification_sources = [
        f"progressXage_{a}Xclinical_{c}" for a in AGE_STRATA for c in NOTIFICATION_STRATA
    ]
    model.request_aggregate_output(name="notifications", sources=notification_sources)

    # Infection deaths.
    model.request_output_for_flow(name="infection_deaths", flow_name="infect_death")
    model.request_cumulative_output(name="accum_deaths", source="infection_deaths")

    # Track hospital occupancy.
    # We count all ICU and hospital late active compartments and a proportion of early active ICU cases.
    model.request_output_for_compartments(
        "_late_active_hospital",
        compartments=["LA"],
        strata={"clinical": "hospital"},
        save_results=False,
    )
    model.request_output_for_compartments(
        "icu_occupancy",
        compartments=["LA"],
        strata={"clinical": "icu"},
    )
    model.request_output_for_compartments(
        "_early_active_icu",
        compartments=["EA"],
        strata={"clinical": "icu"},
        save_results=False,
    )
    proportion_icu_patients_in_hospital = 0.25
    model.request_function_output(
        name="_early_active_icu_proportion",
        func=lambda patients: patients * proportion_icu_patients_in_hospital,
        sources=["_early_active_icu"],
        save_results=False,
    )
    model.request_aggregate_output(
        name="hospital_occupancy",
        sources=[
            "_late_active_hospital",
            "icu_occupancy",
            "_early_active_icu_proportion",
        ],
    )

    # Proportion seropositive
    model.request_output_for_compartments(
        name="_total_population", compartments=comps, save_results=False
    )
    model.request_output_for_compartments(name="_recovered", compartments=["R"], save_results=False)
    model.request_function_output(
        name="proportion_seropositive",
        sources=["_recovered", "_total_population"],
        func=lambda recovered, total: recovered / total,
    )

    return model
コード例 #13
0
ファイル: clinical.py プロジェクト: thecapitalistcycle/AuTuMN
def get_clinical_strat(params: Parameters) -> Stratification:

    """
    Stratify the model by clinical status
    Stratify the infectious compartments of the covid model (not including the pre-symptomatic compartments, which are
    actually infectious)

    - notifications are derived from progress from early to late for some strata
    - the proportion of people moving from presympt to early infectious, conditioned on age group
    - rate of which people flow through these compartments (reciprocal of time, using within_* which is a rate of ppl / day)
    - infectiousness levels adjusted by early/late and for clinical strata
    - we start with an age stratified infection fatality rate
        - 50% of deaths for each age bracket die in ICU
        - the other deaths go to hospital, assume no-one else can die from COVID
        - should we ditch this?

    """
    clinical_strat = Stratification("clinical", CLINICAL_STRATA, INFECTIOUS_COMPARTMENTS)
    clinical_params = params.clinical_stratification
    country = params.country
    pop = params.population

    """
    Infectiousness adjustments for clinical stratification
    """
    # Add infectiousness reduction multiplier for all non-symptomatic infectious people.
    # These people are less infectious because of biology.
    non_sympt_adjust = Overwrite(clinical_params.non_sympt_infect_multiplier)
    clinical_strat.add_infectiousness_adjustments(
        Compartment.LATE_EXPOSED,
        {
            Clinical.NON_SYMPT: non_sympt_adjust,
            Clinical.SYMPT_NON_HOSPITAL: None,
            Clinical.SYMPT_ISOLATE: None,
            Clinical.HOSPITAL_NON_ICU: None,
            Clinical.ICU: None,
        },
    )
    clinical_strat.add_infectiousness_adjustments(
        Compartment.EARLY_ACTIVE,
        {
            Clinical.NON_SYMPT: non_sympt_adjust,
            Clinical.SYMPT_NON_HOSPITAL: None,
            Clinical.SYMPT_ISOLATE: None,
            Clinical.HOSPITAL_NON_ICU: None,
            Clinical.ICU: None,
        },
    )
    # Add infectiousness reduction for people who are late active and in isolation or hospital/icu.
    # These people are less infectious because of physical distancing/isolation/PPE precautions.
    late_infect_multiplier = clinical_params.late_infect_multiplier
    clinical_strat.add_infectiousness_adjustments(
        Compartment.LATE_ACTIVE,
        {
            Clinical.NON_SYMPT: non_sympt_adjust,
            Clinical.SYMPT_ISOLATE: Overwrite(late_infect_multiplier[Clinical.SYMPT_ISOLATE]),
            Clinical.SYMPT_NON_HOSPITAL: None,
            Clinical.HOSPITAL_NON_ICU: Overwrite(late_infect_multiplier[Clinical.HOSPITAL_NON_ICU]),
            Clinical.ICU: Overwrite(late_infect_multiplier[Clinical.ICU]),
        },
    )

