コード例 #1
0
    def _to_xml(self):
        """
        Convert object to xml.
        Return:
            Element whose tag is "object" with appropriate sub-elements
            (id, category, bounds, and pose)
        """
        base_elem = ET.Element("element")

        id_elem = ET.SubElement(base_elem, "id")
        id_elem.text = self.id

        category_elem = ET.SubElement(base_elem, "category")
        category_elem.text = self.category

        if self.project_type == "meshes":
            compute_bbox_alg = ComputeBbox()
            bounds = compute_bbox_alg.from_meshes(
                self.meshes.primitive_meshes())
        elif self.project_type == "voxels":
            bounds = self.voxels.bounds()
        elif self.project_type == "bounding_box":
            bounds = self.bounds
        bounds_xml = bounds.to_xml()
        bounds_xml.tag = "bounds"
        base_elem.append(bounds_xml)

        base_elem.append(self.pose.to_xml())

        base_elem.append(self.symmetry.to_xml())

        score_elem = ET.SubElement(base_elem, "detectionScore")
        score_elem.text = str(self.score)

        return base_elem
コード例 #2
0
    def __init__(self, submission, ground_truth, settings=None):
        """
        Constructor.  Computes similarity between all elements in the
        submission and ground_truth and also computes
        data association caches.

        Inputs:
        submission (ProjectScene) - Submitted scene to be evaluated
        ground_truth (ProjectScene) - The ground truth scene
        settings (dict) - configuration for the evaluator.  See
        Evaluator.py for recognized keys and values.
        """

        # sample submission and GT and store in points field
        # also compute bounding box of each posed object
        for e in submission.elements.values():
            e.posed_points = sample_element(e, settings["density"])
            e.posed_bbox = ComputeBbox().from_point_cloud(
                e.posed_points[:, 0:3].T)
        for e in ground_truth.elements.values():
            e.posed_points = sample_element(e, settings["density"])
            e.posed_bbox = ComputeBbox().from_point_cloud(
                e.posed_points[:, 0:3].T)

        super(MeshEvaluator, self).__init__(submission, ground_truth, settings)
コード例 #3
0
    def test_from_mesh(self):
        """Make a mesh and verify the bounding box's corners are correct."""
        indices = np.array([0, 1, 2, 1, 3, 2, 2, 3, 4], dtype=np.uint32)
        vertices = np.column_stack(
            [
                Vector3f(0, 0, 0),
                Vector3f(1, 0, 0),
                Vector3f(0, 1, 0),
                Vector3f(1, 1, 0),
                Vector3f(1, 1, 1),
            ]
        )
        normals = np.column_stack([Vector3f(0, 0, 1)] * 5)
        self.assertEqual(vertices.shape, normals.shape)
        self.assertEqual(indices.shape, (9,))
        mesh = Mesh(indices, vertices, normals)

        box = ComputeBbox().from_mesh(mesh)
        corners = box.corners()
        corners_target = np.column_stack(
            [
                [0.0, 0.0, 1.0],
                [1.0, 0.0, 1.0],
                [1.0, 1.0, 1.0],
                [0.0, 1.0, 1.0],
                [0.0, 0.0, 0.0],
                [1.0, 0.0, 0.0],
                [1.0, 1.0, 0.0],
                [0.0, 1.0, 0.0],
            ]
        )
        np.testing.assert_array_equal(corners, corners_target)
コード例 #4
0
    def test_from_gltf_model(self):
        """Verify bounding box computed from a GltfModel."""
        object = GltfModel.example()

