コード例 #1
0
def test_normal_qr_transform():
    np.random.seed(9283)

    N = 10
    M = 3
    X_tt = tt.matrix("X")
    X = np.random.normal(10, 1, size=N)
    X = np.c_[np.ones(10), X, X * X]
    X_tt.tag.test_value = X

    V_tt = tt.vector("V")
    V_tt.tag.test_value = np.ones(N)

    a_tt = tt.vector("a")
    R_tt = tt.vector("R")
    a_tt.tag.test_value = np.random.normal(size=M)
    R_tt.tag.test_value = np.abs(np.random.normal(size=M))

    beta_rv = NormalRV(a_tt, R_tt, name="\\beta")

    E_y_rv = X_tt.dot(beta_rv)
    E_y_rv.name = "E_y"
    Y_rv = NormalRV(E_y_rv, V_tt, name="Y")

    y_tt = tt.as_tensor_variable(Y_rv.tag.test_value)
    y_tt.name = "y"
    y_obs_rv = observed(y_tt, Y_rv)
    y_obs_rv.name = "y_obs"

    (res, ) = run(1, var("q"), normal_qr_transform(y_obs_rv, var("q")))

    new_node = {eval_and_reify_meta(k): eval_and_reify_meta(v) for k, v in res}

    # Make sure the old-to-new `beta` conversion is correct.
    t_Q, t_R = np.linalg.qr(X)
    Coef_new_value = np.linalg.inv(t_R)
    np.testing.assert_array_almost_equal(
        Coef_new_value, new_node[beta_rv].owner.inputs[0].tag.test_value)

    # Make sure the new `beta_tilde` has the right standard normal distribution
    # parameters.
    beta_tilde_node = new_node[beta_rv].owner.inputs[1]
    np.testing.assert_array_almost_equal(
        np.r_[0.0, 0.0, 0.0], beta_tilde_node.owner.inputs[0].tag.test_value)
    np.testing.assert_array_almost_equal(
        np.r_[1.0, 1.0, 1.0], beta_tilde_node.owner.inputs[1].tag.test_value)

    Y_new = new_node[y_obs_rv].owner.inputs[1]
    assert Y_new.owner.inputs[0].owner.inputs[1] == beta_tilde_node

    np.testing.assert_array_almost_equal(
        t_Q, Y_new.owner.inputs[0].owner.inputs[0].tag.test_value)
コード例 #2
0
def test_notex_print():

    tt_normalrv_noname_expr = tt.scalar('b') * NormalRV(
        tt.scalar('\\mu'), tt.scalar('\\sigma'))
    expected = 'b in R, \\mu in R, \\sigma in R\na ~ N(\\mu, \\sigma**2) in R\n(b * a)'
    assert tt_pprint(tt_normalrv_noname_expr) == expected

    # Make sure the constant shape is show in values and not symbols.
    tt_normalrv_name_expr = tt.scalar('b') * NormalRV(
        tt.scalar('\\mu'), tt.scalar('\\sigma'), size=[2, 1], name='X')
    expected = 'b in R, \\mu in R, \\sigma in R\nX ~ N(\\mu, \\sigma**2) in R**(2 x 1)\n(b * X)'
    assert tt_pprint(tt_normalrv_name_expr) == expected

    tt_2_normalrv_noname_expr = tt.matrix('M') * NormalRV(
        tt.scalar('\\mu_2'), tt.scalar('\\sigma_2'))
    tt_2_normalrv_noname_expr *= (tt.scalar('b') * NormalRV(
        tt_2_normalrv_noname_expr, tt.scalar('\\sigma')) + tt.scalar('c'))
    expected = 'M in R**(N^M_0 x N^M_1), \\mu_2 in R, \\sigma_2 in R\nb in R, \\sigma in R, c in R\na ~ N(\\mu_2, \\sigma_2**2) in R, d ~ N((M * a), \\sigma**2) in R**(N^d_0 x N^d_1)\n((M * a) * ((b * d) + c))'
    assert tt_pprint(tt_2_normalrv_noname_expr) == expected
コード例 #3
0
ファイル: test_pymc3.py プロジェクト: pymc-devs/symbolic-pymc
def test_convert_rv_to_dist_shape():

