コード例 #1
0
ファイル: test_ode.py プロジェクト: tBuLi/symfit
    def test_simple_kinetics(self):
        """
        Simple kinetics data to test fitting
        """
        tdata = np.array([10, 26, 44, 70, 120])
        adata = 10e-4 * np.array([44, 34, 27, 20, 14])
        a, b, t = variables('a, b, t')
        k, a0 = parameters('k, a0')
        k.value = 0.01
        # a0.value, a0.min, a0.max = 54 * 10e-4, 40e-4, 60e-4
        a0 = 54 * 10e-4

        model_dict = {
            D(a, t): - k * a**2,
            D(b, t): k * a**2,
        }

        ode_model = ODEModel(model_dict, initial={t: 0.0, a: a0, b: 0.0})

        # Analytical solution
        model = GradientModel({a: 1 / (k * t + 1 / a0)})
        fit = Fit(model, t=tdata, a=adata)
        fit_result = fit.execute()

        fit = Fit(ode_model, t=tdata, a=adata, b=None, minimizer=MINPACK)
        ode_result = fit.execute()
        self.assertAlmostEqual(ode_result.value(k) / fit_result.value(k), 1.0, 4)
        self.assertAlmostEqual(ode_result.stdev(k) / fit_result.stdev(k), 1.0, 4)
        self.assertAlmostEqual(ode_result.r_squared / fit_result.r_squared, 1, 4)

        fit = Fit(ode_model, t=tdata, a=adata, b=None)
        ode_result = fit.execute()
        self.assertAlmostEqual(ode_result.value(k) / fit_result.value(k), 1.0, 4)
        self.assertAlmostEqual(ode_result.stdev(k) / fit_result.stdev(k), 1.0, 4)
        self.assertAlmostEqual(ode_result.r_squared / fit_result.r_squared, 1, 4)
コード例 #2
0
    def test_simple_kinetics(self):
        """
        Simple kinetics data to test fitting
        """
        tdata = np.array([10, 26, 44, 70, 120])
        adata = 10e-4 * np.array([44, 34, 27, 20, 14])
        a, b, t = variables('a, b, t')
        k, a0 = parameters('k, a0')
        k.value = 0.01
        # a0.value, a0.min, a0.max = 54 * 10e-4, 40e-4, 60e-4
        a0 = 54 * 10e-4

        model_dict = {
            D(a, t): - k * a**2,
            D(b, t): k * a**2,
        }

        ode_model = ODEModel(model_dict, initial={t: 0.0, a: a0, b: 0.0})

        # Analytical solution
        model = Model({a: 1 / (k * t + 1 / a0)})
        fit = Fit(model, t=tdata, a=adata)
        fit_result = fit.execute()

        fit = Fit(ode_model, t=tdata, a=adata, b=None, minimizer=MINPACK)
        ode_result = fit.execute()
        self.assertAlmostEqual(ode_result.value(k) / fit_result.value(k), 1.0, 4)
        self.assertAlmostEqual(ode_result.stdev(k) / fit_result.stdev(k), 1.0, 4)
        self.assertAlmostEqual(ode_result.r_squared / fit_result.r_squared, 1, 4)

        fit = Fit(ode_model, t=tdata, a=adata, b=None)
        ode_result = fit.execute()
        self.assertAlmostEqual(ode_result.value(k) / fit_result.value(k), 1.0, 4)
        self.assertAlmostEqual(ode_result.stdev(k) / fit_result.stdev(k), 1.0, 4)
        self.assertAlmostEqual(ode_result.r_squared / fit_result.r_squared, 1, 4)
コード例 #3
0
    def test_diff_evo(self):
        """
        Tests fitting to a scalar gaussian with 2 independent variables with
        wide bounds.
        """

        fit = Fit(self.model, self.xx, self.yy, self.ydata, minimizer=BFGS)
        fit_result = fit.execute()

        self.assertIsInstance(fit.minimizer, BFGS)

        # Make sure a local optimizer doesn't find the answer.
        self.assertNotAlmostEqual(fit_result.value(self.x0_1), 0.4, 1)
        self.assertNotAlmostEqual(fit_result.value(self.y0_1), 0.4, 1)