    """
    Adjust infection death rates for hospital patients (ICU and non-ICU)
    """
    symptomatic_adjuster = params.clinical_stratification.props.symptomatic.multiplier
    hospital_adjuster = params.clinical_stratification.props.hospital.multiplier
    ifr_adjuster = params.infection_fatality.multiplier

    # Get all the adjustments in the same way as we will do if the immunity stratification is implemented
    entry_adjustments, death_adjs, progress_adjs, recovery_adjs, _, _ = get_all_adjs(
        clinical_params,
        country,
        pop,
        params.infection_fatality.props,
        params.sojourn,
        params.testing_to_detection,
        params.case_detection,
        ifr_adjuster,
        symptomatic_adjuster,
        hospital_adjuster,
    )

    # Assign all the adjustments to the model
    for agegroup in AGEGROUP_STRATA:
        source = {"agegroup": agegroup}
        clinical_strat.add_flow_adjustments(
            "infect_onset", entry_adjustments[agegroup], source_strata=source
        )
        clinical_strat.add_flow_adjustments(
            "infect_death", death_adjs[agegroup], source_strata=source
        )
        clinical_strat.add_flow_adjustments(
            "progress",
            progress_adjs,
            source_strata=source,
        )
        clinical_strat.add_flow_adjustments(
            "recovery",
            recovery_adjs[agegroup],
            source_strata=source,
        )

    return clinical_strat
コード例 #14
0
def _build_class_strat(params):
    strat = Stratification("classified", ["correctly", "incorrectly"],
                           [Compartment.DETECTED, Compartment.ON_TREATMENT])
    # Apply only to ds flows
    strat.add_flow_adjustments(
        "detection",
        {
            "correctly": Multiply(1.0),
            "incorrectly": Multiply(0.0)
        },
        source_strata={"strain": "ds"},
    )

    # Apply only to mdr flows
    strat.add_flow_adjustments(
        "detection",
        {
            "correctly": Multiply(params["frontline_xpert_prop"]),
            "incorrectly": Multiply(1.0 - params["frontline_xpert_prop"]),
        },
        source_strata={"strain": "mdr"},
    )

    # Apply only to mdr flows that have extra_pulmonary organ.
    strat.add_flow_adjustments(
        "detection",
        {
            "correctly": Multiply(0),
            "incorrectly": Multiply(1)
        },
        source_strata={
            "strain": "mdr",
            "organ": "extra_pulmonary"
        },
    )

    strat.add_flow_adjustments(
        "treatment_default",
        _adjust_all_multiply(
            params["treatment_default_rate_stratified"]["classified"]),
        source_strata={"strain": "mdr"},
    )
    strat.add_flow_adjustments(
        "spontaneous_recovery",
        _adjust_all_multiply(
            params["spontaneous_recovery_rate_stratified"]["classified"]),
    )

    strat.add_flow_adjustments(
        "failure_retreatment",
        _adjust_all_multiply(
            params["failure_retreatment_rate_stratified"]["classified"]),
    )
    return strat
コード例 #15
0
def test_create_stratification__with_flow_adjustments():
    strat = Stratification(name="location",
                           strata=["rural", "urban"],
                           compartments=["S", "I", "R"])
    assert strat.flow_adjustments == {}

    # Fail coz not all strata specified
    with pytest.raises(AssertionError):
        strat.add_flow_adjustments(
            flow_name="recovery",
            adjustments={"rural": Multiply(1.2)},
        )

