コード例 #1
0
def test_svm(opts):
    assert os.path.exists(opts.data_file), "Data file not found. Abort!"
    json_predictions, img_ids, cls_names = {}, [], []
    if opts.generate_json:
        img_ids, cls_names = load_json(opts.json_targets)

    features, targets = svm_helper.load_input_data(opts.data_file,
                                                   opts.targets_data_file)
    # normalize the features: N x 9216 (example shape)
    features = svm_helper.normalize_features(features)
    num_classes = targets.shape[1]
    logger.info('Num classes: {}'.format(num_classes))

    # get the chosen cost that maximizes the cross-validation AP per class
    costs_list = get_chosen_costs(opts, num_classes)

    ap_matrix = np.zeros((num_classes, 1))
    for cls in range(num_classes):
        cost = costs_list[cls]
        logger.info('Testing model for cls: {} cost: {}'.format(cls, cost))
        model_file = os.path.join(
            opts.output_path,
            'cls' + str(cls) + '_cost' + str(cost) + '.pickle')
        with open(model_file, 'rb') as fopen:
            if six.PY2:
                model = pickle.load(fopen)
            else:
                model = pickle.load(fopen, encoding='latin1')
        prediction = model.decision_function(features)
        if opts.generate_json:
            cls_name = cls_names[cls]
            for idx in range(len(prediction)):
                img_id = img_ids[idx]
                if img_id in json_predictions:
                    json_predictions[img_id][cls_name] = prediction[idx]
                else:
                    out_lbl = {}
                    out_lbl[cls_name] = prediction[idx]
                    json_predictions[img_id] = out_lbl

        cls_labels = targets[:, cls]
        # meaning of labels in VOC/COCO original loaded target files:
        # label 0 = not present, set it to -1 as svm train target
        # label 1 = present. Make the svm train target labels as -1, 1.
        evaluate_data_inds = (targets[:, cls] != -1)
        eval_preds = prediction[evaluate_data_inds]
        eval_cls_labels = cls_labels[evaluate_data_inds]
        eval_cls_labels[np.where(eval_cls_labels == 0)] = -1
        P, R, score, ap = svm_helper.get_precision_recall(
            eval_cls_labels, eval_preds)
        ap_matrix[cls][0] = ap
    if opts.generate_json:
        output_file = os.path.join(opts.output_path, 'json_preds.json')
        with open(output_file, 'w') as fp:
            json.dump(json_predictions, fp)
        logger.info('Saved json predictions to: {}'.format(output_file))
    logger.info('Mean AP: {}'.format(np.mean(ap_matrix, axis=0)))
    np.save(os.path.join(opts.output_path, 'test_ap.npy'), np.array(ap_matrix))
    logger.info('saved test AP to file: {}'.format(
        os.path.join(opts.output_path, 'test_ap.npy')))
コード例 #2
0
def test_svm_low_shot(opts):
    k_values = [int(val) for val in opts.k_values.split(",")]
    sample_inds = [int(val) for val in opts.sample_inds.split(",")]
    logger.info('Testing svm for k-values: {} and sample_inds: {}'.format(
        k_values, sample_inds))

    img_ids, cls_names = [], []
    if opts.generate_json:
        img_ids, cls_names = load_json(opts.json_targets)

    assert os.path.exists(opts.data_file), "Data file not found. Abort!"
    # we test the svms on the full test set. Given the test features and the
    # targets, we test it for various k-values (low-shot), cost values and
    # 5 independent samples.
    features, targets = svm_helper.load_input_data(opts.data_file,
                                                   opts.targets_data_file)
    # normalize the features: N x 9216 (example shape)
    features = svm_helper.normalize_features(features)

    # parse the cost values for training the SVM on
    costs_list = svm_helper.parse_cost_list(opts.costs_list)
    logger.info('Testing SVM for costs: {}'.format(costs_list))

    # classes for which SVM testing should be done
    num_classes, cls_list = svm_helper.get_low_shot_svm_classes(
        targets, opts.dataset)

    # create the output for per sample, per k-value and per cost.
    sample_ap_matrices = []
    for _ in range(len(sample_inds)):
        ap_matrix = np.zeros((len(k_values), len(costs_list)))
        sample_ap_matrices.append(ap_matrix)

    # the test goes like this: For a given sample, for a given k-value and a
    # given cost value, we evaluate the trained svm model for all classes.
    # After computing over all classes, we get the mean AP value over all
    # classes. We hence end up with: output = [sample][k_value][cost]
    for inds in range(len(sample_inds)):
        sample_idx = sample_inds[inds]
        for k_idx in range(len(k_values)):
            k_low = k_values[k_idx]
            suffix = 'sample{}_k{}'.format(sample_idx + 1, k_low)
            for cost_idx in range(len(costs_list)):
                cost = costs_list[cost_idx]
                local_cost_ap = np.zeros((num_classes, 1))
                for cls in cls_list:
                    logger.info(
                        'Test sample/k_value/cost/cls: {}/{}/{}/{}'.format(
                            sample_idx + 1, k_low, cost, cls))
                    model_file = svm_helper.get_low_shot_output_file(
                        opts, cls, cost, suffix)
                    with open(model_file, 'rb') as fopen:
                        if six.PY2:
                            model = pickle.load(fopen)
                        else:
                            model = pickle.load(fopen, encoding='latin1')
                    prediction = model.decision_function(features)
                    eval_preds, eval_cls_labels = svm_helper.get_cls_feats_labels(
                        cls, prediction, targets, opts.dataset)
                    P, R, score, ap = svm_helper.get_precision_recall(
                        eval_cls_labels, eval_preds)
                    local_cost_ap[cls][0] = ap
                mean_cost_ap = np.mean(local_cost_ap, axis=0)
                sample_ap_matrices[inds][k_idx][cost_idx] = mean_cost_ap
            out_k_sample_file = os.path.join(
                opts.output_path,
                'test_ap_sample{}_k{}.npy'.format(sample_idx + 1, k_low))
            save_data = sample_ap_matrices[inds][k_idx]
            save_data = save_data.reshape((1, -1))
            np.save(out_k_sample_file, save_data)
            logger.info('Saved sample test k_idx AP to file: {} {}'.format(
                out_k_sample_file, save_data.shape))
            if opts.generate_json:
                argmax_cls = np.argmax(save_data, axis=1)
                chosen_cost = costs_list[argmax_cls[0]]
                logger.info('chosen cost: {}'.format(chosen_cost))
                save_json_predictions(opts, chosen_cost, sample_idx, k_low,
                                      features, cls_list, cls_names, img_ids)
    logger.info('All done!!')