def execute_sql_statements( query_id, rendered_query, return_results=True, store_results=False, user_name=None, session=None, start_time=None, expand_data=False, ): # pylint: disable=too-many-arguments, too-many-locals, too-many-statements """Executes the sql query returns the results.""" if store_results and start_time: # only asynchronous queries stats_logger.timing("sqllab.query.time_pending", now_as_float() - start_time) query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() if database.allow_run_async and not results_backend: raise SqlLabException("Results backend isn't configured.") # Breaking down into multiple statements parsed_query = ParsedQuery(rendered_query) statements = parsed_query.get_statements() logger.info(f"Query {query_id}: Executing {len(statements)} statement(s)") logger.info(f"Query {query_id}: Set query to 'running'") query.status = QueryStatus.RUNNING query.start_running_time = now_as_float() session.commit() engine = database.get_sqla_engine( schema=query.schema, nullpool=True, user_name=user_name, source=sources.get("sql_lab", None), ) # Sharing a single connection and cursor across the # execution of all statements (if many) with closing(engine.raw_connection()) as conn: with closing(conn.cursor()) as cursor: statement_count = len(statements) for i, statement in enumerate(statements): # Check if stopped query = get_query(query_id, session) if query.status == QueryStatus.STOPPED: return None # Run statement msg = f"Running statement {i+1} out of {statement_count}" logger.info(f"Query {query_id}: {msg}") query.set_extra_json_key("progress", msg) session.commit() try: cdf = execute_sql_statement(statement, query, user_name, session, cursor) except Exception as e: # pylint: disable=broad-except msg = str(e) if statement_count > 1: msg = f"[Statement {i+1} out of {statement_count}] " + msg payload = handle_query_error(msg, query, session, payload) return payload # Success, updating the query entry in database query.rows = cdf.size query.progress = 100 query.set_extra_json_key("progress", None) if query.select_as_cta: query.select_sql = database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False, ) query.end_time = now_as_float() data, selected_columns, all_columns, expanded_columns = _serialize_and_expand_data( cdf, db_engine_spec, store_results and results_backend_use_msgpack, expand_data) payload.update({ "status": QueryStatus.SUCCESS, "data": data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query.to_dict(), }) payload["query"]["state"] = QueryStatus.SUCCESS if store_results and results_backend: key = str(uuid.uuid4()) logger.info( f"Query {query_id}: Storing results in results backend, key: {key}" ) with stats_timing("sqllab.query.results_backend_write", stats_logger): with stats_timing( "sqllab.query.results_backend_write_serialization", stats_logger): serialized_payload = _serialize_payload( payload, results_backend_use_msgpack) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config["CACHE_DEFAULT_TIMEOUT"] compressed = zlib_compress(serialized_payload) logger.debug( f"*** serialized payload size: {getsizeof(serialized_payload)}" ) logger.debug( f"*** compressed payload size: {getsizeof(compressed)}") results_backend.set(key, compressed, cache_timeout) query.results_key = key query.status = QueryStatus.SUCCESS session.commit() if return_results: return payload return None
def get_sql_results(self, query_id, return_results=True, store_results=False): """Executes the sql query returns the results.""" if not self.request.called_directly: engine = sqlalchemy.create_engine( app.config.get('SQLALCHEMY_DATABASE_URI'), poolclass=NullPool) session_class = sessionmaker() session_class.configure(bind=engine) session = session_class() else: session = db.session() session.commit() # HACK try: query = session.query(models.Query).filter_by(id=query_id).one() except Exception as e: logging.error("Query with id `{}` could not be retrieved".format(query_id)) logging.error("Sleeping for a sec and retrying...") # Nasty hack to get around a race condition where the worker # cannot find the query it's supposed to run sleep(1) query = session.query(models.Query).filter_by(id=query_id).one() database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() def handle_error(msg): """Local method handling error while processing the SQL""" query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() raise Exception(query.error_message) if store_results and not results_backend: handle_error("Results backend isn't configured.") # Limit enforced only for retrieving the data, not for the CTA queries. superset_query = SupersetQuery(query.sql) executed_sql = superset_query.stripped() if not superset_query.is_select() and not database.allow_dml: handle_error( "Only `SELECT` statements are allowed against this database") if query.select_as_cta: if not superset_query.is_select(): handle_error( "Only `SELECT` statements can be used with the CREATE TABLE " "feature.") if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) executed_sql = superset_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True elif ( query.limit and superset_query.is_select() and db_engine_spec.limit_method == LimitMethod.WRAP_SQL): executed_sql = database.wrap_sql_limit(executed_sql, query.limit) query.limit_used = True try: template_processor = get_template_processor( database=database, query=query) executed_sql = template_processor.process_template(executed_sql) executed_sql = db_engine_spec.sql_preprocessor(executed_sql) except Exception as e: logging.exception(e) msg = "Template rendering failed: " + utils.error_msg_from_exception(e) handle_error(msg) query.executed_sql = executed_sql query.status = QueryStatus.RUNNING query.start_running_time = utils.now_as_float() session.merge(query) session.commit() logging.info("Set query to 'running'") engine = database.get_sqla_engine(schema=query.schema) conn = engine.raw_connection() cursor = conn.cursor() logging.info("Running query: \n{}".format(executed_sql)) try: logging.info(query.executed_sql) cursor.execute( query.executed_sql, **db_engine_spec.cursor_execute_kwargs) except Exception as e: logging.exception(e) conn.close() handle_error(db_engine_spec.extract_error_message(e)) try: logging.info("Handling cursor") db_engine_spec.handle_cursor(cursor, query, session) logging.info("Fetching data: {}".format(query.to_dict())) data = db_engine_spec.fetch_data(cursor, query.limit) except Exception as e: logging.exception(e) conn.close() handle_error(db_engine_spec.extract_error_message(e)) conn.commit() conn.close() if query.status == utils.QueryStatus.STOPPED: return json.dumps({ 'query_id': query.id, 'status': query.status, 'query': query.to_dict(), }, default=utils.json_iso_dttm_ser) column_names = ( [col[0] for col in cursor.description] if cursor.description else []) column_names = dedup(column_names) cdf = dataframe.SupersetDataFrame(pd.DataFrame( list(data), columns=column_names)) query.rows = cdf.size query.progress = 100 query.status = QueryStatus.SUCCESS if query.select_as_cta: query.select_sql = '{}'.format(database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema )) query.end_time = utils.now_as_float() session.merge(query) session.flush() payload = { 'query_id': query.id, 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), } payload = json.dumps(payload, default=utils.json_iso_dttm_ser) if store_results: key = '{}'.format(uuid.uuid4()) logging.info("Storing results in results backend, key: {}".format(key)) results_backend.set(key, zlib.compress(payload)) query.results_key = key session.merge(query) session.commit() if return_results: return payload
