def qam64_map_demap_chain(): constellation_order = 6 snr_db = 20 constellation, bits_rep = cstl.generate_gray_constellation( constellation_order) print(constellation) print(bits_rep) app_llrs = np.zeros(constellation_order) for i in range(2): for j in range(2): for k in range(2): for l in range(2): for m in range(2): for n in range(2): bits = np.array((i, j, k, l, m, n)) print(bits) s = map_to_constellation(bits, constellation) print(s) l_prob = calculate_log_probability_vector( s, constellation, snr_db) print(l_prob) llrs = calculate_64qam_llrs_messages( app_llrs, l_prob) llrs = np.array(llrs) print(llrs) hat_bits = decide_bits(llrs) print(hat_bits) print(np.all(bits == hat_bits)) if not np.all(bits == hat_bits): raise RuntimeError( '64QAM Mapping --> Demapping fails!')
def qam16_map_demap_chain(): constellation_order = 4 snr_db = 20 constellation, bits_rep = cstl.generate_gray_constellation( constellation_order) print(constellation) print(bits_rep) app_llrs = np.zeros(constellation_order) for i in range(2): for j in range(2): for k in range(2): for l in range(2): bits = np.array((i, j, k, l)) # print(utils.pack_bits(bits, 4), bits) app_llrs = 100. * (2. * bits - 1) print(app_llrs) s = map_to_constellation(bits, constellation) print(s) l_prob = calculate_log_probability_vector( s, constellation, snr_db) print(l_prob) llrs = calculate_16qam_llrs_messages(app_llrs, l_prob) # llrs = np.array(llrs) print(llrs) hat_bits = decide_bits(llrs) print(hat_bits) print(np.all(bits == hat_bits)) if not np.all(bits == hat_bits): raise RuntimeError( '16QAM Mapping --> Demapping fails!')
def verify_vector_snr(self, constellation_order, nbits): constellation, bits_rep = generate_gray_constellation( constellation_order) data = np.random.randint(0, 2, constellation_order * nbits).astype(np.uint8) symbols = map_to_constellation(data, constellation) snr = np.arange(35, dtype=np.float) + 1. snr_step = 2.5 tags = [] offsets = (0, 50, 400, 450, 800) last_offset = 0 ref = np.array([], dtype=np.float32) for offset in offsets: valuevector = pmt.init_f32vector(snr.size, snr.tolist()) t = gr.tag_utils.python_to_tag( (offset, pmt.string_to_symbol("snr"), valuevector)) tags.append(t) syms = symbols[last_offset:offset] # print(syms.size) ref_ln_probs = calculate_symbol_log_probabilities( syms, constellation, snr - snr_step) refs = calculate_llrs(ref_ln_probs) ref = np.concatenate((ref, refs)) last_offset = offset snr += snr_step syms = symbols[last_offset:] ref_ln_probs = calculate_symbol_log_probabilities( syms, constellation, snr - snr_step) refs = calculate_llrs(ref_ln_probs) ref = np.concatenate((ref, refs)) ref *= .5 # print(f'test: Order={constellation_order}, bits={nbits}/{data.size}, packed={is_packed}') mapper = symbolmapping.symbol_demapper_cf(constellation_order, "GRAY", "snr") src = blocks.vector_source_c(symbols, False, 1, tags) snk = blocks.vector_sink_f() self.tb.connect(src, mapper, snk) self.tb.run() res = np.array(snk.data()) if constellation_order > 3: self.assertFloatTuplesAlmostEqual(tuple(np.sign(res)), tuple(np.sign(ref))) else: # for i in range(ref.size - 10): # if not np.abs(ref[i + 10] - res[i + 10]) < 1e-5: # print(i, ref[i], res[i], np.abs(ref[i] - res[i]) < 1e-5) self.assertFloatTuplesAlmostEqual(tuple(res), tuple(ref), 5)
def qpsk_map_demap_chain(): constellation_order = 2 snr_db = 20 constellation, bits_rep = cstl.generate_gray_constellation( constellation_order) print(constellation) print(bits_rep) app_llrs = np.zeros(constellation_order) for i in range(2): for j in range(2): bits = np.array((i, j)) print(bits) s = map_to_constellation(bits, constellation) print(s) l_prob = calculate_log_probability_vector(s, constellation, snr_db) print(l_prob) llr0, llr1 = calculate_qpsk_llrs_messages(app_llrs, l_prob) print(llr0, llr1) hat_bits = decide_bits((llr0, llr1)) print(hat_bits) print(np.all(bits == hat_bits)) if not np.all(bits == hat_bits): raise RuntimeError('QPSK Mapping --> Demapping fails!')
def main(): np.set_printoptions(precision=2) qpsk_map_demap_chain() qam16_map_demap_chain() qam64_map_demap_chain() try: calculate_llrs(np.array([ [1, 4, 5, 6, 7, 8, 4, 3], ])) except NotImplementedError: pass # return rx = .6 + .7j constellation_order = 4 snr_db = 20 constellation, bits_rep = cstl.generate_gray_constellation( constellation_order) l_prob = calculate_log_probability_vector(rx, constellation, snr_db) # print(constellation) # print(bits_rep) # print(l_prob) llr0, llr1 = calculate_qpsk_log_probs_to_llrs(l_prob) calculate_qpsk_probs_to_llrs(np.exp(l_prob)) # print(llr0) # print(llr1) bits = np.random.randint(0, 2, constellation_order * 300) symbols = map_to_constellation(bits, constellation) # print(symbols) # symbols += utils.generate_complex_noise_symbols(len(symbols), snr_db) log_probs = calculate_symbol_log_probabilities(symbols, constellation, snr_db) calculate_16qam_llrs(log_probs)
def verify_constellation_unpacked(self, constellation_order, nbits, is_packed): constellation, bits_rep = generate_gray_constellation( constellation_order) data = np.random.randint(0, 2, constellation_order * nbits).astype(np.uint8) ref = map_to_constellation(data, constellation) if is_packed: data = np.packbits(data) # print(f'test: Order={constellation_order}, bits={nbits}/{data.size}, packed={is_packed}') mapper = symbolmapping.symbol_mapper_bc(constellation_order, "GRAY", is_packed) src = blocks.vector_source_b(data) snk = blocks.vector_sink_c() self.tb.connect(src, mapper, snk) self.tb.run() res = np.array(snk.data()) self.assertComplexTuplesAlmostEqual(tuple(res), tuple(ref), 6)