    # Make sure we use the `ShapeFeature` to get the shape info
    X_rv = NormalRV(np.r_[1, 2], 2.0, name="X_rv")
    fgraph = FunctionGraph(tt_inputs([X_rv]), [X_rv],
                           features=[tt.opt.ShapeFeature()])

    with pm.Model():
        res = convert_rv_to_dist(fgraph.outputs[0].owner, None)

    assert isinstance(res.distribution, pm.Normal)
    assert np.array_equal(res.distribution.shape, np.r_[2])
コード例 #4
0
ファイル: test_utils.py プロジェクト: pymc-devs/symbolic-pymc
def test_is_random_variable():

    X_rv = NormalRV(0, 1)
    res = is_random_variable(X_rv)
    assert res == (X_rv, X_rv)

    def scan_fn():
        Y_t = NormalRV(0, 1, name="Y_t")
        return Y_t

    Y_rv, scan_updates = theano.scan(
        fn=scan_fn,
        outputs_info=[{}],
        n_steps=10,
    )

    res = is_random_variable(Y_rv)
    assert res == (Y_rv, Y_rv.owner.op.outputs[0])
コード例 #5
0
def test_Normal_ShapeFeature():
    M_tt = tt.iscalar("M")
    M_tt.tag.test_value = 3
    sd_tt = tt.scalar("sd")
    sd_tt.tag.test_value = 1.0

    d_rv = NormalRV(tt.ones((M_tt, )), sd_tt, size=(2, M_tt))
    d_rv.tag.test_value

    fg = FunctionGraph(
        [i for i in tt_inputs([d_rv]) if not isinstance(i, tt.Constant)],
        [d_rv],
        clone=True,
        features=[tt.opt.ShapeFeature()],
    )
    s1, s2 = fg.shape_feature.shape_of[fg.memo[d_rv]]

    assert get_test_value(s1) == get_test_value(d_rv).shape[0]
    assert get_test_value(s2) == get_test_value(d_rv).shape[1]
コード例 #6
0
def test_Normal_infer_shape():
    M_tt = tt.iscalar("M")
    M_tt.tag.test_value = 3
    sd_tt = tt.scalar("sd")
    sd_tt.tag.test_value = 1.0

    test_params = [
        ([tt.as_tensor_variable(1.0), sd_tt], None),
        ([tt.as_tensor_variable(1.0), sd_tt], (M_tt, )),
        ([tt.as_tensor_variable(1.0), sd_tt], (2, M_tt)),
        ([tt.zeros((M_tt, )), sd_tt], None),
        ([tt.zeros((M_tt, )), sd_tt], (M_tt, )),
        ([tt.zeros((M_tt, )), sd_tt], (2, M_tt)),
        ([tt.zeros((M_tt, )), tt.ones((M_tt, ))], None),
        ([tt.zeros((M_tt, )), tt.ones((M_tt, ))], (2, M_tt)),
    ]
    for args, size in test_params:
        rv = NormalRV(*args, size=size)
        rv_shape = tuple(NormalRV._infer_shape(size or (), args, None))
        assert tuple(get_test_value(rv_shape)) == tuple(
            get_test_value(rv).shape)
コード例 #7
0
def test_scale_loc_transform():
    tt.config.compute_test_value = "ignore"

    rand_state = theano.shared(np.random.RandomState())
    mu_a = NormalRV(0.0, 100**2, name="mu_a", rng=rand_state)
    sigma_a = HalfCauchyRV(5, name="sigma_a", rng=rand_state)
    mu_b = NormalRV(0.0, 100**2, name="mu_b", rng=rand_state)
    sigma_b = HalfCauchyRV(5, name="sigma_b", rng=rand_state)
    county_idx = np.r_[1, 1, 2, 3]
    # We want the following for a, b:
    # N(m, S) -> m + N(0, 1) * S
    a = NormalRV(mu_a,
                 sigma_a,
                 size=(len(county_idx), ),
                 name="a",
                 rng=rand_state)
    b = NormalRV(mu_b,
                 sigma_b,
                 size=(len(county_idx), ),
                 name="b",
                 rng=rand_state)
    radon_est = a[county_idx] + b[county_idx] * 7
    eps = HalfCauchyRV(5, name="eps", rng=rand_state)
    radon_like = NormalRV(radon_est, eps, name="radon_like", rng=rand_state)
    radon_like_rv = observed(tt.as_tensor_variable(np.r_[1.0, 2.0, 3.0, 4.0]),
                             radon_like)

    q_lv = var()