        # On to the main event
        fit = Fit(self.model,
                  self.xx,
                  self.yy,
                  self.ydata,
                  minimizer=DifferentialEvolution)
        fit_result = fit.execute(polish=True, seed=0, tol=1e-4, maxiter=50)
        # Global minimizers are really bad at finding local minima though, so
        # roughly equal is good enough.
        self.assertAlmostEqual(fit_result.value(self.x0_1), 0.4, 1)
        self.assertAlmostEqual(fit_result.value(self.y0_1), 0.4, 1)
コード例 #4
0
ファイル: test_ode.py プロジェクト: tBuLi/symfit
    def test_full_eval_range(self):
        """
        Test if ODEModels can be evaluated at t < t_initial.

        A bit of a no news is good news test.
        """
        tdata = np.array([0, 10, 26, 44, 70, 120])
        adata = 10e-4 * np.array([54, 44, 34, 27, 20, 14])
        a, b, t = variables('a, b, t')
        k, a0 = parameters('k, a0')
        k.value = 0.01
        t0 = tdata[2]
        a0 = adata[2]
        b0 = 0.02729855 # Obtained from evaluating from t=0.

        model_dict = {
            D(a, t): - k * a**2,
            D(b, t): k * a**2,
        }

        ode_model = ODEModel(model_dict, initial={t: t0, a: a0, b: b0})

        fit = Fit(ode_model, t=tdata, a=adata, b=None)
        ode_result = fit.execute()
        self.assertGreater(ode_result.r_squared, 0.95, 4)

        # Now start from a timepoint that is not in the t-array such that it
        # triggers another pathway to be taken in integrating it.
        # Again, no news is good news.
        ode_model = ODEModel(model_dict, initial={t: t0 + 1e-5, a: a0, b: b0})

        fit = Fit(ode_model, t=tdata, a=adata, b=None)
        ode_result = fit.execute()
        self.assertGreater(ode_result.r_squared, 0.95, 4)
コード例 #5
0
ファイル: test_global_opt.py プロジェクト: tBuLi/symfit
    def test_chained_min_signature(self):
        """
        Test the automatic generation of the signature for ChainedMinimizer
        """
        minimizers = [
            BFGS, DifferentialEvolution, BFGS, DifferentialEvolution, BFGS
        ]

        fit = Fit(self.model, self.xx, self.yy, self.ydata,
                  minimizer=minimizers)

        names = [
            'BFGS', 'DifferentialEvolution', 'BFGS_2',
            'DifferentialEvolution_2', 'BFGS_3'
        ]
        for name, param_name in zip(names, fit.minimizer.__signature__.parameters):
            self.assertEqual(name, param_name)
        # Check for equal lengths because zip is slippery that way
        self.assertEqual(len(names), len(fit.minimizer.__signature__.parameters))

        for param in fit.minimizer.__signature__.parameters.values():
            self.assertEqual(param.kind, inspect_sig.Parameter.KEYWORD_ONLY)
        # Make sure keywords end up at the right minimizer.
        with self.assertRaises(TypeError):
            # This is not a valid kwarg to DiffEvo, but it is to BFGS. Check if
            # we really go by name of the Minimizer, not by order.
            fit.execute(DifferentialEvolution={'return_all': False})
コード例 #6
0
    def test_full_eval_range(self):
        """
        Test if ODEModels can be evaluated at t < t_initial.

        A bit of a no news is good news test.
        """
        tdata = np.array([0, 10, 26, 44, 70, 120])
        adata = 10e-4 * np.array([54, 44, 34, 27, 20, 14])
        a, b, t = variables('a, b, t')
        k, a0 = parameters('k, a0')
        k.value = 0.01
        t0 = tdata[2]
        a0 = adata[2]
        b0 = 0.02729855 # Obtained from evaluating from t=0.

        model_dict = {
            D(a, t): - k * a**2,
            D(b, t): k * a**2,
        }

        ode_model = ODEModel(model_dict, initial={t: t0, a: a0, b: b0})

        fit = Fit(ode_model, t=tdata, a=adata, b=None)
        ode_result = fit.execute()
        self.assertGreater(ode_result.r_squared, 0.95, 4)

