コード例 #1
0
 def box_nms(node, params, graph):
     name, op_name = node.attr('name'), node.attr('op_name')
     childs, attr = sutils.sym_iter(
         node.get_children()), node.list_attr()
     if op_name == '_greater_scalar':
         valid_thresh = sutils.get_attr(attr, 'scalar', 0)
         attr['scalar'] = int(valid_thresh * oscales[1])
         node = sutils.get_mxnet_op(op_name)(*childs, **attr, name=name)
     elif op_name == '_contrib_box_nms':
         valid_thresh = sutils.get_attr(attr, 'valid_thresh', 0)
         attr['valid_thresh'] = int(valid_thresh * oscales[1])
         node = sutils.get_mxnet_op(op_name)(*childs, **attr, name=name)
     return node
コード例 #2
0
def split_model(symbol, params, inputs_ext, keys, logger=logging):
    infer_shapes = spass.sym_infer_shape(symbol, params, inputs_ext)
    bases = [s for s in sutils.topo_sort(symbol) if s.attr('name') in keys]
    base = mx.sym.Group(bases)
    base_params = {k: params[k] for k in base.list_inputs() if k in params}
    base_inputs_ext = inputs_ext

    graph = {}
    inputs = {k: v for k, v in inputs_ext.items()}
    for sym in sutils.topo_sort(symbol):
        name, op_name = sym.attr('name'), sym.attr('op_name')
        childs, attr = sutils.sym_iter(sym.get_children()), sym.list_attr()
        node = sym
        if childs is not None:
            childs = [graph[c.attr('name')] for c in childs]
            node = sutils.get_mxnet_op(op_name)(*childs, **attr, name=name)
        if name in keys:
            node = mx.sym.var(name)
            inputs[name] = {'shape': infer_shapes[name]}
        graph[name] = node
    nodes = [graph[sym.attr('name')] for sym in symbol]
    top = nodes[0] if len(nodes) == 1 else mx.sym.Group(nodes)
    top_params = {k: params[k] for k in top.list_inputs() if k in params}
    top_inputs_ext = {k: v for k, v in inputs.items() if k not in inputs_ext}

    return base, base_params, base_inputs_ext, top, top_params, top_inputs_ext
コード例 #3
0
ファイル: main.py プロジェクト: neo-lin-cortex/cvm-runtime
        def op_scales(node, params, graph):
            name, op_name = node.attr('name'), node.attr('op_name')
            childs, attr = sutils.sym_iter(node.get_children()), node.list_attr()
            if name in attr_scales:
                scales = attr_scales[name]
            elif op_name in attr_scales:
                scales = attr_scales[op_name]
            else:
                return node

            for k, v in scales.items():
                assert k in attr, "attribute %s not in %s(%s) with %s" \
                    % (k, op_name, name, attr.keys())
                attr[k] = int(float(attr[k]) * oscales_dict[v])
                node = sutils.get_mxnet_op(op_name)(*childs, **attr, name=name)
            return node
コード例 #4
0
def merge_model(base, base_params, base_inputs_ext, top, top_params, maps):
    graph = {maps[c.attr('name')]: c for c in base}
    for sym in sutils.topo_sort(top):
        name, op_name = sym.attr('name'), sym.attr('op_name')
        childs, attr = sutils.sym_iter(sym.get_children()), sym.list_attr()
        node = sym
        if childs is not None:
            childs = [graph[c.attr('name')] for c in childs]
            node = sutils.get_mxnet_op(op_name)(*childs, **attr, name=name)
        if name in graph:
            node = graph[name]
        graph[name] = node
    symbols = [graph[s.attr('name')] for s in top]
    symbol = symbols[0] if len(symbols) == 1 else mx.sym.Group(symbols)
    params = base_params
    params.update(top_params)
    params = {k: params[k] for k in symbol.list_inputs() if k in params}
    return symbol, params
コード例 #5
0
def merge_model(base_model, top_model, base_name_maps=None, callback=None):
    base_name_maps = {} if base_name_maps is None else base_name_maps
    graph = {base_name_maps.get(c.attr('name'), c.attr('name')):c \
        for c in base_model.symbol}
    for sym in topo_sort(top_model.symbol):
        name, op_name = sym.attr('name'), sym.attr('op_name')
        childs, attr = sym_iter(sym.get_children()), sym.list_attr()
        node = sym
        if childs is not None:
            childs = [sutils.get_node(c, graph) for c in childs]
            node = get_mxnet_op(op_name)(*childs, **attr, name=name)
        if name in graph:
            node = graph[name]
        if callback is not None:
            node = callback(node, top_model.params, graph)
        graph[name] = node
    nodes = [sutils.get_node(s, graph) for s in top_model.symbol]
    symbol = nodes[0] if len(nodes) == 1 else mx.sym.Group(nodes)
    params = base_model.params
    params.update(top_model.params)
    return Model(symbol, params)
コード例 #6
0
    def _fuse_pad_eq(sym, params, **kwargs):
        name, op_name = sym.attr('name'), sym.attr('op_name')
        attr, childs = sym.list_attr(), sutils.sym_iter(sym.get_children())

        ret = sym
        if op_name not in ['Convolution', 'Pooling'] or \
                childs[0].attr('op_name') != 'Pad':
            return ret, params

        if 'pad' in attr:
            assert sutils.get_attr(attr, 'pad') == (0, 0)

        cattr = childs[0].list_attr()
        pad_width = sutils.get_attr(cattr, 'pad_width')
        if len(pad_width) != 8 or pad_width[4] != pad_width[5] or \
                pad_width[6] != pad_width[7]:
            return ret, params

        attr['pad'] = (pad_width[4], pad_width[6])
        X = sutils.sym_iter(childs[0].get_children()) + childs[1:]
        ret = sutils.get_mxnet_op(op_name)(*X, **attr)

        return ret, params
コード例 #7
0
def split_model(model, keys):
    symbol, params = model.symbol, model.params
    nodes = [s for s in topo_sort(symbol) if s.attr('name') in keys]
    base = nodes[0] if len(nodes) == 1 else mx.sym.Group(nodes)
    base_params = {k: params[k] for k in base.list_inputs() if k in params}

    graph = {}
    infer_shapes = tpass.infer_shape(symbol, params)
    for sym in topo_sort(symbol):
        name, op_name = sym.attr('name'), sym.attr('op_name')
        childs, attr = sym_iter(sym.get_children()), sym.list_attr()
        node = sym
        if childs is not None:
            childs = [sutils.get_node(c, graph) for c in childs]
            node = get_mxnet_op(op_name)(*childs, **attr, name=name)
        if name in keys:
            node = mx.sym.var(name, \
                shape=infer_shapes[name][sutils.get_entry_id(sym)])
        graph[name] = node
    nodes = [sutils.get_node(c, graph) for c in symbol]
    top = nodes[0] if len(nodes) == 1 else mx.sym.Group(nodes)
    top_params = {k: params[k] for k in top.list_inputs() if k in params}

    return Model(base, base_params), Model(top, top_params)
コード例 #8
0
 def _impl(inputs, attrs, params):
     assert len(inputs) == 2, \
             "{} take 2 inputs, {} given".format(name, len(inputs))
     return sutils.get_mxnet_op(name)(*inputs)