    (expr_graph, ) = run(
        1, q_lv,
        non_obs_walko(partial(reduceo, scale_loc_transform), radon_like_rv,
                      q_lv))

    radon_like_rv_opt = expr_graph.reify()

    assert radon_like_rv_opt.owner.op == observed

    radon_like_opt = radon_like_rv_opt.owner.inputs[1]
    radon_est_opt = radon_like_opt.owner.inputs[0]

    # These should now be `tt.add(mu_*, ...)` outputs.
    a_opt = radon_est_opt.owner.inputs[0].owner.inputs[0]
    b_opt = radon_est_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0]
    # Make sure NormalRV gets replaced with an addition
    assert a_opt.owner.op == tt.add
    assert b_opt.owner.op == tt.add

    # Make sure the first term in the addition is the old NormalRV mean
    mu_a_opt = a_opt.owner.inputs[0].owner.inputs[0]
    assert "mu_a" == mu_a_opt.name == mu_a.name
    mu_b_opt = b_opt.owner.inputs[0].owner.inputs[0]
    assert "mu_b" == mu_b_opt.name == mu_b.name

    # Make sure the second term in the addition is the standard NormalRV times
    # the old std. dev.
    assert a_opt.owner.inputs[1].owner.op == tt.mul
    assert b_opt.owner.inputs[1].owner.op == tt.mul

    sigma_a_opt = a_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0]
    assert sigma_a_opt.owner.op == sigma_a.owner.op
    sigma_b_opt = b_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0]
    assert sigma_b_opt.owner.op == sigma_b.owner.op

    a_std_norm_opt = a_opt.owner.inputs[1].owner.inputs[1]
    assert a_std_norm_opt.owner.op == NormalRV
    assert a_std_norm_opt.owner.inputs[0].data == 0.0
    assert a_std_norm_opt.owner.inputs[1].data == 1.0
    b_std_norm_opt = b_opt.owner.inputs[1].owner.inputs[1]
    assert b_std_norm_opt.owner.op == NormalRV
    assert b_std_norm_opt.owner.inputs[0].data == 0.0
    assert b_std_norm_opt.owner.inputs[1].data == 1.0
コード例 #8
0
def test_normal_normal_regression():
    tt.config.compute_test_value = "ignore"
    theano.config.cxx = ""
    np.random.seed(9283)

    N = 10
    M = 3
    a_tt = tt.vector("a")
    R_tt = tt.vector("R")
    X_tt = tt.matrix("X")
    V_tt = tt.vector("V")

    a_tt.tag.test_value = np.random.normal(size=M)
    R_tt.tag.test_value = np.abs(np.random.normal(size=M))
    X = np.random.normal(10, 1, size=N)
    X = np.c_[np.ones(10), X, X * X]
    X_tt.tag.test_value = X
    V_tt.tag.test_value = np.ones(N)

    beta_rv = NormalRV(a_tt, R_tt, name="\\beta")

    E_y_rv = X_tt.dot(beta_rv)
    E_y_rv.name = "E_y"
    Y_rv = NormalRV(E_y_rv, V_tt, name="Y")

    y_tt = tt.as_tensor_variable(Y_rv.tag.test_value)
    y_tt.name = "y"
    y_obs_rv = observed(y_tt, Y_rv)
    y_obs_rv.name = "y_obs"