    # Fail coz an incorrect strata specified
    with pytest.raises(AssertionError):
        strat.add_flow_adjustments(
            flow_name="recovery",
            adjustments={
                "rural": Multiply(1.2),
                "urban": Multiply(0.8),
                "alpine": Multiply(1.1),
            },
        )

    strat.add_flow_adjustments(
        flow_name="recovery",
        adjustments={
            "rural": Multiply(1.2),
            "urban": Multiply(0.8)
        },
    )

    assert len(strat.flow_adjustments["recovery"]) == 1
    adj, src, dst = strat.flow_adjustments["recovery"][0]
    assert adj["rural"]._is_equal(Multiply(1.2))
    assert adj["urban"]._is_equal(Multiply(0.8))
    assert not (src or dst)

    # Add another adjustment for the same flow.
    strat.add_flow_adjustments(
        flow_name="recovery",
        adjustments={
            "rural": Multiply(1.3),
            "urban": Multiply(0.9)
        },
        source_strata={"age": "10"},
        dest_strata={"work": "office"},
    )
    assert len(strat.flow_adjustments["recovery"]) == 2
    adj, src, dst = strat.flow_adjustments["recovery"][0]
    assert adj["rural"]._is_equal(Multiply(1.2))
    assert adj["urban"]._is_equal(Multiply(0.8))
    assert not (src or dst)
    adj, src, dst = strat.flow_adjustments["recovery"][1]
    assert adj["rural"]._is_equal(Multiply(1.3))
    assert adj["urban"]._is_equal(Multiply(0.9))
    assert src == {"age": "10"}
    assert dst == {"work": "office"}

    def urban_infection_adjustment(t):
        return 2 * t

    strat.add_flow_adjustments(
        flow_name="infection",
        adjustments={
            "rural": Multiply(urban_infection_adjustment),
            "urban": None,
        },
    )
    assert len(strat.flow_adjustments["infection"]) == 1
    adj, src, dst = strat.flow_adjustments["infection"][0]
    assert adj["rural"]._is_equal(Multiply(urban_infection_adjustment))
    assert adj["urban"] is None
    assert not (src or dst)
コード例 #16
0
ファイル: immunity.py プロジェクト: thecapitalistcycle/AuTuMN
def get_immunity_strat(params: Parameters) -> Stratification:
    immunity_strat = Stratification("immunity", IMMUNITY_STRATA, COMPARTMENTS)
    relative_severity_effect = 1.0

    # Everyone starts out unvaccinated
    immunity_strat.set_population_split({
        "unvaccinated": 1.0,
        "vaccinated": 0.0
    })

    if params.vaccination:

        # Apply vaccination effect against severe disease given infection
        relative_severity_effect -= params.vaccination.severity_efficacy

        # Apply vaccination effect against infection/transmission
        immunity_strat.add_flow_adjustments(
            "infection",
            {
                "vaccinated":
                Multiply(1.0 - params.vaccination.infection_efficacy),
                "unvaccinated": None,
            },
        )

        symptomatic_adjuster = (
            params.clinical_stratification.props.symptomatic.multiplier *
            relative_severity_effect)
        hospital_adjuster = (
            params.clinical_stratification.props.hospital.multiplier *
            relative_severity_effect)
        ifr_adjuster = params.infection_fatality.multiplier * relative_severity_effect

        # Get all the adjustments in the same way as we did for the clinical stratification
        entry_adjustments, death_adjs, progress_adjs, recovery_adjs, _, _ = get_all_adjs(
            params.clinical_stratification,
            params.country,
            params.population,
            params.infection_fatality.props,
            params.sojourn,
            params.testing_to_detection,
            params.case_detection,
            ifr_adjuster,
            symptomatic_adjuster,
            hospital_adjuster,
        )

        for i_age, agegroup in enumerate(AGEGROUP_STRATA):
            for clinical_stratum in CLINICAL_STRATA:
                relevant_strata = {
                    "agegroup": agegroup,
                    "clinical": clinical_stratum,
                }
                immunity_strat.add_flow_adjustments(
                    "infect_onset",
                    {
                        "unvaccinated":
                        None,
                        "vaccinated":
                        entry_adjustments[agegroup][clinical_stratum],
                    },
                    dest_strata=relevant_strata,  # Must be dest
                )
                immunity_strat.add_flow_adjustments(
                    "infect_death",
                    {
                        "unvaccinated": None,
                        "vaccinated": death_adjs[agegroup][clinical_stratum]
                    },
                    source_strata=relevant_strata,  # Must be source
                )
                immunity_strat.add_flow_adjustments(
                    "progress",
                    {
                        "unvaccinated": None,
                        "vaccinated": progress_adjs[clinical_stratum]
                    },
                    source_strata=
                    relevant_strata,  # Either source or dest or both
                )
                immunity_strat.add_flow_adjustments(
                    "recovery",
                    {
                        "unvaccinated": None,
                        "vaccinated": recovery_adjs[agegroup][clinical_stratum]
                    },
                    source_strata=relevant_strata,  # Must be source
                )