def execute_sql_statements( # pylint: disable=too-many-arguments, too-many-locals, too-many-statements query_id: int, rendered_query: str, return_results: bool, store_results: bool, user_name: Optional[str], session: Session, start_time: Optional[float], expand_data: bool, log_params: Optional[Dict[str, Any]], ) -> Optional[Dict[str, Any]]: """Executes the sql query returns the results.""" if store_results and start_time: # only asynchronous queries stats_logger.timing("sqllab.query.time_pending", now_as_float() - start_time) query = get_query(query_id, session) payload: Dict[str, Any] = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() if database.allow_run_async and not results_backend: raise SqlLabException("Results backend isn't configured.") # Breaking down into multiple statements parsed_query = ParsedQuery(rendered_query) statements = parsed_query.get_statements() logger.info("Query %s: Executing %i statement(s)", str(query_id), len(statements)) logger.info("Query %s: Set query to 'running'", str(query_id)) query.status = QueryStatus.RUNNING query.start_running_time = now_as_float() session.commit() engine = database.get_sqla_engine( schema=query.schema, nullpool=True, user_name=user_name, source=QuerySource.SQL_LAB, ) # Sharing a single connection and cursor across the # execution of all statements (if many) with closing(engine.raw_connection()) as conn: with closing(conn.cursor()) as cursor: statement_count = len(statements) for i, statement in enumerate(statements): # Check if stopped query = get_query(query_id, session) if query.status == QueryStatus.STOPPED: return None # Run statement msg = f"Running statement {i+1} out of {statement_count}" logger.info("Query %s: %s", str(query_id), msg) query.set_extra_json_key("progress", msg) session.commit() try: result_set = execute_sql_statement(statement, query, user_name, session, cursor, log_params) except Exception as ex: # pylint: disable=broad-except msg = str(ex) if statement_count > 1: msg = f"[Statement {i+1} out of {statement_count}] " + msg payload = handle_query_error(msg, query, session, payload) return payload # Commit the connection so CTA queries will create the table. conn.commit() # Success, updating the query entry in database query.rows = result_set.size query.progress = 100 query.set_extra_json_key("progress", None) if query.select_as_cta: query.select_sql = database.select_star( query.tmp_table_name, schema=query.tmp_schema_name, limit=query.limit, show_cols=False, latest_partition=False, ) query.end_time = now_as_float() use_arrow_data = store_results and cast(bool, results_backend_use_msgpack) data, selected_columns, all_columns, expanded_columns = _serialize_and_expand_data( result_set, db_engine_spec, use_arrow_data, expand_data) # TODO: data should be saved separately from metadata (likely in Parquet) payload.update({ "status": QueryStatus.SUCCESS, "data": data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query.to_dict(), }) payload["query"]["state"] = QueryStatus.SUCCESS if store_results and results_backend: key = str(uuid.uuid4()) logger.info("Query %s: Storing results in results backend, key: %s", str(query_id), key) with stats_timing("sqllab.query.results_backend_write", stats_logger): with stats_timing( "sqllab.query.results_backend_write_serialization", stats_logger): serialized_payload = _serialize_payload( payload, cast(bool, results_backend_use_msgpack)) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config["CACHE_DEFAULT_TIMEOUT"] compressed = zlib_compress(serialized_payload) logger.debug("*** serialized payload size: %i", getsizeof(serialized_payload)) logger.debug("*** compressed payload size: %i", getsizeof(compressed)) results_backend.set(key, compressed, cache_timeout) query.results_key = key query.status = QueryStatus.SUCCESS session.commit() if return_results: # since we're returning results we need to create non-arrow data if use_arrow_data: ( data, selected_columns, all_columns, expanded_columns, ) = _serialize_and_expand_data(result_set, db_engine_spec, False, expand_data) payload.update({ "data": data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, }) return payload return None
def execute_sql( ctask, query_id, rendered_query, return_results=True, store_results=False, user_name=None, session=None, start_time=None, ): """Executes the sql query returns the results.""" if store_results and start_time: # only asynchronous queries stats_logger.timing( 'sqllab.query.time_pending', now_as_float() - start_time) query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() def handle_error(msg): """Local method handling error while processing the SQL""" troubleshooting_link = config['TROUBLESHOOTING_LINK'] query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() payload.update({ 'status': query.status, 'error': msg, }) if troubleshooting_link: payload['link'] = troubleshooting_link return payload if store_results and not results_backend: return handle_error("Results backend isn't configured.") # Limit enforced only for retrieving the data, not for the CTA queries. superset_query = SupersetQuery(rendered_query) executed_sql = superset_query.stripped() SQL_MAX_ROWS = app.config.get('SQL_MAX_ROW') if not superset_query.is_readonly() and not database.allow_dml: return handle_error( 'Only `SELECT` statements are allowed against this database') if query.select_as_cta: if not superset_query.is_select(): return handle_error( 'Only `SELECT` statements can be used with the CREATE TABLE ' 'feature.') if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) executed_sql = superset_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True if (superset_query.is_select() and SQL_MAX_ROWS and (not query.limit or query.limit > SQL_MAX_ROWS)): query.limit = SQL_MAX_ROWS executed_sql = database.apply_limit_to_sql(executed_sql, query.limit) # Hook to allow environment-specific mutation (usually comments) to the SQL SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: executed_sql = SQL_QUERY_MUTATOR( executed_sql, user_name, security_manager, database) query.executed_sql = executed_sql query.status = QueryStatus.RUNNING query.start_running_time = now_as_float() session.merge(query) session.commit() logging.info("Set query to 'running'") conn = None try: engine = database.get_sqla_engine( schema=query.schema, nullpool=True, user_name=user_name, ) conn = engine.raw_connection() cursor = conn.cursor() logging.info('Running query: \n{}'.format(executed_sql)) logging.info(query.executed_sql) query_start_time = now_as_float() db_engine_spec.execute(cursor, query.executed_sql, async_=True) logging.info('Handling cursor') db_engine_spec.handle_cursor(cursor, query, session) logging.info('Fetching data: {}'.format(query.to_dict())) stats_logger.timing( 'sqllab.query.time_executing_query', now_as_float() - query_start_time) fetching_start_time = now_as_float() data = db_engine_spec.fetch_data(cursor, query.limit) stats_logger.timing( 'sqllab.query.time_fetching_results', now_as_float() - fetching_start_time) except SoftTimeLimitExceeded as e: logging.exception(e) if conn is not None: conn.close() return handle_error( "SQL Lab timeout. This environment's policy is to kill queries " 'after {} seconds.'