    #
    # Use the relation with identify/match `Y`, `X` and `beta`.
    #
    y_args_tail_lv, b_args_tail_lv = var(), var()
    beta_lv = var()

    y_args_lv, y_lv, Y_lv, X_lv = var(), var(), var(), var()
    (res, ) = run(
        1,
        (beta_lv, y_args_tail_lv, b_args_tail_lv),
        applyo(mt.observed, y_args_lv, y_obs_rv),
        eq(y_args_lv, (y_lv, Y_lv)),
        normal_normal_regression(Y_lv, X_lv, beta_lv, y_args_tail_lv,
                                 b_args_tail_lv),
    )

    # TODO FIXME: This would work if non-op parameters (e.g. names) were covered by
    # `operator`/`car`.  See `TheanoMetaOperator`.
    assert res[0].eval_obj.obj == beta_rv
    assert res[0] == etuplize(beta_rv)
    assert res[1] == etuplize(Y_rv)[2:]
    assert res[2] == etuplize(beta_rv)[1:]

    #
    # Use the relation with to produce `Y` from given `X` and `beta`.
    #
    X_new_mt = mt(tt.eye(N, M))
    beta_new_mt = mt(NormalRV(0, 1, size=M))
    Y_args_cdr_mt = etuplize(Y_rv)[2:]
    Y_lv = var()
    (res, ) = run(
        1, Y_lv,
        normal_normal_regression(Y_lv, X_new_mt, beta_new_mt, Y_args_cdr_mt))
    Y_out_mt = res.eval_obj

    Y_new_mt = etuple(mt.NormalRV, mt.dot(X_new_mt,
                                          beta_new_mt)) + Y_args_cdr_mt
    Y_new_mt = Y_new_mt.eval_obj

    assert Y_out_mt == Y_new_mt
コード例 #9
0
ファイル: test_utils.py プロジェクト: pymc-devs/symbolic-pymc
 def scan_fn():
     Y_t = NormalRV(0, 1, name="Y_t")
     return Y_t
コード例 #10
0
def test_notex_print():

    tt_normalrv_noname_expr = tt.scalar("b") * NormalRV(
        tt.scalar("\\mu"), tt.scalar("\\sigma"))
    expected = textwrap.dedent(r"""
    b in R, \mu in R, \sigma in R
    a ~ N(\mu, \sigma**2) in R
    (b * a)
    """)
    assert tt_pprint(tt_normalrv_noname_expr) == expected.strip()

    # Make sure the constant shape is show in values and not symbols.
    tt_normalrv_name_expr = tt.scalar("b") * NormalRV(
        tt.scalar("\\mu"), tt.scalar("\\sigma"), size=[2, 1], name="X")
    expected = textwrap.dedent(r"""
    b in R, \mu in R, \sigma in R
    X ~ N(\mu, \sigma**2) in R**(2 x 1)
    (b * X)
    """)
    assert tt_pprint(tt_normalrv_name_expr) == expected.strip()

    tt_2_normalrv_noname_expr = tt.matrix("M") * NormalRV(
        tt.scalar("\\mu_2"), tt.scalar("\\sigma_2"))
    tt_2_normalrv_noname_expr *= tt.scalar("b") * NormalRV(
        tt_2_normalrv_noname_expr, tt.scalar("\\sigma")) + tt.scalar("c")
    expected = textwrap.dedent(r"""
    M in R**(N^M_0 x N^M_1), \mu_2 in R, \sigma_2 in R
    b in R, \sigma in R, c in R
    a ~ N(\mu_2, \sigma_2**2) in R, d ~ N((M * a), \sigma**2) in R**(N^d_0 x N^d_1)
    ((M * a) * ((b * d) + c))
    """)
    assert tt_pprint(tt_2_normalrv_noname_expr) == expected.strip()

    expected = textwrap.dedent(r"""
    b in Z, c in Z, M in R**(N^M_0 x N^M_1)
    M[b, c]
    """)
    # TODO: "c" should be "1".
    assert (tt_pprint(
        tt.matrix("M")[tt.iscalar("a"),
                       tt.constant(1, dtype="int")]) == expected.strip())

    expected = textwrap.dedent(r"""
    M in R**(N^M_0 x N^M_1)
    M[1]
    """)
    assert tt_pprint(tt.matrix("M")[1]) == expected.strip()