    return immunity_strat
コード例 #17
0
def test_get_flow_adjustments__with_strata_whitelist():
    # Latest matching flow adjustment should always win.
    strat = Stratification(name="location",
                           strata=["rural", "urban"],
                           compartments=["S", "I", "R"])
    strat.add_flow_adjustments("flow", {"rural": Multiply(1), "urban": None})
    strat.add_flow_adjustments("flow", {
        "rural": Multiply(3),
        "urban": Overwrite(2)
    })
    strat.add_flow_adjustments("flow", {
        "rural": Multiply(2),
        "urban": Overwrite(1)
    },
                               source_strata={"age": "20"})

    # No source strata
    entry_flow = EntryFlow("flow", Compartment("S"), 1)
    with pytest.raises(AssertionError):
        strat.get_flow_adjustment(entry_flow)

    other_flow = TransitionFlow("other", Compartment("S"), Compartment("I"), 1)
    assert strat.get_flow_adjustment(other_flow) is None

    trans_flow = TransitionFlow("flow", Compartment("S"), Compartment("I"), 1)
    exit_flow = ExitFlow("flow", Compartment("I"), 1)
    for flow in [trans_flow, exit_flow]:
        adj = strat.get_flow_adjustment(flow)
        assert adj["rural"]._is_equal(Multiply(3))
        assert adj["urban"]._is_equal(Overwrite(2))

    # Only flows with matching strata should get the adjustment
    strat = Stratification(name="location",
                           strata=["rural", "urban"],
                           compartments=["S", "I", "R"])
    strat.add_flow_adjustments("flow", {"rural": Multiply(1), "urban": None})
    strat.add_flow_adjustments("flow", {
        "rural": Multiply(3),
        "urban": Overwrite(2)
    })
    strat.add_flow_adjustments("flow", {
        "rural": Multiply(2),
        "urban": Overwrite(1)
    },
                               dest_strata={"age": "20"})

    # No dest strata
    exit_flow = ExitFlow("flow", Compartment("I"), 1)
    with pytest.raises(AssertionError):
        strat.get_flow_adjustment(exit_flow)

    # No matching dest strata
    other_flow = TransitionFlow("other", Compartment("S"), Compartment("I"), 1)
    other_flow_strat = TransitionFlow("other", Compartment("S"),
                                      Compartment("I", {"age": "20"}), 1)
    assert strat.get_flow_adjustment(other_flow) is None
    assert strat.get_flow_adjustment(other_flow_strat) is None

    # Flows without age 20 get the last match.
    trans_flow = TransitionFlow("flow", Compartment("S"), Compartment("I"), 1)
    entry_flow = EntryFlow("flow", Compartment("S"), 1)
    trans_flow_strat_wrong = TransitionFlow("flow", Compartment("S"),
                                            Compartment("I", {"age": "10"}), 1)
    entry_flow_strat_wrong = EntryFlow("flow", Compartment("S", {"age": "10"}),
                                       1)
    trans_flow_strat_wrong_2 = TransitionFlow("flow",
                                              Compartment("S", {"age": "20"}),
                                              Compartment("I"), 1)
    for flow in [
            trans_flow,
            entry_flow,
            trans_flow_strat_wrong,
            entry_flow_strat_wrong,
            trans_flow_strat_wrong_2,
    ]:
        adj = strat.get_flow_adjustment(flow)
        assert adj["rural"]._is_equal(Multiply(3))
        assert adj["urban"]._is_equal(Overwrite(2))

    trans_flow_strat = TransitionFlow("flow", Compartment("S"),
                                      Compartment("I", {"age": "20"}), 1)
    entry_flow_strat = EntryFlow("flow", Compartment("S", {"age": "20"}), 1)
    for flow in [trans_flow_strat, entry_flow_strat]:
        adj = strat.get_flow_adjustment(flow)
        assert adj["rural"]._is_equal(Multiply(2))
        assert adj["urban"]._is_equal(Overwrite(1))