        # Now start from a timepoint that is not in the t-array such that it
        # triggers another pathway to be taken in integrating it.
        # Again, no news is good news.
        ode_model = ODEModel(model_dict, initial={t: t0 + 1e-5, a: a0, b: b0})

        fit = Fit(ode_model, t=tdata, a=adata, b=None)
        ode_result = fit.execute()
        self.assertGreater(ode_result.r_squared, 0.95, 4)
コード例 #7
0
    def test_rdistmodel_fit(self):
        psf = PSF(sigma=1.59146972e+00)
        rm = RDistModel(psf, mem=self.memory, r='equal')
        x, y = self.cells[0].r_dist(20, 1)
        y -= y.min()

        fit = Fit(rm, x, y, minimizer=Powell, sigma_y=1 / np.sqrt(y))
        res = fit.execute()

        par_dict = {
            'a1': 75984.78344557587,
            'a2': 170938.0835695505,
            'r': 7.186390052694122
        }
        for k, v in par_dict.items():
            self.assertAlmostEqual(v, res.params[k], 2)
        self.assertAlmostEqual(21834555979.09033, res.objective_value, 3)

        fit = Fit(rm, x, y, minimizer=Powell)
        res = fit.execute()

        par_dict = {
            'a1': 86129.37542153012,
            'a2': 163073.91919617794,
            'r': 7.372535479080642
        }
        for k, v in par_dict.items():
            self.assertAlmostEqual(v, res.params[k], 2)
        self.assertAlmostEqual(7129232.534842306, res.objective_value, 3)
コード例 #8
0
    def test_known_solution(self):
        p, c1 = parameters('p, c1')
        y, t = variables('y, t')
        p.value = 3.0

        model_dict = {
            D(y, t): - p * y,
        }

        # Lets say we know the exact solution to this problem
        sol = Model({y: exp(- p * t)})

        # Generate some data
        tdata = np.linspace(0, 3, 10001)
        ydata = sol(t=tdata, p=3.22)[0]
        ydata += np.random.normal(0, 0.005, ydata.shape)

        ode_model = ODEModel(model_dict, initial={t: 0.0, y: ydata[0]})
        fit = Fit(ode_model, t=tdata, y=ydata)
        ode_result = fit.execute()

        c1.value = ydata[0]
        fit = Fit(sol, t=tdata, y=ydata)
        fit_result = fit.execute()

        self.assertAlmostEqual(ode_result.value(p) / fit_result.value(p), 1, 2)
        self.assertAlmostEqual(ode_result.r_squared / fit_result.r_squared, 1, 4)
        self.assertAlmostEqual(ode_result.stdev(p) / fit_result.stdev(p), 1, 3)
コード例 #9
0
ファイル: test_ode.py プロジェクト: tBuLi/symfit
    def test_known_solution(self):
        p, c1 = parameters('p, c1')
        y, t = variables('y, t')
        p.value = 3.0

        model_dict = {
            D(y, t): - p * y,
        }

        # Lets say we know the exact solution to this problem
        sol = Model({y: exp(- p * t)})

        # Generate some data
        tdata = np.linspace(0, 3, 10001)
        ydata = sol(t=tdata, p=3.22)[0]
        ydata += np.random.normal(0, 0.005, ydata.shape)

        ode_model = ODEModel(model_dict, initial={t: 0.0, y: ydata[0]})
        fit = Fit(ode_model, t=tdata, y=ydata)
        ode_result = fit.execute()

        c1.value = ydata[0]
        fit = Fit(sol, t=tdata, y=ydata)
        fit_result = fit.execute()

        self.assertAlmostEqual(ode_result.value(p) / fit_result.value(p), 1, 2)
        self.assertAlmostEqual(ode_result.r_squared / fit_result.r_squared, 1, 4)
        self.assertAlmostEqual(ode_result.stdev(p) / fit_result.stdev(p), 1, 3)
コード例 #10
0
ファイル: test_general.py プロジェクト: passion4energy/symfit
def test_vector_none_fitting():
    """
    Fit to a 3 component vector valued function with one variables data set
    to None, without bounds or guesses.
    """
    a, b, c = parameters('a, b, c')
    a_i, b_i, c_i = variables('a_i, b_i, c_i')

