コード例 #1
0
ファイル: test_off_resonance.py プロジェクト: lamyj/sycomore
    def test_off_resonance(self):
        species = sycomore.Species(0 * Hz, 0 * Hz, 0 * um * um / ms)
        m0 = sycomore.Magnetization(0, 0, 1)

        pulse = sycomore.Pulse(90 * deg, math.pi * rad)
        pulse_duration = 1 * ms
        pulse_support_size = 101
        zero_crossings = 2

        # NOTE: in the absence of relaxation and diffusion, the TR is meaningless
        TR = 500 * ms
        slice_thickness = 1 * mm

        t0 = pulse_duration / (2 * zero_crossings)
        sinc_pulse = sycomore.HardPulseApproximation(
            pulse, sycomore.linspace(pulse_duration, pulse_support_size),
            sycomore.sinc_envelope(t0), 1 / t0, slice_thickness, "rf")

        refocalization = sycomore.TimeInterval(
            (TR - pulse_duration) / 2., -sinc_pulse.get_gradient_moment() / 2)

        model = sycomore.como.Model(
            species, m0, [["rf", sinc_pulse.get_time_interval()],
                          ["refocalization", refocalization]])

        model.apply_pulse(sinc_pulse)
        model.apply_time_interval("refocalization")

        frequencies = sycomore.linspace(60. * rad / ms, 201)
        magnetization = [
            model.isochromat(set(), sycomore.Point(), f) for f in frequencies
        ]

        root = os.environ["SYCOMORE_TEST_DATA"]
        with open(os.path.join(root, "baseline", "off_resonance.dat"),
                  "rb") as fd:
            contents = fd.read()
            baseline = struct.unpack((int(len(contents) / 8)) * "d", contents)

        self.assertEqual(len(baseline), 2 * len(magnetization))
        for i in range(len(magnetization)):
            self.assertAlmostEqual(sycomore.transversal(magnetization[i]),
                                   baseline[2 * i])
            self.assertAlmostEqual(magnetization[i][2], baseline[2 * i + 1])
コード例 #2
0
def update():
    start = time.time()

    slice_thickness = 1 * mm

    document = bokeh.plotting.curdoc()

    T1 = document.get_model_by_id("T1").value * ms
    T2 = document.get_model_by_id("T2").value * ms

    flip_angle = document.get_model_by_id("flip_angle").value * deg
    TE = document.get_model_by_id("TE").value * ms
    TR = document.get_model_by_id("TR").value * ms

    species = sycomore.Species(T1, T2)
    repetitions = int(4 * species.T1 / TR)

    phase_steps = sycomore.linspace(0 * deg, 180 * deg, 100)

    steady_states = [
        rf_spoiling(sycomore.epg.Regular(species), flip_angle, TE, TR,
                    slice_thickness, phase_step, repetitions)[-1]
        for phase_step in phase_steps
    ]

    magnitude_data = document.get_model_by_id("magnitude_data")
    magnitude_data.data = {
        "x": [x.convert_to(deg) for x in phase_steps],
        "y": [numpy.abs(x) for x in steady_states]
    }

    ideal_spoiling = compute_ideal_spoiling(species, flip_angle, TR)
    ideal_spoiling_data = document.get_model_by_id("ideal_spoiling_data")
    ideal_spoiling_data.data = {
        "x": (phase_steps[0].convert_to(deg), phase_steps[-1].convert_to(deg)),
        "y": (ideal_spoiling, ideal_spoiling)
    }

    stop = time.time()
    document.get_model_by_id("runtime").text = "Runtime: {}".format(
        utils.to_eng_string(stop - start, "s", 3))
コード例 #3
0
ファイル: test_GRE.py プロジェクト: lamyj/sycomore
    def test_real(self):
        t0 = self.pulse_duration/(2*self.zero_crossings)
        sinc_pulse = sycomore.HardPulseApproximation(
            sycomore.Pulse(self.flip_angle, 0*rad),
            sycomore.linspace(self.pulse_duration, self.pulse_support_size),
            sycomore.sinc_envelope(t0), 1/t0, self.slice_thickness, "rf")

        half_echo = sycomore.TimeInterval(
            (self.TR-self.pulse_duration)/2.,
            -sinc_pulse.get_gradient_moment()/2)

        model = sycomore.como.Model(
            self.species, self.m0, [
                ["rf", sinc_pulse.get_time_interval()],
                ["half_echo", half_echo]])

        magnetization = []
        for i in range(self.TR_count):
            sinc_pulse.set_phase((math.pi/3+(i%2)*math.pi)*rad)
            model.apply_pulse(sinc_pulse)
            model.apply_time_interval("half_echo")
            magnetization.append(model.isochromat())
            model.apply_time_interval("half_echo")

        root = os.environ["SYCOMORE_TEST_DATA"]
        with open(os.path.join(root, "baseline", "GRE_real.dat"), "rb") as fd:
            contents = fd.read()
            baseline = struct.unpack((int(len(contents)/8))*"d", contents)

        self.assertEqual(len(baseline), 3*self.TR_count)
        for i in range(self.TR_count):
            m_test = magnetization[i]
            m_baseline = baseline[3*i:3*(i+1)]

            self.assertAlmostEqual(m_test[0], m_baseline[0])
            self.assertAlmostEqual(m_test[1], m_baseline[1])
            self.assertAlmostEqual(m_test[2], m_baseline[2])
コード例 #4
0
def update():
    start = time.time()

    document = bokeh.plotting.curdoc()

