コード例 #1
0
                          max_green=args.max_green,
                          max_depart_delay=0,
                          time_to_load_vehicles=120,
                          phases=[
                            traci.trafficlight.Phase(32, "GGrrrrGGrrrr"),  
                            traci.trafficlight.Phase(2, "yyrrrryyrrrr"),
                            traci.trafficlight.Phase(32, "rrGrrrrrGrrr"),   
                            traci.trafficlight.Phase(2, "rryrrrrryrrr"),
                            traci.trafficlight.Phase(32, "rrrGGrrrrGGr"),   
                            traci.trafficlight.Phase(2, "rrryyrrrryyr"),
                            traci.trafficlight.Phase(32, "rrrrrGrrrrrG"), 
                            traci.trafficlight.Phase(2, "rrrrryrrrrry")
                            ])

    for run in range(1, args.runs+1):
        obs = env.reset()
        agent = TrueOnlineSarsaLambda(env.observation_space, env.action_space, alpha=args.alpha, gamma=args.gamma, epsilon=args.epsilon, fourier_order=21)
        
        done = False
        if args.fixed:
            while not done:
                _, _, done, _ = env.step({})
        else:
            while not done:
                action = agent.act(agent.get_features(obs))

                next_obs, r, done, _ = env.step(action=action)

                agent.learn(state=obs, action=action, reward=r, next_state=next_obs, done=done)

                obs = next_obs
コード例 #2
0
            traci.trafficlight.Phase(32, "GGrrrrGGrrrr"),
            traci.trafficlight.Phase(2, "yyrrrryyrrrr"),
            traci.trafficlight.Phase(32, "rrGrrrrrGrrr"),
            traci.trafficlight.Phase(2, "rryrrrrryrrr"),
            traci.trafficlight.Phase(32, "rrrGGrrrrGGr"),
            traci.trafficlight.Phase(2, "rrryyrrrryyr"),
            traci.trafficlight.Phase(32, "rrrrrGrrrrrG"),
            traci.trafficlight.Phase(2, "rrrrryrrrrry")
        ])
    if args.reward == 'queue':
        env._compute_rewards = env._queue_average_reward
    else:
        env._compute_rewards = env._waiting_time_reward

    for run in range(1, args.runs + 1):
        initial_states = env.reset()
        ql_agents = {
            ts: QLAgent(starting_state=env.encode(initial_states[ts]),
                        state_space=env.observation_space,
                        action_space=env.action_space,
                        alpha=args.alpha,
                        gamma=args.gamma,
                        exploration_strategy=EpsilonGreedy(
                            initial_epsilon=args.epsilon,
                            min_epsilon=args.min_epsilon,
                            decay=args.decay))
            for ts in env.ts_ids
        }

        done = {'__all__': False}
        infos = []