コード例 #1
0
class Metamodel():
    """
    The Metamodel has four significant elements, the model, the surrogate,
    the relevator and the history of evaluations.
    At every step, the metamodel uses the relevator to decide wheter to use the
    model or the surrogate and afterwards updates the history and its
    components.

    All methods and attributes that start with '_' should be treated as
    private.
    """

    def __init__(self, metamodel_kwargs,
                 model_kwargs, surrogate_kwargs,
                 relevator_kwargs, history_kwargs):
        """ Initialize the Metamodel with the specified components. """

        self.step_index = 0
        self.model_evaluations = 0

        self.model = Model(model_kwargs)
        self.surrogate = Surrogate(self, surrogate_kwargs)
        self.relevator = Relevator(self, relevator_kwargs)
        self.history = History(self, history_kwargs)

        self._random_seed = metamodel_kwargs.get("random_seed", None)
        if self._random_seed is not None:
            self.model.set_random_seed(self._random_seed)
            self.surrogate.set_random_seed(self._random_seed)
            self.relevator.set_random_seed(self._random_seed)

        return

    def evaluate(self, coords):
        """ Evaluate the Metamodel at the given point. """

        # Determine relevance.
        relevance = self.relevator.evaluate(coords)
        is_relevant = self.relevator.is_relevant(relevance)

        # Decide which prediction to use.
        if is_relevant:
            prediction = self.model.evaluate(coords)
            self.model_evaluations += 1
        else:
            prediction = self.surrogate.evaluate(coords)

        # Update history and components.
        self.history.update(coords, prediction, relevance, is_relevant)

        # Update index and return result.
        self.step_index += 1
        return prediction
コード例 #2
0
 def get_toolbox(self, xtr, phi_failure, phi_parallel, global_failed_indices, skwargs, cfunc=None, \
                     cargs=(), ckwargs={}, verbose=True):
     '''
     Modify parent's toolbox method for single objective optimisation. 
     
     Parameters. 
     ----------
     xtr (np.array): training decision vectors.
     skwargs (dict): keyword arguments for infill criterion; not used here.
     cfunc (function): cheap constraint function.
     cargs (tuple): arguments of cheap constraint function. 
     verbose (bool): whether to print verbose comments. 
     
     Returns a DEAP toolbox.        
     '''
     ytr, xtr, xinds, local_failed_indices, success = self.scalarise(xtr, kwargs=skwargs)
     self.current_hv = self.current_hpv()
     surr = Surrogate(xtr, ytr, phi_failure, phi_parallel, local_failed_indices, self.kernel.copy(), verbose=verbose)
     self.surr = surr
     self.surr.success = success
     #self.surr = phi_old
     #for i in range (len(local_failed_indices)):
     #    self.surr.global_failed_indices.append(local_failed_indices[i])
     print("surr.global_failed_indices", self.surr.global_failed_indices)
     print("local_failed_indices", local_failed_indices)
     
     
     #self.surr.global_failed_indices = np.concatenate([self.surr.global_failed_indices, local_failed_indices])    
     self.surr.xinds = xinds
     
     ########################
     # Get bounds (APR added)
     ########################
     lb=self.lower_bounds
     ub=self.upper_bounds
     xmean = self.surr.xbar
     xsd = self.surr.xstd
     ysd = self.surr.ystd
     bounds = self.get_bounds((lb-xmean)/xsd, (ub-xmean)/xsd)
     
     ##################################
     # Compute the gradient (APR added)
     ##################################
     L = 1.0*(self.max_predictive_gradient(surr, bounds)) * (ysd / xsd)
     self.surr.L = L
     
     ######################################################################
     # This represents the best value from the surrogate model max(mean(x))
     # It is not the rough approximation max_i{y_i} (APR added)
     ######################################################################        
     maxfevals = 20000
     tx = np.linspace(lb, ub, maxfevals)[:,None]
     pred_y, pred_s = self.surr.predict(tx)
     Min = min(pred_y)
     self.surr.best = Min
     
     return self.init_deap(surr.penalized_acquisition, obj_sense=self.obj_sense[0], \
                     cfunc=cfunc, cargs=cargs, ckwargs=ckwargs, \
                     lb=self.lower_bounds, ub=self.upper_bounds)
コード例 #3
0
    def __init__(self, metamodel_kwargs,
                 model_kwargs, surrogate_kwargs,
                 relevator_kwargs, history_kwargs):
        """ Initialize the Metamodel with the specified components. """