.format(SQLLAB_TIMEOUT)) except Exception as e: logging.exception(e) if conn is not None: conn.close() return handle_error(db_engine_spec.extract_error_message(e)) logging.info('Fetching cursor description') cursor_description = cursor.description if conn is not None: conn.commit() conn.close() if query.status == QueryStatus.STOPPED: return handle_error('The query has been stopped') cdf = dataframe.SupersetDataFrame(data, cursor_description, db_engine_spec) query.rows = cdf.size query.progress = 100 query.status = QueryStatus.SUCCESS if query.select_as_cta: query.select_sql = '{}'.format( database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False)) query.end_time = now_as_float() session.merge(query) session.flush() payload.update({ 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), }) if store_results: key = '{}'.format(uuid.uuid4()) logging.info('Storing results in results backend, key: {}'.format(key)) write_to_results_backend_start = now_as_float() json_payload = json.dumps( payload, default=json_iso_dttm_ser, ignore_nan=True) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config.get('CACHE_DEFAULT_TIMEOUT', 0) results_backend.set(key, zlib_compress(json_payload), cache_timeout) query.results_key = key stats_logger.timing( 'sqllab.query.results_backend_write', now_as_float() - write_to_results_backend_start) session.merge(query) session.commit() if return_results: return payload
def execute_sql_statements( # pylint: disable=too-many-arguments, too-many-locals, too-many-statements, too-many-branches query_id: int, rendered_query: str, return_results: bool, store_results: bool, user_name: Optional[str], session: Session, start_time: Optional[float], expand_data: bool, log_params: Optional[Dict[str, Any]], ) -> Optional[Dict[str, Any]]: """Executes the sql query returns the results.""" if store_results and start_time: # only asynchronous queries stats_logger.timing("sqllab.query.time_pending", now_as_float() - start_time) query = get_query(query_id, session) payload: Dict[str, Any] = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() if database.allow_run_async and not results_backend: raise SupersetErrorException( SupersetError( message=__("Results backend is not configured."), error_type=SupersetErrorType.RESULTS_BACKEND_NOT_CONFIGURED_ERROR, level=ErrorLevel.ERROR, ) ) # Breaking down into multiple statements parsed_query = ParsedQuery(rendered_query, strip_comments=True) if not db_engine_spec.run_multiple_statements_as_one: statements = parsed_query.get_statements() logger.info( "Query %s: Executing %i statement(s)", str(query_id), len(statements) ) else: statements = [rendered_query] logger.info("Query %s: Executing query as a single statement", str(query_id)) logger.info("Query %s: Set query to 'running'", str(query_id)) query.status = QueryStatus.RUNNING query.start_running_time = now_as_float() session.commit() # Should we create a table or view from the select? if ( query.select_as_cta and query.ctas_method == CtasMethod.TABLE and not parsed_query.is_valid_ctas() ): raise SupersetErrorException( SupersetError( message=__( "CTAS (create table as select) can only be run with a query where " "the last statement is a SELECT. Please make sure your query has " "a SELECT as its last statement. Then, try running your query " "again." ), error_type=SupersetErrorType.INVALID_CTAS_QUERY_ERROR, level=ErrorLevel.ERROR, ) ) if ( query.select_as_cta and query.ctas_method == CtasMethod.VIEW and not parsed_query.is_valid_cvas() ): raise SupersetErrorException( SupersetError( message=__( "CVAS (create view as select) can only be run with a query with " "a single SELECT statement. Please make sure your query has only " "a SELECT statement. Then, try running your query again." ), error_type=SupersetErrorType.INVALID_CVAS_QUERY_ERROR, level=ErrorLevel.ERROR, ) ) engine = database.get_sqla_engine( schema=query.schema, nullpool=True, user_name=user_name, source=QuerySource.SQL_LAB, ) # Sharing a single connection and cursor across the # execution of all statements (if many) with closing(engine.raw_connection()) as conn: # closing the connection closes the cursor as well cursor = conn.cursor() statement_count = len(statements) for i, statement in enumerate(statements): # Check if stopped query = get_query(query_id, session) if query.status == QueryStatus.STOPPED: return None # For CTAS we create the table only on the last statement apply_ctas = query.select_as_cta and ( query.ctas_method == CtasMethod.VIEW or (query.ctas_method == CtasMethod.TABLE and i == len(statements) - 1) ) # Run statement msg = f"Running statement {i+1} out of {statement_count}" logger.info("Query %s: %s", str(query_id), msg) query.set_extra_json_key("progress", msg) session.commit() try: result_set = execute_sql_statement( statement, query, user_name, session, cursor, log_params, apply_ctas, ) except Exception as ex: # pylint: disable=broad-except msg = str(ex) prefix_message = ( f"[Statement {i+1} out of {statement_count}]" if statement_count > 1 else "" ) payload = handle_query_error( ex, query, session, payload, prefix_message ) return payload # Commit the connection so CTA queries will create the table. conn.commit() # Success, updating the query entry in database query.rows = result_set.size query.progress = 100 query.set_extra_json_key("progress", None) if query.select_as_cta: query.select_sql = database.select_star( query.tmp_table_name, schema=query.tmp_schema_name, limit=query.limit, show_cols=False, latest_partition=False, ) query.end_time = now_as_float() use_arrow_data = store_results and cast(bool, results_backend_use_msgpack) data, selected_columns, all_columns, expanded_columns = _serialize_and_expand_data( result_set, db_engine_spec, use_arrow_data, expand_data ) # TODO: data should be saved separately from metadata (likely in Parquet) payload.update( { "status": QueryStatus.SUCCESS, "data": data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query.to_dict(), } ) payload["query"]["state"] = QueryStatus.SUCCESS if store_results and results_backend: key = str(uuid.uuid4()) logger.info( "Query %s: Storing results in results backend, key: %s", str(query_id), key ) with stats_timing("sqllab.query.results_backend_write", stats_logger): with stats_timing( "sqllab.query.results_backend_write_serialization", stats_logger ): serialized_payload = _serialize_payload( payload, cast(bool, results_backend_use_msgpack) ) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config["CACHE_DEFAULT_TIMEOUT"] compressed = zlib_compress(serialized_payload) logger.debug( "*** serialized payload size: %i", getsizeof(serialized_payload) ) logger.debug("*** compressed payload size: %i", getsizeof(compressed)) results_backend.set(key, compressed, cache_timeout) query.results_key = key query.status = QueryStatus.SUCCESS session.commit() if return_results: # since we're returning results we need to create non-arrow data if use_arrow_data: ( data, selected_columns, all_columns, expanded_columns, ) = _serialize_and_expand_data( result_set, db_engine_spec, False, expand_data ) payload.update( { "data": data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, } ) return payload return None