    # The last created matching flow adjustment will win, also include both source and dest.
    strat = Stratification(name="location",
                           strata=["rural", "urban"],
                           compartments=["S", "I", "R"])
    strat.add_flow_adjustments("flow", {"rural": Multiply(1), "urban": None})
    strat.add_flow_adjustments(
        "flow",
        {
            "rural": Multiply(5),
            "urban": Overwrite(7)
        },
        source_strata={"age": "20"},
        dest_strata={
            "age": "30",
            "work": "home"
        },
    )
    strat.add_flow_adjustments(
        "flow",
        {
            "rural": Multiply(2),
            "urban": Overwrite(1)
        },
        source_strata={"age": "20"},
        dest_strata={"age": "30"},
    )
    strat.add_flow_adjustments("flow", {
        "rural": Multiply(3),
        "urban": Overwrite(2)
    })

    # Missing source strata
    trans_flow_strat_wrong = TransitionFlow(
        "flow", Compartment("S"),
        Compartment("I", {
            "age": "30",
            "work": "home"
        }), 1)
    # Missing dest strata
    trans_flow_strat_wrong_2 = TransitionFlow("flow",
                                              Compartment("S", {"age": "20"}),
                                              Compartment("I"), 1)
    # Incomplete dest strata - less specific still wins because of ordering.
    trans_flow_strat_wrong_3 = TransitionFlow("flow",
                                              Compartment("S", {"age": "20"}),
                                              Compartment("I", {"age": "30"}),
                                              1)
    for flow in [
            trans_flow_strat_wrong, trans_flow_strat_wrong_2,
            trans_flow_strat_wrong_3
    ]:
        adj = strat.get_flow_adjustment(flow)
        assert adj["rural"]._is_equal(Multiply(3))
        assert adj["urban"]._is_equal(Overwrite(2))

    # Match to the last created stratification
    trans_flow_strat = TransitionFlow(
        "flow", Compartment("S", {"age": "20"}),
        Compartment("I", {
            "age": "30",
            "work": "home"
        }), 1)
    for flow in [trans_flow_strat]:
        adj = strat.get_flow_adjustment(flow)
        assert adj["rural"]._is_equal(Multiply(3))
        assert adj["urban"]._is_equal(Overwrite(2))
コード例 #18
0
def test_stratify_entry_flows__with_explicit_adjustments():
    """
    Ensure entry flows are stratified correctly when  adjustments are requested.
    """
    model = CompartmentalModel(
        times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"]
    )
    model.add_importation_flow("imports", 10, "S")

    expected_flows = [ImportFlow("imports", C("S"), 10)]
    assert len(expected_flows) == len(model._flows)
    assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])

    strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"])
    strat.add_flow_adjustments("imports", {"urban": Multiply(0.9), "rural": None})
    model.stratify_with(strat)

    expected_flows = [
        ImportFlow(
            "imports",
            C("S", {"location": "urban"}),
            10,
            [Multiply(0.9)],
        ),
        ImportFlow(
            "imports",
            C("S", {"location": "rural"}),
            10,
            [],
        ),
    ]
    assert len(expected_flows) == len(model._flows)
    assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])

    strat = Stratification("age", ["young", "old"], ["S", "I", "R"])
    strat.add_flow_adjustments("imports", {"young": Multiply(0.8), "old": Overwrite(1)})
    model.stratify_with(strat)
    expected_flows = [
        ImportFlow(
            "imports",
            C("S", {"location": "urban", "age": "young"}),
            10,
            [Multiply(0.9), Multiply(0.8)],
        ),
        ImportFlow(
            "imports",
            C("S", {"location": "urban", "age": "old"}),
            10,
            [Multiply(0.9), Overwrite(1)],
        ),
        ImportFlow(
            "imports",
            C("S", {"location": "rural", "age": "young"}),
            10,
            [Multiply(0.8)],
        ),
        ImportFlow(
            "imports",
            C("S", {"location": "rural", "age": "old"}),
            10,
            [Overwrite(1)],
        ),
    ]
    assert len(expected_flows) == len(model._flows)
    assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])