    expected = textwrap.dedent(r"""
    M in N**(N^M_0)
    M[2:4:0]
    """)
    assert tt_pprint(tt.vector("M", dtype="uint32")[0:4:2]) == expected.strip()

    norm_rv = NormalRV(tt.scalar("\\mu"), tt.scalar("\\sigma"))
    rv_obs = observed(tt.constant(1.0, dtype=norm_rv.dtype), norm_rv)

    expected = textwrap.dedent(r"""
    \mu in R, \sigma in R
    a ~ N(\mu, \sigma**2) in R
    a = 1.0
        """)
    assert tt_pprint(rv_obs) == expected.strip()
コード例 #11
0
def test_tex_print():

    tt_normalrv_noname_expr = tt.scalar("b") * NormalRV(
        tt.scalar("\\mu"), tt.scalar("\\sigma"))
    expected = textwrap.dedent(r"""
    \begin{equation}
      \begin{gathered}
      b \in \mathbb{R}, \,\mu \in \mathbb{R}, \,\sigma \in \mathbb{R}
      \\
      a \sim \operatorname{N}\left(\mu, {\sigma}^{2}\right)\,  \in \mathbb{R}
      \end{gathered}
      \\
      (b \odot a)
    \end{equation}
    """)
    assert tt_tprint(tt_normalrv_noname_expr) == expected.strip()

    tt_normalrv_name_expr = tt.scalar("b") * NormalRV(
        tt.scalar("\\mu"), tt.scalar("\\sigma"), size=[2, 1], name="X")
    expected = textwrap.dedent(r"""
    \begin{equation}
      \begin{gathered}
      b \in \mathbb{R}, \,\mu \in \mathbb{R}, \,\sigma \in \mathbb{R}
      \\
      X \sim \operatorname{N}\left(\mu, {\sigma}^{2}\right)\,  \in \mathbb{R}^{2 \times 1}
      \end{gathered}
      \\
      (b \odot X)
    \end{equation}
    """)
    assert tt_tprint(tt_normalrv_name_expr) == expected.strip()

    tt_2_normalrv_noname_expr = tt.matrix("M") * NormalRV(
        tt.scalar("\\mu_2"), tt.scalar("\\sigma_2"))
    tt_2_normalrv_noname_expr *= tt.scalar("b") * NormalRV(
        tt_2_normalrv_noname_expr, tt.scalar("\\sigma")) + tt.scalar("c")
    expected = textwrap.dedent(r"""
    \begin{equation}
      \begin{gathered}
      M \in \mathbb{R}^{N^{M}_{0} \times N^{M}_{1}}
      \\
      \mu_2 \in \mathbb{R}, \,\sigma_2 \in \mathbb{R}
      \\
      b \in \mathbb{R}, \,\sigma \in \mathbb{R}, \,c \in \mathbb{R}
      \\
      a \sim \operatorname{N}\left(\mu_2, {\sigma_2}^{2}\right)\,  \in \mathbb{R}
      \\
      d \sim \operatorname{N}\left((M \odot a), {\sigma}^{2}\right)\,  \in \mathbb{R}^{N^{d}_{0} \times N^{d}_{1}}
      \end{gathered}
      \\
      ((M \odot a) \odot ((b \odot d) + c))
    \end{equation}
    """)
    assert tt_tprint(tt_2_normalrv_noname_expr) == expected.strip()

    expected = textwrap.dedent(r"""
    \begin{equation}
      \begin{gathered}
      b \in \mathbb{Z}, \,c \in \mathbb{Z}, \,M \in \mathbb{R}^{N^{M}_{0} \times N^{M}_{1}}
      \end{gathered}
      \\
      M\left[b, \,c\right]
    \end{equation}
    """)
    # TODO: "c" should be "1".
    assert (tt_tprint(
        tt.matrix("M")[tt.iscalar("a"),
                       tt.constant(1, dtype="int")]) == expected.strip())

    expected = textwrap.dedent(r"""
    \begin{equation}
      \begin{gathered}
      M \in \mathbb{R}^{N^{M}_{0} \times N^{M}_{1}}
      \end{gathered}
      \\
      M\left[1\right]
    \end{equation}
    """)
    assert tt_tprint(tt.matrix("M")[1]) == expected.strip()