def get_sql_results(self, query_id, return_results=True, store_results=False): """Executes the sql query returns the results.""" if not self.request.called_directly: engine = sqlalchemy.create_engine( app.config.get('SQLALCHEMY_DATABASE_URI'), poolclass=NullPool) session_class = sessionmaker() session_class.configure(bind=engine) session = session_class() else: session = db.session() session.commit() # HACK query = session.query(models.Query).filter_by(id=query_id).one() database = query.database db_engine_spec = database.db_engine_spec def handle_error(msg): """Local method handling error while processing the SQL""" query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() raise Exception(query.error_message) if store_results and not results_backend: handle_error("Results backend isn't configured.") # Limit enforced only for retrieving the data, not for the CTA queries. superset_query = SupersetQuery(query.sql) executed_sql = superset_query.stripped() if not superset_query.is_select() and not database.allow_dml: handle_error( "Only `SELECT` statements are allowed against this database") if query.select_as_cta: if not superset_query.is_select(): handle_error( "Only `SELECT` statements can be used with the CREATE TABLE " "feature.") if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) executed_sql = superset_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True elif ( query.limit and superset_query.is_select() and db_engine_spec.limit_method == LimitMethod.WRAP_SQL): executed_sql = database.wrap_sql_limit(executed_sql, query.limit) query.limit_used = True engine = database.get_sqla_engine(schema=query.schema) try: template_processor = get_template_processor( database=database, query=query) executed_sql = template_processor.process_template(executed_sql) executed_sql = db_engine_spec.sql_preprocessor(executed_sql) except Exception as e: logging.exception(e) msg = "Template rendering failed: " + utils.error_msg_from_exception(e) handle_error(msg) query.executed_sql = executed_sql logging.info("Running query: \n{}".format(executed_sql)) try: result_proxy = engine.execute(query.executed_sql, schema=query.schema) except Exception as e: logging.exception(e) handle_error(db_engine_spec.extract_error_message(e)) cursor = result_proxy.cursor query.status = QueryStatus.RUNNING session.flush() db_engine_spec.handle_cursor(cursor, query, session) cdf = None if result_proxy.cursor: column_names = [col[0] for col in result_proxy.cursor.description] column_names = dedup(column_names) if db_engine_spec.limit_method == LimitMethod.FETCH_MANY: data = result_proxy.fetchmany(query.limit) else: data = result_proxy.fetchall() cdf = dataframe.SupersetDataFrame( pd.DataFrame(data, columns=column_names)) query.rows = result_proxy.rowcount query.progress = 100 query.status = QueryStatus.SUCCESS if query.rows == -1 and cdf: # Presto doesn't provide result_proxy.row_count query.rows = cdf.size if query.select_as_cta: query.select_sql = '{}'.format(database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema )) query.end_time = utils.now_as_float() session.flush() payload = { 'query_id': query.id, 'status': query.status, 'data': [], } payload['data'] = cdf.data if cdf else [] payload['columns'] = cdf.columns_dict if cdf else [] payload['query'] = query.to_dict() payload = json.dumps(payload, default=utils.json_iso_dttm_ser) if store_results: key = '{}'.format(uuid.uuid4()) logging.info("Storing results in results backend, key: {}".format(key)) results_backend.set(key, zlib.compress(payload)) query.results_key = key session.flush() session.commit() if return_results: return payload
def execute_sql( ctask, query_id, return_results=True, store_results=False, user_name=None, template_params=None, ): """Executes the sql query returns the results.""" session = get_session(not ctask.request.called_directly) query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() def handle_error(msg): """Local method handling error while processing the SQL""" troubleshooting_link = config['TROUBLESHOOTING_LINK'] msg = 'Error: {}. You can find common superset errors and their \ resolutions at: {}' .format(msg, troubleshooting_link) \ if troubleshooting_link else msg query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() payload.update({ 'status': query.status, 'error': msg, }) return payload if store_results and not results_backend: return handle_error("Results backend isn't configured.") try: template_processor = get_template_processor(database=database, query=query) tp = template_params or {} rendered_query = template_processor.process_template(query.sql, **tp) except Exception as e: logging.exception(e) msg = 'Template rendering failed: ' + utils.error_msg_from_exception(e) return handle_error(msg) # Limit enforced only for retrieving the data, not for the CTA queries. superset_query = SupersetQuery(rendered_query) executed_sql = superset_query.stripped() if not superset_query.is_select() and not database.allow_dml: return handle_error( 'Only `SELECT` statements are allowed against this database') if query.select_as_cta: if not superset_query.is_select(): return handle_error( 'Only `SELECT` statements can be used with the CREATE TABLE ' 'feature.') if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) executed_sql = superset_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True elif (query.limit and superset_query.is_select() and db_engine_spec.limit_method == LimitMethod.WRAP_SQL): executed_sql = database.wrap_sql_limit(executed_sql, query.limit) query.limit_used = True # Hook to allow environment-specific mutation (usually comments) to the SQL SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: executed_sql = SQL_QUERY_MUTATOR(executed_sql, user_name, security_manager, database) query.executed_sql = executed_sql query.status = QueryStatus.RUNNING query.start_running_time = utils.now_as_float() session.merge(query) session.commit() logging.info("Set query to 'running'") conn = None try: engine = database.get_sqla_engine( schema=query.schema, nullpool=not ctask.request.called_directly, user_name=user_name, ) conn = engine.raw_connection() cursor = conn.cursor() logging.info('Running query: \n{}'.format(executed_sql)) logging.info(query.executed_sql) cursor.execute(query.executed_sql, **db_engine_spec.cursor_execute_kwargs) logging.info('Handling cursor') db_engine_spec.handle_cursor(cursor, query, session) logging.info('Fetching data: {}'.format(query.to_dict())) data = db_engine_spec.fetch_data(cursor, query.limit) except SoftTimeLimitExceeded as e: logging.exception(e) if conn is not None: conn.close() return handle_error( "SQL Lab timeout. This environment's policy is to kill queries " 'after {} seconds.'