        self.step_index = 0
        self.model_evaluations = 0

        self.model = Model(model_kwargs)
        self.surrogate = Surrogate(self, surrogate_kwargs)
        self.relevator = Relevator(self, relevator_kwargs)
        self.history = History(self, history_kwargs)

        self._random_seed = metamodel_kwargs.get("random_seed", None)
        if self._random_seed is not None:
            self.model.set_random_seed(self._random_seed)
            self.surrogate.set_random_seed(self._random_seed)
            self.relevator.set_random_seed(self._random_seed)

        return
コード例 #4
0
    def get_toolbox(self, xtr, skwargs, cfunc=None, \
                        cargs=(), ckwargs={}, verbose=True):
        """
        Generate a DEAP toolbox for the infill criterion optimiser.
        
        Parameters. 
        -----------
        xtr (np.array): traing decision vectors.
        skwargs (dict): options for infill criterion calculation; varies with 
                        technique.
        cfunc (function): cheap constraint function.
        cargs (tuple): argumetns for constraint function.
        ckwargs (dict): keyword arguments for constraint function.
        verbose (bool): whether to print more comments. 
        
        Returns a DEAP toolbox.     
        """
        ytr = self.scalarise(xtr, kwargs=skwargs)
        self.current_hv = self.current_hpv()
        surr = Surrogate(xtr, ytr, self.kernel.copy(), verbose=verbose)

        #########################################
        # Add surrogate to base class (APR added)
        #########################################
        self.surr = surr

        ########################
        # Get bounds (APR added)
        ########################
        lb = self.lower_bounds
        ub = self.upper_bounds
        xmean = self.surr.xbar
        xsd = self.surr.xstd
        ysd = self.surr.ystd
        bounds = self.get_bounds((lb - xmean) / xsd, (ub - xmean) / xsd)

        ##################################
        # Compute the gradient (APR added)
        ##################################
        L = (self.max_predictive_gradient(surr, bounds)) * (ysd / xsd)
        self.surr.L = L

        #######################################################
        # Set best based on minimum observed so far (APR added)
        #######################################################
        self.surr.best = min(ytr)

        return self.init_deap(surr.penalized_acquisition, obj_sense=self.obj_sense[0], cfunc=cfunc, cargs=cargs, \
                        ckwargs=ckwargs, lb=self.lower_bounds, ub=self.upper_bounds)
コード例 #5
0
ファイル: mono_surrogate.py プロジェクト: en9apr/DTLZ3
 def get_toolbox(self, xtr, skwargs, cfunc=None, \
                     cargs=(), ckwargs={}, verbose=True):
     """
     Generate a DEAP toolbox for the infill criterion optimiser.
     
     Parameters. 
     -----------
     xtr (np.array): traing decision vectors.
     skwargs (dict): options for infill criterion calculation; varies with 
                     technique.
     cfunc (function): cheap constraint function.
     cargs (tuple): argumetns for constraint function.
     ckwargs (dict): keyword arguments for constraint function.
     verbose (bool): whether to print more comments. 
     
     Returns a DEAP toolbox.     
     """
     ytr = self.scalarise(xtr, kwargs=skwargs)
     self.current_hv = self.current_hpv()
     surr = Surrogate(xtr, ytr, self.kernel.copy(), verbose=verbose)
     return self.init_deap(surr.expected_improvement, obj_sense=1, cfunc=cfunc, cargs=cargs, \
                     ckwargs=ckwargs, lb=self.lower_bounds, ub=self.upper_bounds)
コード例 #6
0
ファイル: mono_surrogate.py プロジェクト: en9apr/DTLZ3
 def get_toolbox(self, xtr, skwargs, cfunc=None, \
                     cargs=(), ckwargs={}, verbose=True):
     '''
     Modify parent's toolbox method for single objective optimisation. 
     
     Parameters. 
     ----------
     xtr (np.array): training decision vectors.
     skwargs (dict): keyword arguments for infill criterion; not used here.
     cfunc (function): cheap constraint function.
     cargs (tuple): arguments of cheap constraint function. 
     verbose (bool): whether to print verbose comments. 
     
     Returns a DEAP toolbox.        
     '''
     ytr = self.scalarise(xtr, kwargs=skwargs)
     self.current_hv = self.current_hpv()
     surr = Surrogate(xtr, ytr, self.kernel.copy(), verbose=verbose)
     self.surr = surr
     return self.init_deap(surr.expected_improvement, obj_sense=self.obj_sense[0], \
                     cfunc=cfunc, cargs=cargs, ckwargs=ckwargs, \
                     lb=self.lower_bounds, ub=self.upper_bounds)