    expected = textwrap.dedent(r"""
    \begin{equation}
      \begin{gathered}
      M \in \mathbb{N}^{N^{M}_{0}}
      \end{gathered}
      \\
      M\left[2:4:0\right]
    \end{equation}
    """)
    assert tt_tprint(tt.vector("M", dtype="uint32")[0:4:2]) == expected.strip()

    norm_rv = NormalRV(tt.scalar("\\mu"), tt.scalar("\\sigma"))
    rv_obs = observed(tt.constant(1.0, dtype=norm_rv.dtype), norm_rv)

    expected = textwrap.dedent(r"""
    \begin{equation}
      \begin{gathered}
      \mu \in \mathbb{R}, \,\sigma \in \mathbb{R}
      \\
      a \sim \operatorname{N}\left(\mu, {\sigma}^{2}\right)\,  \in \mathbb{R}
      \end{gathered}
      \\
      a = 1.0
    \end{equation}
        """)
    assert tt_tprint(rv_obs) == expected.strip()
コード例 #12
0
ファイル: test_pymc3.py プロジェクト: pymc-devs/symbolic-pymc
def test_pymc3_convert_dists():
    """Just a basic check that all PyMC3 RVs will convert to and from Theano RVs."""

    with pm.Model() as model:
        norm_rv = pm.Normal("norm_rv", 0.0, 1.0, observed=1.0)
        mvnorm_rv = pm.MvNormal("mvnorm_rv",
                                np.r_[0.0],
                                np.c_[1.0],
                                shape=1,
                                observed=np.r_[1.0])
        cauchy_rv = pm.Cauchy("cauchy_rv", 0.0, 1.0, observed=1.0)
        halfcauchy_rv = pm.HalfCauchy("halfcauchy_rv", 1.0, observed=1.0)
        uniform_rv = pm.Uniform("uniform_rv", observed=1.0)
        gamma_rv = pm.Gamma("gamma_rv", 1.0, 1.0, observed=1.0)
        invgamma_rv = pm.InverseGamma("invgamma_rv", 1.0, 1.0, observed=1.0)
        exp_rv = pm.Exponential("exp_rv", 1.0, observed=1.0)
        halfnormal_rv = pm.HalfNormal("halfnormal_rv", 1.0, observed=1.0)
        beta_rv = pm.Beta("beta_rv", 2.0, 2.0, observed=1.0)
        binomial_rv = pm.Binomial("binomial_rv", 10, 0.5, observed=5)
        dirichlet_rv = pm.Dirichlet("dirichlet_rv",
                                    np.r_[0.1, 0.1],
                                    observed=np.r_[0.1, 0.1])
        poisson_rv = pm.Poisson("poisson_rv", 10, observed=5)
        bernoulli_rv = pm.Bernoulli("bernoulli_rv", 0.5, observed=0)
        betabinomial_rv = pm.BetaBinomial("betabinomial_rv",
                                          0.1,
                                          0.1,
                                          10,
                                          observed=5)
        categorical_rv = pm.Categorical("categorical_rv",
                                        np.r_[0.5, 0.5],
                                        observed=1)
        multinomial_rv = pm.Multinomial("multinomial_rv",
                                        5,
                                        np.r_[0.5, 0.5],
                                        observed=np.r_[2])
        negbinomial_rv = pm.NegativeBinomial("negbinomial_rv",
                                             10.2,
                                             0.5,
                                             observed=5)

    # Convert to a Theano `FunctionGraph`
    fgraph = model_graph(model)

    rvs_by_name = {
        n.owner.inputs[1].name: n.owner.inputs[1]
        for n in fgraph.outputs
    }

    pymc_rv_names = {n.name for n in model.observed_RVs}
    assert all(
        isinstance(rvs_by_name[n].owner.op, RandomVariable)
        for n in pymc_rv_names)

