def test_add_non_cplex_conform_variable(self): var = self.interface.Variable('12x!!@#5_3', lb=-666, ub=666) self.assertEqual(var._index, None) self.model.add(var) self.assertTrue(var in self.model.variables.values()) self.assertEqual(var.name, glp_get_col_name(self.model.problem, var._index)) self.assertEqual(self.model.variables['12x!!@#5_3'].lb, -666) self.assertEqual(self.model.variables['12x!!@#5_3'].ub, 666) repickled = pickle.loads(pickle.dumps(self.model)) var_from_pickle = repickled.variables['12x!!@#5_3'] self.assertEqual(var_from_pickle.name, glp_get_col_name(repickled.problem, var_from_pickle._index))
def test_add_non_cplex_conform_variable(self): var = Variable('12x!!@#5_3', lb=-666, ub=666) self.assertEqual(var._index, None) self.model.add(var) self.assertTrue(var in self.model.variables.values()) self.assertEqual(var.name, glp_get_col_name(self.model.problem, var._index)) self.assertEqual(self.model.variables['12x!!@#5_3'].lb, -666) self.assertEqual(self.model.variables['12x!!@#5_3'].ub, 666) repickled = pickle.loads(pickle.dumps(self.model)) var_from_pickle = repickled.variables['12x!!@#5_3'] self.assertEqual( var_from_pickle.name, glp_get_col_name(repickled.problem, var_from_pickle._index))
def set_linear_coefficients(self, coefficients): if self.problem is not None: problem = self.problem.problem num_cols = glp_get_num_cols(problem) ia = intArray(num_cols + 1) va = doubleArray(num_cols + 1) num_rows = glp_get_mat_row(self.problem.problem, self._index, ia, va) variables_and_coefficients = {var.name: coeff for var, coeff in six.iteritems(coefficients)} final_variables_and_coefficients = { glp_get_col_name(problem, ia[i]): va[i] for i in range(1, num_rows + 1) } final_variables_and_coefficients.update(variables_and_coefficients) ia = intArray(num_cols + 1) va = doubleArray(num_cols + 1) for i, (name, coeff) in enumerate(six.iteritems(final_variables_and_coefficients)): ia[i + 1] = self.problem._variables[name]._index va[i + 1] = coeff glp_set_mat_row(problem, self._index, len(final_variables_and_coefficients), ia, va) else: raise Exception("Can't change coefficients if constraint is not associated with a model.")
def set_linear_coefficients(self, coefficients): if self.problem is not None: problem = self.problem.problem self.problem.update() num_cols = glp_get_num_cols(problem) ia = intArray(num_cols + 1) va = doubleArray(num_cols + 1) num_rows = glp_get_mat_row(self.problem.problem, self._index, ia, va) variables_and_coefficients = {var.name: coeff for var, coeff in six.iteritems(coefficients)} final_variables_and_coefficients = { glp_get_col_name(problem, ia[i]): va[i] for i in range(1, num_rows + 1) } final_variables_and_coefficients.update(variables_and_coefficients) ia = intArray(num_cols + 1) va = doubleArray(num_cols + 1) for i, (name, coeff) in enumerate(six.iteritems(final_variables_and_coefficients)): ia[i + 1] = self.problem._variables[name]._index va[i + 1] = float(coeff) glp_set_mat_row(problem, self._index, len(final_variables_and_coefficients), ia, va) else: raise Exception("Can't change coefficients if constraint is not associated with a model.")
def test_changing_variable_names_is_reflected_in_the_solver(self): model = Model(problem=glpk_read_cplex(TESTMODELPATH)) for i, variable in enumerate(model.variables): variable.name = "var" + str(i) self.assertEqual(variable.name, "var" + str(i)) self.assertEqual(glp_get_col_name(model.problem, variable._index), "var" + str(i))
def test_init_from_existing_problem(self): inner_prob = self.model.problem self.assertEqual(len(self.model.variables), glp_get_num_cols(inner_prob)) self.assertEqual(len(self.model.constraints), glp_get_num_rows(inner_prob)) self.assertEqual(self.model.variables.keys(), [glp_get_col_name(inner_prob, i) for i in range(1, glp_get_num_cols(inner_prob) + 1)]) self.assertEqual(self.model.constraints.keys(), [glp_get_row_name(inner_prob, j) for j in range(1, glp_get_num_rows(inner_prob) + 1)])
def get_clocks(problem: SwigPyObject) -> Iterable[Tuple[str, float]]: n_recipes = 0 for j in range(1, 1 + lp.glp_get_num_cols(problem)): clock = lp.glp_mip_col_val(problem, j) if clock: name = lp.glp_get_col_name(problem, j) yield name, clock n_recipes += 1 logger.info(f'{n_recipes} recipes in rate solution.')
