コード例 #1
0
 def build_summary(self, input_df, ndarray_data):
     cols = [f for f in input_df.columns.tolist() if f.startswith("f:")]
     X = input_df[cols].values
     input_df["rank"] = (X / X.max(axis=0)).mean(axis=1)
     output_df = input_df.sort(["rank"], ascending=False)
     return Summary(output_df)
コード例 #2
0
ファイル: _submodular.py プロジェクト: newsbias/sumpy
 def build_summary(self, input_df, ndarray_data):
     output_df = input_df[input_df["f:monotone-submod"] == 1]
     output_df = output_df.sort_values(["doc id", "sent id"], ascending=True)
     return Summary(output_df)   
コード例 #3
0
ファイル: _submodular.py プロジェクト: newsbias/sumpy
 def build_summary(self, input_df, ndarray_data):
     output_df = input_df[input_df["f:submodular-mmr"].isnull() == False]
     output_df = output_df.sort_values(["doc id", "sent id"], ascending=True)
     print(output_df)
     print(output_df['sent text'].apply(len))
     return Summary(output_df)
コード例 #4
0
ファイル: _baseline.py プロジェクト: newsbias/sumpy
 def build_summary(self, input_df, ndarray_data):
     output_df = input_df.sort_values(["f:mmr"], ascending=False)
     return Summary(output_df)
コード例 #5
0
ファイル: _baseline.py プロジェクト: newsbias/sumpy
 def build_summary(self, input_df, ndarray_data):
     output_df = input_df[input_df[u"f:lede"] == 1].sort_values(
         ["doc id"], ascending=True)
     return Summary(output_df)
コード例 #6
0
ファイル: _graph.py プロジェクト: zggl/sumpy
 def build_summary(self, input_df, ndarray_data):
     output_df = input_df.sort(["f:lexrank"], ascending=False)
     return Summary(output_df)