    model = {a_i: a, b_i: b, c_i: c}

    xdata = np.array([
        [10.1, 9., 10.5, 11.2, 9.5, 9.6, 10.],
        [102.1, 101., 100.4, 100.8, 99.2, 100., 100.8],
        [71.6, 73.2, 69.5, 70.2, 70.8, 70.6, 70.1],
    ])

    fit_none = Fit(model=model,
                   a_i=xdata[0],
                   b_i=xdata[1],
                   c_i=None,
                   minimizer=MINPACK)
    fit = Fit(model=model,
              a_i=xdata[0],
              b_i=xdata[1],
              c_i=xdata[2],
              minimizer=MINPACK)
    fit_none_result = fit_none.execute()
    fit_result = fit.execute()

    assert fit_none_result.value(b) == pytest.approx(fit_result.value(b), 1e-4)
    assert fit_none_result.value(a) == pytest.approx(fit_result.value(a), 1e-4)
    # the parameter without data should be unchanged.
    assert fit_none_result.value(c) == pytest.approx(1.0)
コード例 #11
0
ファイル: test_general.py プロジェクト: passion4energy/symfit
def test_fixed_parameters_2():
    """
    Make sure parameter boundaries are respected
    """
    x = Parameter('x', min=1)
    y = Variable('y')
    model = Model({y: x**2})

    bounded_minimizers = list(subclasses(BoundedMinimizer))
    for minimizer in bounded_minimizers:
        if minimizer is MINPACK:
            # Not a MINPACKable problem because it only has a param
            continue
        fit = Fit(model, minimizer=minimizer)
        assert isinstance(fit.objective, MinimizeModel)
        if minimizer is DifferentialEvolution:
            # Also needs a max
            x.max = 10
            fit_result = fit.execute()
            x.max = None
        else:
            fit_result = fit.execute()
            assert fit_result.value(x) >= 1.0
            assert fit_result.value(x) <= 2.0
        assert fit.minimizer.bounds == [(1, None)]
コード例 #12
0
    def test_chained_min_signature(self):
        """
        Test the automatic generation of the signature for ChainedMinimizer
        """
        minimizers = [
            BFGS, DifferentialEvolution, BFGS, DifferentialEvolution, BFGS
        ]

        fit = Fit(self.model,
                  self.xx,
                  self.yy,
                  self.ydata,
                  minimizer=minimizers)

        names = [
            'BFGS', 'DifferentialEvolution', 'BFGS_2',
            'DifferentialEvolution_2', 'BFGS_3'
        ]
        for name, param_name in zip(names,
                                    fit.minimizer.__signature__.parameters):
            assert name == param_name
        # Check for equal lengths because zip is slippery that way
        assert len(names) == len(fit.minimizer.__signature__.parameters)

        for param in fit.minimizer.__signature__.parameters.values():
            assert param.kind == inspect_sig.Parameter.KEYWORD_ONLY
        # Make sure keywords end up at the right minimizer.
        with pytest.raises(TypeError):
            # This is not a valid kwarg to DiffEvo, but it is to BFGS. Check if
            # we really go by name of the Minimizer, not by order.
            fit.execute(DifferentialEvolution={'return_all': False})
コード例 #13
0
ファイル: test_constrained.py プロジェクト: elgalu/symfit
def test_gaussian_2d_fitting():
    """
    Tests fitting to a scalar gaussian function with 2 independent
    variables. Very sensitive to initial guesses, and if they are chosen too
    restrictive Fit actually throws a tantrum.
    It therefore appears to be more sensitive than NumericalLeastSquares.
    """
    mean = (0.6, 0.4)  # x, y mean 0.6, 0.4
    cov = [[0.2**2, 0], [0, 0.1**2]]

    np.random.seed(0)
    data = np.random.multivariate_normal(mean, cov, 100000)

    # Insert them as y,x here as np f***s up cartesian conventions.
    ydata, xedges, yedges = np.histogram2d(data[:, 0],
                                           data[:, 1],
                                           bins=100,
                                           range=[[0.0, 1.0], [0.0, 1.0]])
    xcentres = (xedges[:-1] + xedges[1:]) / 2
    ycentres = (yedges[:-1] + yedges[1:]) / 2