def test_set_linear_coefficients_constraint(self): constraint = self.model.constraints.M_atp_c constraint.set_linear_coefficients({self.model.variables.R_Biomass_Ecoli_core_w_GAM: 666.}) num_cols = glp_get_num_cols(self.model.problem) ia = intArray(num_cols + 1) da = doubleArray(num_cols + 1) index = constraint._index num = glp_get_mat_row(self.model.problem, index, ia, da) for i in range(1, num + 1): col_name = glp_get_col_name(self.model.problem, ia[i]) if col_name == 'R_Biomass_Ecoli_core_w_GAM': self.assertEqual(da[i], 666.)
def test_set_linear_coefficients_constraint(self): constraint = self.model.constraints.M_atp_c constraint.set_linear_coefficients( {self.model.variables.R_Biomass_Ecoli_core_w_GAM: 666.}) num_cols = glp_get_num_cols(self.model.problem) ia = intArray(num_cols + 1) da = doubleArray(num_cols + 1) index = constraint._index num = glp_get_mat_row(self.model.problem, index, ia, da) for i in range(1, num + 1): col_name = glp_get_col_name(self.model.problem, ia[i]) if col_name == 'R_Biomass_Ecoli_core_w_GAM': self.assertEqual(da[i], 666.)
def _get_expression(self): if self.problem is not None: col_num = glp_get_num_cols(self.problem.problem) ia = intArray(col_num + 1) da = doubleArray(col_num + 1) nnz = glp_get_mat_row(self.problem.problem, self._index, ia, da) constraint_variables = [self.problem._variables[glp_get_col_name(self.problem.problem, ia[i])] for i in range(1, nnz + 1)] expression = symbolics.add( [symbolics.mul((symbolics.Real(da[i]), constraint_variables[i - 1])) for i in range(1, nnz + 1)]) self._expression = expression return self._expression
def _get_expression(self): if self.problem is not None: col_num = glp_get_num_cols(self.problem.problem) ia = intArray(col_num + 1) da = doubleArray(col_num + 1) nnz = glp_get_mat_row(self.problem.problem, self.index, ia, da) constraint_variables = [self.problem._variables[glp_get_col_name(self.problem.problem, ia[i])] for i in range(1, nnz + 1)] expression = sympy.Add._from_args( [sympy.Mul._from_args((sympy.RealNumber(da[i]), constraint_variables[i - 1])) for i in range(1, nnz + 1)]) self._expression = expression return self._expression
def solve_with_glpsol(glp_prob): """Solve glpk problem with glpsol commandline solver. Mainly for testing purposes. # Examples # -------- # >>> problem = glp_create_prob() # ... glp_read_lp(problem, None, "../tests/data/model.lp") # ... solution = solve_with_glpsol(problem) # ... print 'asdf' # 'asdf' # >>> print solution # 0.839784 # Returns # ------- # dict # A dictionary containing the objective value (key ='objval') # and variable primals. """ from swiglpk import glp_get_row_name, glp_get_col_name, glp_write_lp, glp_get_num_rows, glp_get_num_cols row_ids = [glp_get_row_name(glp_prob, i) for i in range(1, glp_get_num_rows(glp_prob) + 1)] col_ids = [glp_get_col_name(glp_prob, i) for i in range(1, glp_get_num_cols(glp_prob) + 1)] with tempfile.NamedTemporaryFile(suffix=".lp", delete=True) as tmp_file: tmp_file_name = tmp_file.name glp_write_lp(glp_prob, None, tmp_file_name) cmd = ['glpsol', '--lp', tmp_file_name, '-w', tmp_file_name + '.sol', '--log', '/dev/null'] term = check_output(cmd) log.info(term) try: with open(tmp_file_name + '.sol') as sol_handle: # print sol_handle.read() solution = dict() for i, line in enumerate(sol_handle.readlines()): if i <= 1 or line == '\n': pass elif i <= len(row_ids): solution[row_ids[i - 2]] = line.strip().split(' ') elif i <= len(row_ids) + len(col_ids) + 1: solution[col_ids[i - 2 - len(row_ids)]] = line.strip().split(' ') else: print(i) print(line) raise Exception("Argggh!") finally: os.remove(tmp_file_name + ".sol") return solution
def test_init_from_existing_problem(self): inner_prob = self.model.problem self.assertEqual(len(self.model.variables), glp_get_num_cols(inner_prob)) self.assertEqual(len(self.model.constraints), glp_get_num_rows(inner_prob)) self.assertEqual(self.model.variables.keys(), [ glp_get_col_name(inner_prob, i) for i in range(1, glp_get_num_cols(inner_prob) + 1) ]) self.assertEqual(self.model.constraints.keys(), [ glp_get_row_name(inner_prob, j) for j in range(1, glp_get_num_rows(inner_prob) + 1) ])
