def test_reproduce_fit_regression(self): metric = Metric({"name": "rmse"}) prev_loss = None for _ in range(3): model = BaselineRegressorAlgorithm({"ml_task": "regression"}) model.fit(self.X, self.y) y_predicted = model.predict(self.X) loss = metric(self.y, y_predicted) if prev_loss is not None: assert_almost_equal(prev_loss, loss) prev_loss = loss
def test_save_and_load(self): metric = Metric({"name": "rmse"}) dt = BaselineRegressorAlgorithm({"ml_task": "regression"}) dt.fit(self.X, self.y) y_predicted = dt.predict(self.X) loss = metric(self.y, y_predicted) with tempfile.NamedTemporaryFile() as tmp: dt.save(tmp.name) dt2 = BaselineRegressorAlgorithm({"ml_task": "regression"}) dt2.load(tmp.name) y_predicted = dt2.predict(self.X) loss2 = metric(self.y, y_predicted) assert_almost_equal(loss, loss2)
def test_save_and_load(self): metric = Metric({"name": "rmse"}) dt = BaselineRegressorAlgorithm({"ml_task": "regression"}) dt.fit(self.X, self.y) y_predicted = dt.predict(self.X) loss = metric(self.y, y_predicted) filename = os.path.join(tempfile.gettempdir(), os.urandom(12).hex()) dt.save(filename) dt2 = BaselineRegressorAlgorithm({"ml_task": "regression"}) dt2.load(filename) # Finished with the file, delete it os.remove(filename) y_predicted = dt2.predict(self.X) loss2 = metric(self.y, y_predicted) assert_almost_equal(loss, loss2)
def test_is_fitted(self): model = BaselineRegressorAlgorithm({"ml_task": "regression"}) self.assertFalse(model.is_fitted()) model.fit(self.X, self.y) self.assertTrue(model.is_fitted())