.format(SQLLAB_TIMEOUT)) except Exception as e: logging.exception(e) if conn is not None: conn.close() return handle_error(db_engine_spec.extract_error_message(e)) logging.info('Fetching cursor description') cursor_description = cursor.description if conn is not None: conn.commit() conn.close() if query.status == utils.QueryStatus.STOPPED: return json.dumps( { 'query_id': query.id, 'status': query.status, 'query': query.to_dict(), }, default=utils.json_iso_dttm_ser) cdf = convert_results_to_df(cursor_description, data) query.rows = cdf.size query.progress = 100 query.status = QueryStatus.SUCCESS if query.select_as_cta: query.select_sql = '{}'.format( database.select_star(query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False)) query.end_time = utils.now_as_float() session.merge(query) session.flush() payload.update({ 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), }) if store_results: key = '{}'.format(uuid.uuid4()) logging.info('Storing results in results backend, key: {}'.format(key)) json_payload = json.dumps(payload, default=utils.json_iso_dttm_ser) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config.get('CACHE_DEFAULT_TIMEOUT', 0) results_backend.set(key, utils.zlib_compress(json_payload), cache_timeout) query.results_key = key query.end_result_backend_time = utils.now_as_float() session.merge(query) session.commit() if return_results: return payload
def execute_sql(ctask, query_id, return_results=True, store_results=False, user_name=None): """Executes the sql query returns the results.""" session = get_session(not ctask.request.called_directly) query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() def handle_error(msg): """Local method handling error while processing the SQL""" query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() payload.update({ 'status': query.status, 'error': msg, }) return payload if store_results and not results_backend: return handle_error("Results backend isn't configured.") # Limit enforced only for retrieving the data, not for the CTA queries. superset_query = SupersetQuery(query.sql) executed_sql = superset_query.stripped() if not superset_query.is_select() and not database.allow_dml: return handle_error( "Only `SELECT` statements are allowed against this database") if query.select_as_cta: if not superset_query.is_select(): return handle_error( "Only `SELECT` statements can be used with the CREATE TABLE " "feature.") return if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) executed_sql = superset_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True elif (query.limit and superset_query.is_select() and db_engine_spec.limit_method == LimitMethod.WRAP_SQL): executed_sql = database.wrap_sql_limit(executed_sql, query.limit) query.limit_used = True try: template_processor = get_template_processor(database=database, query=query) executed_sql = template_processor.process_template(executed_sql) except Exception as e: logging.exception(e) msg = "Template rendering failed: " + utils.error_msg_from_exception(e) return handle_error(msg) query.executed_sql = executed_sql query.status = QueryStatus.RUNNING query.start_running_time = utils.now_as_float() session.merge(query) session.commit() logging.info("Set query to 'running'") engine = database.get_sqla_engine( schema=query.schema, nullpool=not ctask.request.called_directly, user_name=user_name) try: engine = database.get_sqla_engine( schema=query.schema, nullpool=not ctask.request.called_directly, user_name=user_name) conn = engine.raw_connection() cursor = conn.cursor() logging.info("Running query: \n{}".format(executed_sql)) logging.info(query.executed_sql) cursor.execute(query.executed_sql, **db_engine_spec.cursor_execute_kwargs) logging.info("Handling cursor") db_engine_spec.handle_cursor(cursor, query, session) logging.info("Fetching data: {}".format(query.to_dict())) data = db_engine_spec.fetch_data(cursor, query.limit) except SoftTimeLimitExceeded as e: logging.exception(e) conn.close() return handle_error( "SQL Lab timeout. This environment's policy is to kill queries " "after {} seconds.".format(SQLLAB_TIMEOUT)) except Exception as e: logging.exception(e) conn.close() return handle_error(db_engine_spec.extract_error_message(e)) logging.info("Fetching cursor description") cursor_description = cursor.description conn.commit() conn.close() if query.status == utils.QueryStatus.STOPPED: return json.dumps( { 'query_id': query.id, 'status': query.status, 'query': query.to_dict(), }, default=utils.json_iso_dttm_ser) column_names = ([col[0] for col in cursor_description] if cursor_description else []) column_names = dedup(column_names) cdf = dataframe.SupersetDataFrame( pd.DataFrame(list(data), columns=column_names)) query.rows = cdf.size query.progress = 100 query.status = QueryStatus.SUCCESS if query.select_as_cta: query.select_sql = '{}'.format( database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False, )) query.end_time = utils.now_as_float() session.merge(query) session.flush() payload.update({ 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), }) if store_results: key = '{}'.format(uuid.uuid4()) logging.info("Storing results in results backend, key: {}".format(key)) json_payload = json.dumps(payload, default=utils.json_iso_dttm_ser) results_backend.set(key, utils.zlib_compress(json_payload)) query.results_key = key query.end_result_backend_time = utils.now_as_float() session.merge(query) session.commit() if return_results: return payload
def execute_norm(ctask, query_id, rendered_query, return_results=True, store_results=False, user_name=None, session=None): """ Executes the norm script and returns the results""" if rendered_query.lower().find('select') >= 0: return execute_sql(ctask, query_id, rendered_query, return_results, store_results, user_name, session) query = get_query(query_id, session) payload = dict(query_id=query_id) def handle_error(msg): """Local method handling error while processing the SQL""" troubleshooting_link = config['TROUBLESHOOTING_LINK'] query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() payload.update({ 'status': query.status, 'error': msg, }) if troubleshooting_link: payload['link'] = troubleshooting_link return payload if store_results and not results_backend: return handle_error("Results backend isn't configured.") query.executed_sql = rendered_query query.status = QueryStatus.RUNNING query.start_running_time = utils.now_as_float() session.merge(query) session.commit() logging.info("Set query to 'running'") database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() try: data = norm.execute(query.executed_sql, session, query.user) except SoftTimeLimitExceeded as e: logging.exception(e) return handle_error( "SQL Lab timeout. This environment's policy is to kill queries " 'after {} seconds.'.format(SQLLAB_TIMEOUT)) except Exception as e: logging.exception(e) return handle_error(db_engine_spec.extract_error_message(e)) if query.status == utils.QueryStatus.STOPPED: return handle_error('The query has been stopped') cdf = dataframe.SupersetDataFrame(data) query.rows = cdf.size query.progress = 100 query.status = QueryStatus.SUCCESS query.end_time = utils.now_as_float() session.merge(query) session.flush() payload.update({ 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), }) if store_results: key = '{}'.format(uuid.uuid4()) logging.info('Storing results in results backend, key: {}'.format(key)) json_payload = json.dumps(payload, default=utils.json_iso_dttm_ser) cache_timeout = config.get('CACHE_DEFAULT_TIMEOUT', 0) results_backend.set(key, utils.zlib_compress(json_payload), cache_timeout) query.results_key = key query.end_result_backend_time = utils.now_as_float() session.merge(query) session.commit() if return_results: return payload