    # Make a valid grid to match ydata
    xx, yy = np.meshgrid(xcentres, ycentres, sparse=False, indexing='ij')

    x0 = Parameter(value=mean[0], min=0.0, max=1.0)
    sig_x = Parameter(value=0.2, min=0.0, max=0.3)
    y0 = Parameter(value=mean[1], min=0.0, max=1.0)
    sig_y = Parameter(value=0.1, min=0.0, max=0.3)
    A = Parameter(value=np.mean(ydata), min=0.0)
    x = Variable('x')
    y = Variable('y')
    g = Variable('g')
    model = GradientModel(
        {g: A * Gaussian(x, x0, sig_x) * Gaussian(y, y0, sig_y)})
    fit = Fit(model, x=xx, y=yy, g=ydata)
    fit_result = fit.execute()

    assert fit_result.value(x0) == pytest.approx(np.mean(data[:, 0]), 1e-3)
    assert fit_result.value(y0) == pytest.approx(np.mean(data[:, 1]), 1e-3)
    assert np.abs(fit_result.value(sig_x)) == pytest.approx(
        np.std(data[:, 0]), 1e-2)
    assert np.abs(fit_result.value(sig_y)) == pytest.approx(
        np.std(data[:, 1]), 1e-2)
    assert (fit_result.r_squared, 0.96)

    # Compare with industry standard MINPACK
    fit_std = Fit(model, x=xx, y=yy, g=ydata, minimizer=MINPACK)
    fit_std_result = fit_std.execute()

    assert fit_std_result.value(x0) == pytest.approx(fit_result.value(x0),
                                                     1e-4)
    assert fit_std_result.value(y0) == pytest.approx(fit_result.value(y0),
                                                     1e-4)
    assert fit_std_result.value(sig_x) == pytest.approx(
        fit_result.value(sig_x), 1e-4)
    assert fit_std_result.value(sig_y) == pytest.approx(
        fit_result.value(sig_y), 1e-4)
    assert fit_std_result.r_squared == pytest.approx(fit_result.r_squared,
                                                     1e-4)
コード例 #14
0
ファイル: rectification.py プロジェクト: fabio-echegaray/ring
def harmonic_approximation(polygon: Polygon, n=3):
    from symfit import Eq, Fit, cos, parameters, pi, sin, variables

    def fourier_series(x, f, n=0):
        """
        Returns a symbolic fourier series of order `n`.

        :param n: Order of the fourier series.
        :param x: Independent variable
        :param f: Frequency of the fourier series
        """
        # Make the parameter objects for all the terms
        a0, *cos_a = parameters(','.join(['a{}'.format(i) for i in range(0, n + 1)]))
        sin_b = parameters(','.join(['b{}'.format(i) for i in range(1, n + 1)]))
        # Construct the series
        series = a0 + sum(ai * cos(i * f * x) + bi * sin(i * f * x)
                          for i, (ai, bi) in enumerate(zip(cos_a, sin_b), start=1))
        return series

    x, y = variables('x, y')
    w, = parameters('w')
    fourier = fourier_series(x, f=w, n=n)
    model_dict = {y: fourier}
    print(model_dict)

    # Extract data from argument
    # FIXME: how to make a clockwise strictly increasing curve?
    xdata, ydata = polygon.exterior.xy
    t = np.linspace(0, 2 * np.pi, num=len(xdata))

    constr = [
        # Ge(x, 0), Le(x, 2 * pi),
        Eq(fourier.subs({x: 0}), fourier.subs({x: 2 * pi})),
        Eq(fourier.diff(x).subs({x: 0}), fourier.diff(x).subs({x: 2 * pi})),
        # Eq(fourier.diff(x, 2).subs({x: 0}), fourier.diff(x, 2).subs({x: 2 * pi})),
        ]
    print(constr)

    fit_x = Fit(model_dict, x=t, y=xdata, constraints=constr)
    fit_y = Fit(model_dict, x=t, y=ydata, constraints=constr)
    fitx_result = fit_x.execute()
    fity_result = fit_y.execute()
    print(fitx_result)
    print(fity_result)

    # Define function that generates the curve
    def curve_lambda(_t):
        return np.array(
            [
                fit_x.model(x=_t, **fitx_result.params).y,
                fit_y.model(x=_t, **fity_result.params).y
                ]
            ).ravel()