    T1 = document.get_model_by_id("T1").value * ms
    T2 = document.get_model_by_id("T2").value * ms

    excitation = document.get_model_by_id("excitation").value * deg
    TE = document.get_model_by_id("TE").value * ms
    refocalization = document.get_model_by_id("refocalization").value * deg
    train_length = document.get_model_by_id("train_length").value
    TR = document.get_model_by_id("TR").value * ms
    repetitions = document.get_model_by_id("repetitions").value

    species = sycomore.Species(T1, T2)

    m0 = [0., 0., 1., 1.]

    voxel_size = 1 * mm
    positions_count = 192

    steps = 1 + int(repetitions * TR / time_step)
    times = sycomore.linspace(0 * s, repetitions * TR, steps)

    excitation = sycomore.bloch.pulse(excitation, 90 * deg)
    refocalization = sycomore.bloch.pulse(refocalization, 0 * rad)

    positions = sycomore.linspace(voxel_size, positions_count)
    gradient = (
        2 * numpy.pi * rad / sycomore.gamma  # T*s
        / voxel_size  # T*s/m
        / (TE / 2))

    time_intervals = numpy.asarray([
        sycomore.bloch.time_interval(species,
                                     time_step,
                                     gradient_amplitude=gradient,
                                     position=position)
        for position in positions
    ])

    magnetizations = numpy.full((positions_count, steps, 4), m0)
    # WARNING: floating-point modulo arithmetic is not reliable (pulses are
    # missed). Switch to integer arithmetic in ms; this assumes that
    # time_step >= 2*ms.
    TE_ms = int(numpy.round(TE.convert_to(ms)))
    TR_ms = int(numpy.round(TR.convert_to(ms)))
    for step, t in enumerate(times[:-1]):

        t_in_TR = int(numpy.round(t.convert_to(ms))) % TR_ms
        t_in_TE = t_in_TR % TE_ms

        if t_in_TR == 0 and step != len(times) - 1:
            pulse = excitation
        elif t_in_TE == TE_ms // 2:
            echo = (t_in_TR - TE_ms // 2) // TE_ms
            if echo < train_length:
                pulse = refocalization
            else:
                pulse = numpy.identity(4)
        else:
            pulse = numpy.identity(4)
        magnetizations[:, step + 1] = numpy.einsum("ij,oj->oi", pulse,
                                                   magnetizations[:, step])
        magnetizations[:,
                       step + 1] = numpy.einsum("oij,oj->oi", time_intervals,
                                                magnetizations[:, step + 1])

    signals = [m[:, 0] + 1j * m[:, 1] for m in magnetizations]
    phases = numpy.angle(signals)

    times_ms = [x.convert_to(ms) for x in times]

    magnitude_data = document.get_model_by_id("magnitude_data")
    magnitude_data.data = {
        "x": times_ms,
        "y": numpy.abs(numpy.mean(signals, axis=0))
    }

    phase_data = document.get_model_by_id("phase_data")
    phase_data.data = {
        "x": times_ms,
        "y_min": numpy.min(phases, axis=0),
        "y_max": numpy.max(phases, axis=0)
    }

    stop = time.time()
    document.get_model_by_id("runtime").text = "Runtime: {}".format(
        utils.to_eng_string(stop - start, "s", 1))
コード例 #5
0
def update():
    start = time.time()

    slice_thickness = 1 * mm

    document = bokeh.plotting.curdoc()

    pulse_support_size = 101

    T1 = document.get_model_by_id("T1").value * ms
    T2 = document.get_model_by_id("T2").value * ms

    flip_angle = document.get_model_by_id("flip_angle").value * deg
    duration = document.get_model_by_id("duration").value * ms
    zero_crossings = document.get_model_by_id("zero_crossings").value

    t0 = duration / (2 * zero_crossings)

    support = sycomore.linspace(duration, pulse_support_size)
    envelope = sycomore.sinc_envelope(t0)
    bandwidth = 1 / t0

    sinc_pulse = sycomore.HardPulseApproximation(
        sycomore.Pulse(flip_angle, 0 * deg), support, envelope, bandwidth,
        slice_thickness, "")
    gradient_duration = sinc_pulse.get_time_interval().duration
    gradient_amplitude = (sinc_pulse.get_time_interval().gradient_moment[2] /
                          (2 * numpy.pi * sycomore.gamma) /
                          sinc_pulse.get_time_interval().duration)

    species = sycomore.Species(T1, T2)

    model = sycomore.epg.Discrete3D(species)
    for index, hard_pulse in enumerate(sinc_pulse.get_pulses()):
        model.apply_pulse(hard_pulse.angle, hard_pulse.phase)
        model.apply_time_interval(gradient_duration,
                                  [0 * T / m, 0 * T / m, gradient_amplitude])

