with tf.name_scope('b_fc2'): b_fc2 = bias_variable([2]) tf.summary.histogram('fc_layer2', b_fc2) with tf.name_scope('y_conv'): y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 tf.summary.histogram('fc_layer2', y_conv) return y_conv, keep_prob # Import data num_classes = 2 swallowsound = read_data_sets(dir, gzip_compress=True, train_imgaes='train-images-idx3-ubyte.gz', train_labels='train-labels-idx1-ubyte.gz', test_imgaes='t10k-images-idx3-ubyte.gz', test_labels='t10k-labels-idx1-ubyte.gz', one_hot=True, validation_size=50, num_classes=num_classes, MSB=True) # Create the model with tf.name_scope('inputs'): x = tf.placeholder(tf.float32, [None, 250], name='x_input') # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 2], name='y_input') # Build the graph for the deep net y_conv, keep_prob = deepnn(x) # cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y_conv)
def main(_): # Import data num_classes = 2 swallowsound = read_data_sets( FLAGS.data_dir, gzip_compress=False, train_imgaes='train-images-idx3-ubyte', train_labels='train-labels-idx1-ubyte', test_imgaes='t10k-images-idx3-ubyte', test_labels='t10k-labels-idx1-ubyte', one_hot=True, validation_size=2000, #验证集大小 num_classes=num_classes, MSB=True) # Create the model x = tf.placeholder(tf.float32, [None, 50]) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 2]) # Build the graph for the deep net y_conv, keep_prob = deepnn(x) with tf.name_scope('loss'): cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv) cross_entropy = tf.reduce_mean(cross_entropy) with tf.name_scope('adam_optimizer'): train_step = tf.train.GradientDescentOptimizer(0.01).minimize( cross_entropy) #accuracy 0.97 #train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #accuracy 0.94 with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) correct_prediction = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(correct_prediction) graph_location = tempfile.mkdtemp() print('Saving graph to: %s' % graph_location) train_writer = tf.summary.FileWriter(graph_location) train_writer.add_graph(tf.get_default_graph()) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(10000): batch = swallowsound.train.next_batch( 1000) #batch 200 比 50的效果好 # batch(500) test accuracy 0.985714 if i % 500 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0 }) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 0.5 }) print('test accuracy %g' % accuracy.eval( feed_dict={ x: swallowsound.test.images, y_: swallowsound.test.labels, keep_prob: 1.0 }))
def main(_): # Import data # 注意one_hot参数表示我们要吧标签生成向量,比如目前的标签是数字“7”,分类数为10,则要生成一个[0,0,0,0,0,0,1,0,0,0]的向量 # 返回的结果是一个数据集,主要包括['train', 'validation', 'test']三个数据集,其中train和test的大小由原始数据确定,validation # 从原始数据的train集合中选取,其大小要小于train的大小,具体大小由validation_size参数确定 # 数据集合中样本的分类数目由num_classes参数设置,标签label的值必须是[0,num_classes)之间的整数 num_classes = 2 # swallowsound = read_data_sets(FLAGS.data_dir, # gzip_compress=False, # train_imgaes='LearnSamples.bin', # train_labels='LearnSamplesflag.bin', # test_imgaes='TestSamples.bin', # test_labels='TestSamplesflag.bin', # one_hot=True, # validation_size=50, # num_classes = num_classes, # MSB=False) swallowsound = read_data_sets(FLAGS.data_dir, gzip_compress=False, train_imgaes='train-images-idx3-ubyte', train_labels='train-labels-idx1-ubyte', test_imgaes='t10k-images-idx3-ubyte', test_labels='t10k-labels-idx1-ubyte', one_hot=True, validation_size=50, num_classes=num_classes, MSB=True) original_shape = swallowsound.train.original_shape if len(original_shape)<4: return size = original_shape[1]*original_shape[2] # Create the model x = tf.placeholder(tf.float32, [None, size]) W = tf.Variable(tf.zeros([size, num_classes])) b = tf.Variable(tf.zeros([num_classes])) y = tf.matmul(x, W) + b # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, num_classes]) # The raw formulation of cross-entropy, # # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)), # reduction_indices=[1])) # # can be numerically unstable. # # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw # outputs of 'y', and then average across the batch. cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() # Train for _ in range(1000): batch_xs, batch_ys = swallowsound.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: swallowsound.test.images, y_: swallowsound.test.labels})) print("b: ",sess.run(b))