def execute_sql_statements( ctask, query_id, rendered_query, return_results=True, store_results=False, user_name=None, session=None, start_time=None, ): """Executes the sql query returns the results.""" if store_results and start_time: # only asynchronous queries stats_logger.timing("sqllab.query.time_pending", now_as_float() - start_time) query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() if store_results and not results_backend: raise SqlLabException("Results backend isn't configured.") # Breaking down into multiple statements parsed_query = ParsedQuery(rendered_query) statements = parsed_query.get_statements() logging.info(f"Executing {len(statements)} statement(s)") logging.info("Set query to 'running'") query.status = QueryStatus.RUNNING query.start_running_time = now_as_float() engine = database.get_sqla_engine( schema=query.schema, nullpool=True, user_name=user_name, source=sources.get("sql_lab", None), ) # Sharing a single connection and cursor across the # execution of all statements (if many) with closing(engine.raw_connection()) as conn: with closing(conn.cursor()) as cursor: query.connection_id = db_engine_spec.get_connection_id(cursor) session.commit() statement_count = len(statements) for i, statement in enumerate(statements): # check if the query was stopped session.refresh(query) if query.status == QueryStatus.STOPPED: payload.update({"status": query.status}) return payload msg = f"Running statement {i+1} out of {statement_count}" logging.info(msg) query.set_extra_json_key("progress", msg) session.commit() try: cdf = execute_sql_statement( statement, query, user_name, session, cursor ) msg = f"Running statement {i+1} out of {statement_count}" except Exception as e: # query can be stopped in another thread/worker # but in synchronized mode it may lead to an error # skip error the error in such case session.refresh(query) if query.status == QueryStatus.STOPPED: payload.update({"status": query.status}) return payload msg = str(e) if statement_count > 1: msg = f"[Statement {i+1} out of {statement_count}] " + msg payload = handle_query_error(msg, query, session, payload) return payload # Success, updating the query entry in database query.rows = cdf.size query.progress = 100 query.set_extra_json_key("progress", None) query.connection_id = None if query.select_as_cta: query.select_sql = database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False, ) query.end_time = now_as_float() selected_columns = cdf.columns or [] data = cdf.data or [] all_columns, data, expanded_columns = db_engine_spec.expand_data( selected_columns, data ) payload.update( { "status": QueryStatus.SUCCESS, "data": data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query.to_dict(), } ) payload["query"]["state"] = QueryStatus.SUCCESS # go over each row, find bytes columns that start with the magic UAST # sequence b'\x00bgr', and replace it with a string containing the # UAST in JSON for row in payload["data"]: for k, v in row.items(): if isinstance(v, bytes) and len(v) > 4 and v[0:4] == b"\x00bgr": try: ctx = decode(v, format=0) row[k] = json.dumps(ctx.load()) except Exception: pass if store_results: key = str(uuid.uuid4()) logging.info(f"Storing results in results backend, key: {key}") with stats_timing("sqllab.query.results_backend_write", stats_logger): json_payload = json.dumps( payload, default=json_iso_dttm_ser, ignore_nan=True ) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config.get("CACHE_DEFAULT_TIMEOUT", 0) results_backend.set(key, zlib_compress(json_payload), cache_timeout) query.results_key = key query.status = QueryStatus.SUCCESS session.commit() if return_results: return payload
def execute_sql( ctask, query_id, rendered_query, return_results=True, store_results=False, user_name=None, session=None, ): """Executes the sql query returns the results.""" query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() def handle_error(msg): """Local method handling error while processing the SQL""" troubleshooting_link = config['TROUBLESHOOTING_LINK'] query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() payload.update({ 'status': query.status, 'error': msg, }) if troubleshooting_link: payload['link'] = troubleshooting_link return payload if store_results and not results_backend: return handle_error("Results backend isn't configured.") # Limit enforced only for retrieving the data, not for the CTA queries. superset_query = SupersetQuery(rendered_query) executed_sql = superset_query.stripped() SQL_MAX_ROWS = app.config.get('SQL_MAX_ROW') if not superset_query.is_select() and not database.allow_dml: return handle_error( 'Only `SELECT` statements are allowed against this database') if query.select_as_cta: if not superset_query.is_select(): return handle_error( 'Only `SELECT` statements can be used with the CREATE TABLE ' 'feature.') if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) executed_sql = superset_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True if (superset_query.is_select() and SQL_MAX_ROWS and (not query.limit or query.limit > SQL_MAX_ROWS)): query.limit = SQL_MAX_ROWS executed_sql = database.apply_limit_to_sql(executed_sql, query.limit) # Hook to allow environment-specific mutation (usually comments) to the SQL SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: executed_sql = SQL_QUERY_MUTATOR( executed_sql, user_name, security_manager, database) query.executed_sql = executed_sql query.status = QueryStatus.RUNNING query.start_running_time = utils.now_as_float() session.merge(query) session.commit() logging.info("Set query to 'running'") conn = None try: engine = database.get_sqla_engine( schema=query.schema, nullpool=not ctask.request.called_directly, user_name=user_name, ) conn = engine.raw_connection() cursor = conn.cursor() logging.info('Running query: \n{}'.format(executed_sql)) logging.info(query.executed_sql) cursor.execute(query.executed_sql, **db_engine_spec.cursor_execute_kwargs) logging.info('Handling cursor') db_engine_spec.handle_cursor(cursor, query, session) logging.info('Fetching data: {}'.format(query.to_dict())) data = db_engine_spec.fetch_data(cursor, query.limit) except SoftTimeLimitExceeded as e: logging.exception(e) if conn is not None: conn.close() return handle_error( "SQL Lab timeout. This environment's policy is to kill queries " 'after {} seconds.'