    # Unfold the F and the Z states: create an array for all orders, including
    # empty ones.
    max_order = numpy.max(model.orders, axis=0)[2]
    max_bin = int(max_order / model.bin_width)
    F = numpy.zeros(2 * max_bin + 1, model.states.dtype)
    Z = numpy.zeros(2 * max_bin + 1, model.states.dtype)
    for order, state in zip(model.orders, model.states):
        bin = int(order[2] / model.bin_width)
        # WARNING: since we de-bin the orders, we need to scale the population
        F[bin] = F.shape[0] * state[0]
        Z[bin] = F.shape[0] * state[2]

        if order != 0:
            F[-bin] = F.shape[0] * state[1].conj()
            Z[-bin] = F.shape[0] * state[2]

    # Perform iFFT, and shift it since the spatial axis must be centered on zero.
    M_transversal = numpy.fft.fftshift(numpy.fft.ifft(F))
    M_longitudinal = numpy.fft.fftshift(numpy.fft.ifft(Z))

    # Frequency ranges from -max_order to +max_order: the spatial step size
    # is then given by the following expression.
    step = (1 / (2 * max_order)).convert_to(mm)

    x_axis = step * numpy.arange(len(M_transversal))
    x_axis -= 0.5 * (x_axis[0] + x_axis[-1])

    # Crop between [-slice_thickness, +slice_thickness]
    slice_ = (
        numpy.searchsorted(x_axis, -slice_thickness.convert_to(mm), "left"),
        numpy.searchsorted(x_axis, +slice_thickness.convert_to(mm), "right"),
    )
    x_axis = x_axis[slice_[0]:slice_[1]]
    M_transversal = M_transversal[slice_[0]:slice_[1]]
    M_longitudinal = M_longitudinal[slice_[0]:slice_[1]]

    transversal_data = document.get_model_by_id("transversal_data")
    transversal_data.data = {"x": x_axis, "y": numpy.abs(M_transversal)}

    longitudinal_data = document.get_model_by_id("longitudinal_data")
    longitudinal_data.data = {"x": x_axis, "y": numpy.abs(M_longitudinal)}

    stop = time.time()
    document.get_model_by_id("runtime").text = "Runtime: {}".format(
        utils.to_eng_string(stop - start, "s", 3))
コード例 #6
0
    def test_pulse_profile(self):
        species = sycomore.Species(0*Hz, 0*Hz, 0*um*um/ms)
        m0 = sycomore.Magnetization(0, 0, 1)

        pulse = sycomore.Pulse(90*deg, math.pi*rad)
        pulse_duration = 1*ms
        pulse_support_size = 101
        zero_crossings = 2

        # NOTE: in the absence of relaxation and diffusion, the TR is meaningless
        TR = 500*ms;
        slice_thickness = 1*mm;

        sampling_support_size = 501

        t0 = pulse_duration/(2*zero_crossings)
        sinc_pulse = sycomore.HardPulseApproximation(
            pulse,
            sycomore.linspace(pulse_duration, pulse_support_size),
            sycomore.sinc_envelope(t0), 1/t0, slice_thickness, "rf")

        refocalization = sycomore.TimeInterval(
            (TR-pulse_duration)/2., -sinc_pulse.get_gradient_moment()/2)

        sampling_locations = sycomore.linspace(
            sycomore.Point(0*m, 0*m, 2*slice_thickness), sampling_support_size)

        model = sycomore.como.Model(
            species, m0, [
                ["rf", sinc_pulse.get_time_interval()],
                ["refocalization", refocalization]])

        model.apply_pulse(sinc_pulse)

        before_refocalization = [
            model.isochromat(set(), p) for p in sampling_locations]

        model.apply_time_interval("refocalization")

        after_refocalization = [
            model.isochromat(set(), p) for p in sampling_locations]

        root = os.environ["SYCOMORE_TEST_DATA"]
        with open(os.path.join(root, "baseline", "pulse_profile.dat"), "rb") as fd:
            contents = fd.read()
            baseline = struct.unpack((int(len(contents)/8))*"d", contents)

        self.assertEqual(len(baseline), 2*3*len(sampling_locations))
        for i in range(len(sampling_locations)):
            m_test = before_refocalization[i]
            m_baseline = baseline[3*i:3*(i+1)]

            self.assertAlmostEqual(m_test[0], m_baseline[0])
            self.assertAlmostEqual(m_test[1], m_baseline[1])
            self.assertAlmostEqual(m_test[2], m_baseline[2])
        for i in range(len(sampling_locations)):
            m_test = after_refocalization[i]
            m_baseline = baseline[
                3*(i+len(sampling_locations)):3*(i+len(sampling_locations)+1)]

            self.assertAlmostEqual(m_test[0], m_baseline[0])
            self.assertAlmostEqual(m_test[1], m_baseline[1])
            self.assertAlmostEqual(m_test[2], m_baseline[2])