    # code to test if fit is correct
    plot_fit(polygon, curve_lambda, t, title='Harmonic Approximation')

    return curve_lambda
コード例 #15
0
ファイル: test_minimize.py プロジェクト: tBuLi/symfit
    def test_minimize(self):
        """
        Tests maximizing a function with and without constraints, taken from the
        scipy `minimize` tutorial. Compare the symfit result with the scipy
        result.
        https://docs.scipy.org/doc/scipy-0.18.1/reference/tutorial/optimize.html#constrained-minimization-of-multivariate-scalar-functions-minimize
        """
        x = Parameter(value=-1.0)
        y = Parameter(value=1.0)
        # Use an  unnamed Variable on purpose to test the auto-generation of names.
        model = Model(2 * x * y + 2 * x - x ** 2 - 2 * y ** 2)

        constraints = [
            Ge(y - 1, 0),  # y - 1 >= 0,
            Eq(x**3 - y, 0),  # x**3 - y == 0,
        ]

        def func(x, sign=1.0):
            """ Objective function """
            return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)

        def func_deriv(x, sign=1.0):
            """ Derivative of objective function """
            dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
            dfdx1 = sign*(2*x[0] - 4*x[1])
            return np.array([ dfdx0, dfdx1 ])

        cons = (
            {'type': 'eq',
             'fun' : lambda x: np.array([x[0]**3 - x[1]]),
             'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
            {'type': 'ineq',
             'fun' : lambda x: np.array([x[1] - 1]),
             'jac' : lambda x: np.array([0.0, 1.0])})

        # Unconstrained fit
        res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
               method='BFGS', options={'disp': False})
        fit = Fit(model=- model)
        self.assertIsInstance(fit.objective, MinimizeModel)
        self.assertIsInstance(fit.minimizer, BFGS)

        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(x) / res.x[0], 1.0, 6)
        self.assertAlmostEqual(fit_result.value(y) / res.x[1], 1.0, 6)

        # Same test, but with constraints in place.
        res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
               constraints=cons, method='SLSQP', options={'disp': False})

        from symfit.core.minimizers import SLSQP
        fit = Fit(- model, constraints=constraints)
        self.assertEqual(fit.constraints[0].constraint_type, Ge)
        self.assertEqual(fit.constraints[1].constraint_type, Eq)
        fit_result = fit.execute()
        self.assertAlmostEqual(fit_result.value(x), res.x[0], 6)
        self.assertAlmostEqual(fit_result.value(y), res.x[1], 6)
コード例 #16
0
def test_minimize():
    """
    Tests maximizing a function with and without constraints, taken from the
    scipy `minimize` tutorial. Compare the symfit result with the scipy
    result.
    https://docs.scipy.org/doc/scipy-0.18.1/reference/tutorial/optimize.html#constrained-minimization-of-multivariate-scalar-functions-minimize
    """
    x = Parameter(value=-1.0)
    y = Parameter(value=1.0)
    # Use an  unnamed Variable on purpose to test the auto-generation of names.
    model = Model(2 * x * y + 2 * x - x ** 2 - 2 * y ** 2)

    constraints = [
        Ge(y - 1, 0),  # y - 1 >= 0,
        Eq(x**3 - y, 0),  # x**3 - y == 0,
    ]

    def func(x, sign=1.0):
        """ Objective function """
        return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)

    def func_deriv(x, sign=1.0):
        """ Derivative of objective function """
        dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
        dfdx1 = sign*(2*x[0] - 4*x[1])
        return np.array([dfdx0, dfdx1])

    cons = (
        {'type': 'eq',
         'fun': lambda x: np.array([x[0]**3 - x[1]]),
         'jac': lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
        {'type': 'ineq',
         'fun': lambda x: np.array([x[1] - 1]),
         'jac': lambda x: np.array([0.0, 1.0])}
    )

    # Unconstrained fit
    res = minimize(func, [-1.0, 1.0], args=(-1.0,), jac=func_deriv,
                   method='BFGS', options={'disp': False})
    fit = Fit(model=-model)
    assert isinstance(fit.objective, MinimizeModel)
    assert isinstance(fit.minimizer, BFGS)

    fit_result = fit.execute()

    assert fit_result.value(x) == pytest.approx(res.x[0], 1e-6)
    assert fit_result.value(y) == pytest.approx(res.x[1], 1e-6)