.format(SQLLAB_TIMEOUT)) except Exception as e: logging.exception(e) if conn is not None: conn.close() return handle_error(db_engine_spec.extract_error_message(e)) logging.info('Fetching cursor description') column_names = db_engine_spec.get_normalized_column_names(cursor.description) if conn is not None: conn.commit() conn.close() if query.status == utils.QueryStatus.STOPPED: return handle_error('The query has been stopped') cdf = convert_results_to_df(column_names, data) query.rows = cdf.size query.progress = 100 query.status = QueryStatus.SUCCESS if query.select_as_cta: query.select_sql = '{}'.format( database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False)) query.end_time = utils.now_as_float() session.merge(query) session.flush() payload.update({ 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), }) if store_results: key = '{}'.format(uuid.uuid4()) logging.info('Storing results in results backend, key: {}'.format(key)) json_payload = json.dumps(payload, default=utils.json_iso_dttm_ser) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config.get('CACHE_DEFAULT_TIMEOUT', 0) results_backend.set(key, utils.zlib_compress(json_payload), cache_timeout) query.results_key = key query.end_result_backend_time = utils.now_as_float() session.merge(query) session.commit() if return_results: return payload
def execute_sql( ctask, query_id, return_results=True, store_results=False, user_name=None, template_params=None, ): """Executes the sql query returns the results.""" session = get_session(not ctask.request.called_directly) query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() def handle_error(msg): """Local method handling error while processing the SQL""" troubleshooting_link = config['TROUBLESHOOTING_LINK'] msg = 'Error: {}. You can find common superset errors and their \ resolutions at: {}'.format(msg, troubleshooting_link) \ if troubleshooting_link else msg query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() payload.update({ 'status': query.status, 'error': msg, }) return payload if store_results and not results_backend: return handle_error("Results backend isn't configured.") # Limit enforced only for retrieving the data, not for the CTA queries. superset_query = SupersetQuery(query.sql) executed_sql = superset_query.stripped() if not superset_query.is_select() and not database.allow_dml: return handle_error( 'Only `SELECT` statements are allowed against this database') if query.select_as_cta: if not superset_query.is_select(): return handle_error( 'Only `SELECT` statements can be used with the CREATE TABLE ' 'feature.') return if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) executed_sql = superset_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True elif (query.limit and superset_query.is_select() and db_engine_spec.limit_method == LimitMethod.WRAP_SQL): executed_sql = database.wrap_sql_limit(executed_sql, query.limit) query.limit_used = True try: template_processor = get_template_processor( database=database, query=query) tp = template_params or {} executed_sql = template_processor.process_template( executed_sql, **tp) except Exception as e: logging.exception(e) msg = 'Template rendering failed: ' + utils.error_msg_from_exception(e) return handle_error(msg) query.executed_sql = executed_sql query.status = QueryStatus.RUNNING query.start_running_time = utils.now_as_float() session.merge(query) session.commit() logging.info("Set query to 'running'") conn = None try: engine = database.get_sqla_engine( schema=query.schema, nullpool=not ctask.request.called_directly, user_name=user_name, ) conn = engine.raw_connection() cursor = conn.cursor() logging.info('Running query: \n{}'.format(executed_sql)) logging.info(query.executed_sql) cursor.execute(query.executed_sql, **db_engine_spec.cursor_execute_kwargs) logging.info('Handling cursor') db_engine_spec.handle_cursor(cursor, query, session) logging.info('Fetching data: {}'.format(query.to_dict())) data = db_engine_spec.fetch_data(cursor, query.limit) except SoftTimeLimitExceeded as e: logging.exception(e) if conn is not None: conn.close() return handle_error( "SQL Lab timeout. This environment's policy is to kill queries " 'after {} seconds.'.format(SQLLAB_TIMEOUT)) except Exception as e: logging.exception(e) if conn is not None: conn.close() return handle_error(db_engine_spec.extract_error_message(e)) logging.info('Fetching cursor description') cursor_description = cursor.description if conn is not None: conn.commit() conn.close() if query.status == utils.QueryStatus.STOPPED: return json.dumps( { 'query_id': query.id, 'status': query.status, 'query': query.to_dict(), }, default=utils.json_iso_dttm_ser) cdf = convert_results_to_df(cursor_description, data) query.rows = cdf.size query.progress = 100 query.status = QueryStatus.SUCCESS if query.select_as_cta: query.select_sql = '{}'.format( database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False)) query.end_time = utils.now_as_float() session.merge(query) session.flush() payload.update({ 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), }) if store_results: key = '{}'.format(uuid.uuid4()) logging.info('Storing results in results backend, key: {}'.format(key)) json_payload = json.dumps(payload, default=utils.json_iso_dttm_ser) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config.get('CACHE_DEFAULT_TIMEOUT', 0) results_backend.set(key, utils.zlib_compress(json_payload), cache_timeout) query.results_key = key query.end_result_backend_time = utils.now_as_float() session.merge(query) session.commit() if return_results: return payload
def execute_sql_statements( ctask, query_id, rendered_query, return_results=True, store_results=False, user_name=None, session=None, start_time=None, ): """Executes the sql query returns the results.""" if store_results and start_time: # only asynchronous queries stats_logger.timing( 'sqllab.query.time_pending', now_as_float() - start_time) query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() if store_results and not results_backend: raise SqlLabException("Results backend isn't configured.") # Breaking down into multiple statements parsed_query = ParsedQuery(rendered_query) statements = parsed_query.get_statements() logging.info(f'Executing {len(statements)} statement(s)') logging.info("Set query to 'running'") query.status = QueryStatus.RUNNING query.start_running_time = now_as_float() engine = database.get_sqla_engine( schema=query.schema, nullpool=True, user_name=user_name, ) # Sharing a single connection and cursor across the # execution of all statements (if many) with closing(engine.raw_connection()) as conn: with closing(conn.cursor()) as cursor: statement_count = len(statements) for i, statement in enumerate(statements): # TODO CHECK IF STOPPED msg = f'Running statement {i+1} out of {statement_count}' logging.info(msg) query.set_extra_json_key('progress', msg) session.commit() is_last_statement = i == len(statements) - 1 try: cdf = execute_sql_statement( statement, query, user_name, session, cursor, return_results=is_last_statement and return_results) msg = f'Running statement {i+1} out of {statement_count}' except Exception as e: msg = str(e) if statement_count > 1: msg = f'[Statement {i+1} out of {statement_count}] ' + msg payload = handle_query_error(msg, query, session, payload) return payload # Success, updating the query entry in database query.rows = cdf.size query.progress = 100 query.set_extra_json_key('progress', None) query.status = QueryStatus.SUCCESS if query.select_as_cta: query.select_sql = database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False) query.end_time = now_as_float() session.commit() payload.update({ 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), }) if store_results: key = str(uuid.uuid4()) logging.info(f'Storing results in results backend, key: {key}') with stats_timing('sqllab.query.results_backend_write', stats_logger): json_payload = json.dumps( payload, default=json_iso_dttm_ser, ignore_nan=True) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config.get('CACHE_DEFAULT_TIMEOUT', 0) results_backend.set(key, zlib_compress(json_payload), cache_timeout) query.results_key = key session.commit() if return_results: return payload