def _get_expression(self): if self.problem is not None: col_num = glp_get_num_cols(self.problem.problem) ia = intArray(col_num + 1) da = doubleArray(col_num + 1) nnz = glp_get_mat_row(self.problem.problem, self.index, ia, da) constraint_variables = [ self.problem._variables[glp_get_col_name( self.problem.problem, ia[i])] for i in range(1, nnz + 1) ] expression = sympy.Add._from_args([ sympy.Mul._from_args( (sympy.RealNumber(da[i]), constraint_variables[i - 1])) for i in range(1, nnz + 1) ]) self._expression = expression return self._expression
def _initialize_model_from_problem(self, problem): try: self.problem = problem glp_create_index(self.problem) except TypeError: raise TypeError("Provided problem is not a valid GLPK model.") row_num = glp_get_num_rows(self.problem) col_num = glp_get_num_cols(self.problem) for i in range(1, col_num + 1): var = Variable( glp_get_col_name(self.problem, i), lb=glp_get_col_lb(self.problem, i), ub=glp_get_col_ub(self.problem, i), problem=self, type=_GLPK_VTYPE_TO_VTYPE[ glp_get_col_kind(self.problem, i)] ) # This avoids adding the variable to the glpk problem super(Model, self)._add_variables([var]) variables = self.variables for j in range(1, row_num + 1): ia = intArray(col_num + 1) da = doubleArray(col_num + 1) nnz = glp_get_mat_row(self.problem, j, ia, da) constraint_variables = [variables[ia[i] - 1] for i in range(1, nnz + 1)] # Since constraint expressions are lazily retrieved from the solver they don't have to be built here # lhs = _unevaluated_Add(*[da[i] * constraint_variables[i - 1] # for i in range(1, nnz + 1)]) lhs = 0 glpk_row_type = glp_get_row_type(self.problem, j) if glpk_row_type == GLP_FX: row_lb = glp_get_row_lb(self.problem, j) row_ub = row_lb elif glpk_row_type == GLP_LO: row_lb = glp_get_row_lb(self.problem, j) row_ub = None elif glpk_row_type == GLP_UP: row_lb = None row_ub = glp_get_row_ub(self.problem, j) elif glpk_row_type == GLP_DB: row_lb = glp_get_row_lb(self.problem, j) row_ub = glp_get_row_ub(self.problem, j) elif glpk_row_type == GLP_FR: row_lb = None row_ub = None else: raise Exception( "Currently, optlang does not support glpk row type %s" % str(glpk_row_type) ) log.exception() if isinstance(lhs, int): lhs = symbolics.Integer(lhs) elif isinstance(lhs, float): lhs = symbolics.Real(lhs) constraint_id = glp_get_row_name(self.problem, j) for variable in constraint_variables: try: self._variables_to_constraints_mapping[variable.name].add(constraint_id) except KeyError: self._variables_to_constraints_mapping[variable.name] = set([constraint_id]) super(Model, self)._add_constraints( [Constraint(lhs, lb=row_lb, ub=row_ub, name=constraint_id, problem=self, sloppy=True)], sloppy=True ) term_generator = ( (glp_get_obj_coef(self.problem, index), variables[index - 1]) for index in range(1, glp_get_num_cols(problem) + 1) ) self._objective = Objective( symbolics.add( [symbolics.mul((symbolics.Real(term[0]), term[1])) for term in term_generator if term[0] != 0.] ), problem=self, direction={GLP_MIN: 'min', GLP_MAX: 'max'}[glp_get_obj_dir(self.problem)]) glp_scale_prob(self.problem, GLP_SF_AUTO)
def __init__(self, problem=None, *args, **kwargs): super(Model, self).__init__(*args, **kwargs) self.configuration = Configuration() if problem is None: self.problem = glp_create_prob() glp_create_index(self.problem) if self.name is not None: glp_set_prob_name(self.problem, str(self.name)) else: try: self.problem = problem glp_create_index(self.problem) except TypeError: raise TypeError("Provided problem is not a valid GLPK model.") row_num = glp_get_num_rows(self.problem) col_num = glp_get_num_cols(self.problem) for i in range(1, col_num + 1): var = Variable( glp_get_col_name(self.problem, i), lb=glp_get_col_lb(self.problem, i), ub=glp_get_col_ub(self.problem, i), problem=self, type=_GLPK_VTYPE_TO_VTYPE[ glp_get_col_kind(self.problem, i)] ) # This avoids adding the variable to the glpk problem