def test_index_dataset(): """ Tests the index_dataset function using a numpy array to approximate a dataset. """ data = np.arange(1000) mask = np.unique(np.random.randint(0, 1000, 100)) true = data[mask] assert (index_dataset(data, mask) == true).all()
def test_index_dataset_h5py(): """ Tests the index_dataset function on a real HDF5 dataset. """ file = create_in_memory_hdf5() data = np.arange(100000) mask = np.unique(np.random.randint(0, 100000, 10000)) dataset = file.create_dataset("Test", data=data) assert (index_dataset(dataset, mask) == data[mask]).all()
def test_index_dataset_h5py(): """ Tests the index_dataset function on a real HDF5 dataset. """ # This creates an in-memory file file = h5py.File(name='f1', driver='core', backing_store=False) data = np.arange(100000) mask = np.unique(np.random.randint(0, 100000, 10000)) dataset = file.create_dataset("Test", data=data) assert (index_dataset(dataset, mask) == data[mask]).all()
def test_index_dataset(): """ Tests the index_dataset function using a numpy array to approximate a dataset. """ file = create_in_memory_hdf5() data = file.create_dataset("test", data=np.arange(1000)) mask = np.unique(np.random.randint(0, 1000, 100)) true = data[list(mask)] assert (index_dataset(data, mask) == true).all() file.close()