    # Now, convert back to a PyMC3 model
    pymc_model = graph_model(fgraph)

    new_pymc_rv_names = {n.name for n in pymc_model.observed_RVs}
    pymc_rv_names == new_pymc_rv_names

    with pytest.raises(TypeError):
        graph_model(NormalRV(0, 1), generate_names=False)

    res = graph_model(NormalRV(0, 1), generate_names=True)
    assert res.vars[0].name == "normal_0"
コード例 #13
0
def test_pymc_normals():
    tt.config.compute_test_value = 'ignore'

    rand_state = theano.shared(np.random.RandomState())
    mu_a = NormalRV(0., 100**2, name='mu_a', rng=rand_state)
    sigma_a = HalfCauchyRV(5, name='sigma_a', rng=rand_state)
    mu_b = NormalRV(0., 100**2, name='mu_b', rng=rand_state)
    sigma_b = HalfCauchyRV(5, name='sigma_b', rng=rand_state)
    county_idx = np.r_[1, 1, 2, 3]
    # We want the following for a, b:
    # N(m, S) -> m + N(0, 1) * S
    a = NormalRV(mu_a,
                 sigma_a,
                 size=(len(county_idx), ),
                 name='a',
                 rng=rand_state)
    b = NormalRV(mu_b,
                 sigma_b,
                 size=(len(county_idx), ),
                 name='b',
                 rng=rand_state)
    radon_est = a[county_idx] + b[county_idx] * 7
    eps = HalfCauchyRV(5, name='eps', rng=rand_state)
    radon_like = NormalRV(radon_est, eps, name='radon_like', rng=rand_state)
    radon_like_rv = observed(tt.as_tensor_variable(np.r_[1., 2., 3., 4.]),
                             radon_like)

    graph_mt = mt(radon_like_rv)
    expr_graph, = run(
        1, var('q'),
        non_obs_fixedp_graph_applyo(scale_loc_transform, graph_mt, var('q')))

    radon_like_rv_opt = expr_graph.reify()

    assert radon_like_rv_opt.owner.op == observed

    radon_like_opt = radon_like_rv_opt.owner.inputs[1]
    radon_est_opt = radon_like_opt.owner.inputs[0]

    # These should now be `tt.add(mu_*, ...)` outputs.
    a_opt = radon_est_opt.owner.inputs[0].owner.inputs[0]
    b_opt = radon_est_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0]
    # Make sure NormalRV gets replaced with an addition
    assert a_opt.owner.op == tt.add
    assert b_opt.owner.op == tt.add

    # Make sure the first term in the addition is the old NormalRV mean
    mu_a_opt = a_opt.owner.inputs[0].owner.inputs[0]
    assert 'mu_a' == mu_a_opt.name == mu_a.name
    mu_b_opt = b_opt.owner.inputs[0].owner.inputs[0]
    assert 'mu_b' == mu_b_opt.name == mu_b.name

    # Make sure the second term in the addition is the standard NormalRV times
    # the old std. dev.
    assert a_opt.owner.inputs[1].owner.op == tt.mul
    assert b_opt.owner.inputs[1].owner.op == tt.mul

    sigma_a_opt = a_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0]
    assert sigma_a_opt.owner.op == sigma_a.owner.op
    sigma_b_opt = b_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0]
    assert sigma_b_opt.owner.op == sigma_b.owner.op

    a_std_norm_opt = a_opt.owner.inputs[1].owner.inputs[1]
    assert a_std_norm_opt.owner.op == NormalRV
    assert a_std_norm_opt.owner.inputs[0].data == 0.0
    assert a_std_norm_opt.owner.inputs[1].data == 1.0
    b_std_norm_opt = b_opt.owner.inputs[1].owner.inputs[1]
    assert b_std_norm_opt.owner.op == NormalRV
    assert b_std_norm_opt.owner.inputs[0].data == 0.0
    assert b_std_norm_opt.owner.inputs[1].data == 1.0
コード例 #14
0
ファイル: utils.py プロジェクト: pymc-devs/symbolic-pymc
 def scan_fn(mus_t, sigma_t, S_tm1, Gamma_t, rng):
     S_t = CategoricalRV(Gamma_t[S_tm1], rng=rng, name="S_t")
     Y_t = NormalRV(mus_t[S_t], sigma_t, rng=rng, name="Y_t")
     return S_t, Y_t