super(Model, self)._add_variables([var]) variables = self.variables for j in range(1, row_num + 1): ia = intArray(col_num + 1) da = doubleArray(col_num + 1) nnz = glp_get_mat_row(self.problem, j, ia, da) constraint_variables = [variables[ia[i] - 1] for i in range(1, nnz + 1)] # Since constraint expressions are lazily retrieved from the solver they don't have to be built here # lhs = _unevaluated_Add(*[da[i] * constraint_variables[i - 1] # for i in range(1, nnz + 1)]) lhs = 0 glpk_row_type = glp_get_row_type(self.problem, j) if glpk_row_type == GLP_FX: row_lb = glp_get_row_lb(self.problem, j) row_ub = row_lb elif glpk_row_type == GLP_LO: row_lb = glp_get_row_lb(self.problem, j) row_ub = None elif glpk_row_type == GLP_UP: row_lb = None row_ub = glp_get_row_ub(self.problem, j) elif glpk_row_type == GLP_DB: row_lb = glp_get_row_lb(self.problem, j) row_ub = glp_get_row_ub(self.problem, j) elif glpk_row_type == GLP_FR: row_lb = None row_ub = None else: raise Exception( "Currently, optlang does not support glpk row type %s" % str(glpk_row_type) ) log.exception() if isinstance(lhs, int): lhs = sympy.Integer(lhs) elif isinstance(lhs, float): lhs = sympy.RealNumber(lhs) constraint_id = glp_get_row_name(self.problem, j) for variable in constraint_variables: try: self._variables_to_constraints_mapping[variable.name].add(constraint_id) except KeyError: self._variables_to_constraints_mapping[variable.name] = set([constraint_id]) super(Model, self)._add_constraints( [Constraint(lhs, lb=row_lb, ub=row_ub, name=constraint_id, problem=self, sloppy=True)], sloppy=True ) term_generator = ( (glp_get_obj_coef(self.problem, index), variables[index - 1]) for index in range(1, glp_get_num_cols(problem) + 1) ) self._objective = Objective( _unevaluated_Add( *[_unevaluated_Mul(sympy.RealNumber(term[0]), term[1]) for term in term_generator if term[0] != 0.]), problem=self, direction={GLP_MIN: 'min', GLP_MAX: 'max'}[glp_get_obj_dir(self.problem)]) glp_scale_prob(self.problem, GLP_SF_AUTO)
def test_changing_variable_names_is_reflected_in_the_solver(self): model = self.interface.Model(problem=glpk_read_cplex(TESTMODELPATH)) for i, variable in enumerate(model.variables): variable.name = "var" + str(i) self.assertEqual(variable.name, "var" + str(i)) self.assertEqual(glp_get_col_name(model.problem, variable._index), "var" + str(i))
def test_add_constraints(self): x = self.interface.Variable('x', lb=0, ub=1, type='binary') y = self.interface.Variable('y', lb=-181133.3, ub=12000., type='continuous') z = self.interface.Variable('z', lb=0., ub=10., type='integer') constr1 = self.interface.Constraint(0.3 * x + 0.4 * y + 66. * z, lb=-100, ub=0., name='test') constr2 = self.interface.Constraint(2.333 * x + y + 3.333, ub=100.33, name='test2') constr3 = self.interface.Constraint(2.333 * x + y + z, lb=-300) constr4 = self.interface.Constraint(x, lb=-300, ub=-300) constr5 = self.interface.Constraint(3 * x) self.model.add(constr1) self.model.add(constr2) self.model.add(constr3) self.model.add([constr4, constr5]) self.assertIn(constr1.name, self.model.constraints) self.assertIn(constr2.name, self.model.constraints) self.assertIn(constr3.name, self.model.constraints) self.assertIn(constr4.name, self.model.constraints) self.assertIn(constr5.name, self.model.constraints) # constr1 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr1._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 0.3, 'y': 0.4, 'z': 66.}) self.assertEqual(glp_get_row_type(self.model.problem, constr1._index), GLP_DB) self.assertEqual(glp_get_row_lb(self.model.problem, constr1._index), -100) self.assertEqual(glp_get_row_ub(self.model.problem, constr1._index), 0) # constr2 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr2._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 2.333, 'y': 1.}) self.assertEqual(glp_get_row_type(self.model.problem, constr2._index), GLP_UP) self.assertEqual(glp_get_row_lb(self.model.problem, constr2._index), -1.7976931348623157e+308) self.assertEqual(glp_get_row_ub(self.model.problem, constr2._index), 96.997) # constr3 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr3._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 2.333, 'y': 1., 'z': 1.