        box = ComputeBbox().from_gltf_object(object)
        np.testing.assert_array_equal(box.min_corner, Vector3(-1, -1, -1))
        np.testing.assert_array_equal(box.max_corner, Vector3(1, 1, 1))
コード例 #5
0
 def test_empty(self):
     """
     Test computing bbox for an empty point cloud.  This should produce a
     default bbox with corners at (0,0,0).
     """
     points = np.ndarray(shape=(3, 0))
     box = ComputeBbox().from_point_cloud(points)
     np.testing.assert_array_equal(box.min_corner, np.array([0, 0, 0]))
     np.testing.assert_array_equal(box.max_corner, np.array([0, 0, 0]))
コード例 #6
0
 def test_random_points(self):
     """ Make three random points and verify the bounding box's corners are
         correct
     """
     point1 = Vector3f(-1, -2, -3)
     point2 = Vector3f(0, 2, 1)
     point3 = Vector3f(1, 2, 3)
     points = np.column_stack([point1, point2, point3])
     box = ComputeBbox().from_point_cloud(points)
     corners = box.corners()
     corners_target = np.column_stack([
         [-1.0, -2.0, 3.0],
         [1.0, -2.0, 3.0],
         [1.0, 2.0, 3.0],
         [-1.0, 2.0, 3.0],
         [-1.0, -2.0, -3.0],
         [1.0, -2.0, -3.0],
         [1.0, 2.0, -3.0],
         [-1.0, 2.0, -3.0],
     ])
     np.testing.assert_array_equal(corners, corners_target)
コード例 #7
0
 def test_unit_cube(self):
     """ Make three points inside a unit cube and verify the bounding box's
         corners are correct
     """
     point1 = Vector3(1, 0, 0)
     point2 = Vector3(0, 1, 0)
     point3 = Vector3(0, 0, 1)
     points = np.column_stack([point1, point2, point3])
     box = ComputeBbox().from_point_cloud(points)
     corners = box.corners()
     corners_target = np.column_stack([
         [0.0, 0.0, 1.0],
         [1.0, 0.0, 1.0],
         [1.0, 1.0, 1.0],
         [0.0, 1.0, 1.0],
         [0.0, 0.0, 0.0],
         [1.0, 0.0, 0.0],
         [1.0, 1.0, 0.0],
         [0.0, 1.0, 0.0],
     ])
     np.testing.assert_array_equal(corners, corners_target)
コード例 #8
0
    def convert_element(self, element, target_type):
        """
        Convert <element> to <target_type> track.  Makes a copy of the element.

        Inputs:
        element (ProjectObject) - element to convert
        target_type (string) - destination project type

        Return
        new_element (ProjectObject) - converted element

        See above for allowed conversions.
        """
        if (element.project_type, target_type) not in self.allowed_conversions:
            raise ValueError("Invalid target_type ({}) for element with type \
                {}".format(target_type, element.project_type))

        source_type = element.project_type
        if target_type == "bounding_box":
            if source_type == "voxels":
                bounds = element.voxels.bounds()
            elif source_type == "meshes":
                bounds = ComputeBbox().from_gltf_object(element.meshes)
            else:
                raise ValueError(
                    "Invalid target type")  # this should not be possible
            new_element = ProjectObject.gen_bounding_box_object(
                id=element.id,
                bounds=bounds,
                pose=deepcopy(element.pose),
                category=element.category,
                symmetry=element.symmetry,
                score=element.score,
                evaluated=element.evaluated)

        elif target_type == "voxels":
            voxelizer = Voxelizer()
            voxels = voxelizer.run(element.meshes)
            new_element = ProjectObject.gen_voxels_object(
                id=element.id,
                bounds=voxels.bounds(),
                voxels=voxels,
                pose=deepcopy(element.pose),
                category=element.category,
                symmetry=element.symmetry,
                score=element.score,
                evaluated=element.evaluated)

        else:
            raise ValueError(
                "Invalid target type")  # this should not be possible

        return new_element
コード例 #9
0
    def __init__(self, submission, ground_truth, settings=None):
        """
        Constructor.  Computes similarity between all elements in the
        submission and ground_truth and also computes
        data association caches.

        Inputs:
        submission (ProjectScene) - Submitted scene to be evaluated
        ground_truth (ProjectScene) - The ground truth scene
        settings (dict) - configuration for the evaluator.  See
        Evaluator.py for recognized keys and values.
        """

        # extract posed bounds and save
        # (used for IoU calcs)
        for e in submission.elements.values():
            posed_corners = e.pose.transform_all_from(e.bounds.corners())
            e.posed_bbox = ComputeBbox().from_point_cloud(posed_corners)

        for e in ground_truth.elements.values():
            posed_corners = e.pose.transform_all_from(e.bounds.corners())
            e.posed_bbox = ComputeBbox().from_point_cloud(posed_corners)

        super(BBEvaluator, self).__init__(submission, ground_truth, settings)