def execute_sql_statements( ctask, query_id, rendered_query, return_results=True, store_results=False, user_name=None, session=None, start_time=None, ): """Executes the sql query returns the results.""" if store_results and start_time: # only asynchronous queries stats_logger.timing('sqllab.query.time_pending', now_as_float() - start_time) query = get_query(query_id, session) payload = dict(query_id=query_id) database = query.database db_engine_spec = database.db_engine_spec db_engine_spec.patch() if store_results and not results_backend: raise SqlLabException("Results backend isn't configured.") # Breaking down into multiple statements parsed_query = ParsedQuery(rendered_query) statements = parsed_query.get_statements() logging.info(f'Executing {len(statements)} statement(s)') logging.info("Set query to 'running'") query.status = QueryStatus.RUNNING query.start_running_time = now_as_float() engine = database.get_sqla_engine( schema=query.schema, nullpool=True, user_name=user_name, source=sources.get('sql_lab', None), ) # Sharing a single connection and cursor across the # execution of all statements (if many) with closing(engine.raw_connection()) as conn: with closing(conn.cursor()) as cursor: statement_count = len(statements) for i, statement in enumerate(statements): # TODO CHECK IF STOPPED msg = f'Running statement {i+1} out of {statement_count}' logging.info(msg) query.set_extra_json_key('progress', msg) session.commit() try: cdf = execute_sql_statement(statement, query, user_name, session, cursor) msg = f'Running statement {i+1} out of {statement_count}' except Exception as e: msg = str(e) if statement_count > 1: msg = f'[Statement {i+1} out of {statement_count}] ' + msg payload = handle_query_error(msg, query, session, payload) return payload # Success, updating the query entry in database query.rows = cdf.size query.progress = 100 query.set_extra_json_key('progress', None) query.status = QueryStatus.SUCCESS if query.select_as_cta: query.select_sql = database.select_star( query.tmp_table_name, limit=query.limit, schema=database.force_ctas_schema, show_cols=False, latest_partition=False) query.end_time = now_as_float() payload.update({ 'status': query.status, 'data': cdf.data if cdf.data else [], 'columns': cdf.columns if cdf.columns else [], 'query': query.to_dict(), }) if store_results: key = str(uuid.uuid4()) logging.info(f'Storing results in results backend, key: {key}') with stats_timing('sqllab.query.results_backend_write', stats_logger): json_payload = json.dumps(payload, default=json_iso_dttm_ser, ignore_nan=True) cache_timeout = database.cache_timeout if cache_timeout is None: cache_timeout = config.get('CACHE_DEFAULT_TIMEOUT', 0) results_backend.set(key, zlib_compress(json_payload), cache_timeout) query.results_key = key session.commit() if return_results: return payload
def get_sql_results(self, query_id, return_results=True, store_results=False): """Executes the sql query returns the results.""" if not self.request.called_directly: engine = sqlalchemy.create_engine( app.config.get('SQLALCHEMY_DATABASE_URI'), poolclass=NullPool) session_class = sessionmaker() session_class.configure(bind=engine) session = session_class() else: session = db.session() session.commit() # HACK query = session.query(models.Query).filter_by(id=query_id).one() database = query.database executed_sql = query.sql.strip().strip(';') db_engine_spec = database.db_engine_spec def handle_error(msg): """Local method handling error while processing the SQL""" query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() raise Exception(query.error_message) # Limit enforced only for retrieving the data, not for the CTA queries. is_select = is_query_select(executed_sql); if not is_select and not database.allow_dml: handle_error( "Only `SELECT` statements are allowed against this database") if query.select_as_cta: if not is_select: handle_error( "Only `SELECT` statements can be used with the CREATE TABLE " "feature.") if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) executed_sql = create_table_as( executed_sql, query.tmp_table_name, database.force_ctas_schema) query.select_as_cta_used = True elif ( query.limit and is_select and db_engine_spec.limit_method == LimitMethod.WRAP_SQL): executed_sql = database.wrap_sql_limit(executed_sql, query.limit) query.limit_used = True engine = database.get_sqla_engine(schema=query.schema) try: template_processor = get_template_processor( database=database, query=query) executed_sql = template_processor.process_template(executed_sql) except Exception as e: logging.exception(e) msg = "Template rendering failed: " + utils.error_msg_from_exception(e) handle_error(msg) try: query.executed_sql = executed_sql logging.info("Running query: \n{}".format(executed_sql)) result_proxy = engine.execute(query.executed_sql, schema=query.schema) except Exception as e: logging.exception(e) handle_error(utils.error_msg_from_exception(e)) cursor = result_proxy.cursor query.status = QueryStatus.RUNNING session.flush() db_engine_spec.handle_cursor(cursor, query, session) cdf = None if result_proxy.cursor: column_names = [col[0] for col in result_proxy.cursor.description] if db_engine_spec.limit_method == LimitMethod.FETCH_MANY: data = result_proxy.fetchmany(query.limit) else: data = result_proxy.fetchall() cdf = dataframe.SupersetDataFrame( pd.DataFrame(data, columns=column_names)) query.rows = result_proxy.rowcount query.progress = 100 query.status = QueryStatus.SUCCESS if query.rows == -1 and cdf: # Presto doesn't provide result_proxy.row_count query.rows = cdf.size if query.select_as_cta: query.select_sql = '{}'.format(database.select_star( query.tmp_table_name, limit=query.limit)) query.end_time = utils.now_as_float() session.flush() payload = { 'query_id': query.id, 'status': query.status, 'data': [], } payload['data'] = cdf.data if cdf else [] payload['columns'] = cdf.columns_dict if cdf else [] payload['query'] = query.to_dict() payload = json.dumps(payload, default=utils.json_iso_dttm_ser) if store_results and results_backend: key = '{}'.format(uuid.uuid4()) logging.info("Storing results in results backend, key: {}".format(key)) results_backend.set(key, zlib.compress(payload)) query.results_key = key session.flush() session.commit() if return_results: return payload