}) self.assertEqual(glp_get_row_type(self.model.problem, constr3._index), GLP_LO) self.assertEqual(glp_get_row_lb(self.model.problem, constr3._index), -300) self.assertEqual(glp_get_row_ub(self.model.problem, constr3._index), 1.7976931348623157e+308) # constr4 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr4._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 1}) self.assertEqual(glp_get_row_type(self.model.problem, constr4._index), GLP_FX) self.assertEqual(glp_get_row_lb(self.model.problem, constr4._index), -300) self.assertEqual(glp_get_row_ub(self.model.problem, constr4._index), -300) # constr5 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr5._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 3}) self.assertEqual(glp_get_row_type(self.model.problem, constr5._index), GLP_FR) self.assertLess(glp_get_row_lb(self.model.problem, constr5._index), -1e30) self.assertGreater(glp_get_row_ub(self.model.problem, constr5._index), 1e30)
def test_add_constraints(self): x = Variable('x', lb=0, ub=1, type='binary') y = Variable('y', lb=-181133.3, ub=12000., type='continuous') z = Variable('z', lb=0., ub=10., type='integer') constr1 = Constraint(0.3 * x + 0.4 * y + 66. * z, lb=-100, ub=0., name='test') constr2 = Constraint(2.333 * x + y + 3.333, ub=100.33, name='test2') constr3 = Constraint(2.333 * x + y + z, lb=-300) constr4 = Constraint(x, lb=-300, ub=-300) constr5 = Constraint(3 * x) self.model.add(constr1) self.model.add(constr2) self.model.add(constr3) self.model.add([constr4, constr5]) self.assertIn(constr1.name, self.model.constraints) self.assertIn(constr2.name, self.model.constraints) self.assertIn(constr3.name, self.model.constraints) self.assertIn(constr4.name, self.model.constraints) self.assertIn(constr5.name, self.model.constraints) # constr1 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr1._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 0.3, 'y': 0.4, 'z': 66.}) self.assertEqual(glp_get_row_type(self.model.problem, constr1._index), GLP_DB) self.assertEqual(glp_get_row_lb(self.model.problem, constr1._index), -100) self.assertEqual(glp_get_row_ub(self.model.problem, constr1._index), 0) # constr2 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr2._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 2.333, 'y': 1.}) self.assertEqual(glp_get_row_type(self.model.problem, constr2._index), GLP_UP) self.assertEqual(glp_get_row_lb(self.model.problem, constr2._index), -1.7976931348623157e+308) self.assertEqual(glp_get_row_ub(self.model.problem, constr2._index), 96.997) # constr3 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr3._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 2.333, 'y': 1., 'z': 1.}) self.assertEqual(glp_get_row_type(self.model.problem, constr3._index), GLP_LO) self.assertEqual(glp_get_row_lb(self.model.problem, constr3._index), -300) self.assertEqual(glp_get_row_ub(self.model.problem, constr3._index), 1.7976931348623157e+308) # constr4 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr4._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 1}) self.assertEqual(glp_get_row_type(self.model.problem, constr4._index), GLP_FX) self.assertEqual(glp_get_row_lb(self.model.problem, constr4._index), -300) self.assertEqual(glp_get_row_ub(self.model.problem, constr4._index), -300) # constr5 ia = intArray(glp_get_num_rows(self.model.problem) + 1) da = doubleArray(glp_get_num_rows(self.model.problem) + 1) nnz = glp_get_mat_row(self.model.problem, constr5._index, ia, da) coeff_dict = dict() for i in range(1, nnz + 1): coeff_dict[glp_get_col_name(self.model.problem, ia[i])] = da[i] self.assertDictEqual(coeff_dict, {'x': 3}) self.assertEqual(glp_get_row_type(self.model.problem, constr5._index), GLP_FR) self.assertLess(glp_get_row_lb(self.model.problem, constr5._index), -1e30) self.assertGreater(glp_get_row_ub(self.model.problem, constr5._index), 1e30)