    # Same test, but with constraints in place.
    res = minimize(func, [-1.0, 1.0], args=(-1.0,), jac=func_deriv,
                   constraints=cons, method='SLSQP', options={'disp': False})

    fit = Fit(-model, constraints=constraints)
    assert fit.constraints[0].constraint_type == Ge
    assert fit.constraints[1].constraint_type == Eq
    fit_result = fit.execute()
    assert fit_result.value(x) == pytest.approx(res.x[0], 1e-6)
    assert fit_result.value(y) == pytest.approx(res.x[1], 1e-6)
コード例 #17
0
def test_LeastSquares():
    """
    Tests if the LeastSquares objective gives the right shapes of output by
    comparing with its analytical equivalent.
    """
    i = Idx('i', 100)
    x, y = symbols('x, y', cls=Variable)
    X2 = symbols('X2', cls=Variable)
    a, b = parameters('a, b')

    model = Model({y: a * x**2 + b * x})
    xdata = np.linspace(0, 10, 100)
    ydata = model(x=xdata, a=5, b=2).y + np.random.normal(0, 5, xdata.shape)

    # Construct a LeastSquares objective and its analytical equivalent
    chi2_numerical = LeastSquares(model,
                                  data={
                                      x: xdata,
                                      y: ydata,
                                      model.sigmas[y]: np.ones_like(xdata)
                                  })
    chi2_exact = Model({X2: FlattenSum(0.5 * ((a * x**2 + b * x) - y)**2, i)})

    eval_exact = chi2_exact(x=xdata, y=ydata, a=2, b=3)
    jac_exact = chi2_exact.eval_jacobian(x=xdata, y=ydata, a=2, b=3)
    hess_exact = chi2_exact.eval_hessian(x=xdata, y=ydata, a=2, b=3)
    eval_numerical = chi2_numerical(x=xdata, a=2, b=3)
    jac_numerical = chi2_numerical.eval_jacobian(x=xdata, a=2, b=3)
    hess_numerical = chi2_numerical.eval_hessian(x=xdata, a=2, b=3)

    # Test model jacobian and hessian shape
    assert model(x=xdata, a=2, b=3)[0].shape == ydata.shape
    assert model.eval_jacobian(x=xdata, a=2, b=3)[0].shape == (2, 100)
    assert model.eval_hessian(x=xdata, a=2, b=3)[0].shape == (2, 2, 100)
    # Test exact chi2 shape
    assert eval_exact[0].shape, (1, )
    assert jac_exact[0].shape, (2, 1)
    assert hess_exact[0].shape, (2, 2, 1)

    # Test if these two models have the same call, jacobian, and hessian
    assert eval_exact[0] == pytest.approx(eval_numerical)
    assert isinstance(eval_numerical, float)
    assert isinstance(eval_exact[0][0], float)
    assert np.squeeze(jac_exact[0], axis=-1) == pytest.approx(jac_numerical)
    assert isinstance(jac_numerical, np.ndarray)
    assert np.squeeze(hess_exact[0], axis=-1) == pytest.approx(hess_numerical)
    assert isinstance(hess_numerical, np.ndarray)

    fit = Fit(chi2_exact, x=xdata, y=ydata, objective=MinimizeModel)
    fit_exact_result = fit.execute()
    fit = Fit(model, x=xdata, y=ydata, absolute_sigma=True)
    fit_num_result = fit.execute()
    assert fit_exact_result.value(a) == fit_num_result.value(a)
    assert fit_exact_result.value(b) == fit_num_result.value(b)
    assert fit_exact_result.stdev(a) == pytest.approx(fit_num_result.stdev(a))
    assert fit_exact_result.stdev(b) == pytest.approx(fit_num_result.stdev(b))
コード例 #18
0
ファイル: test_general.py プロジェクト: isentropic/symfit
    def test_error_analytical(self):
        """
        Test using a case where the analytical answer is known. Uses both
        symfit and scipy's curve_fit.
        Modeled after:
        http://nbviewer.ipython.org/urls/gist.github.com/taldcroft/5014170/raw/31e29e235407e4913dc0ec403af7ed524372b612/curve_fit.ipynb
        """
        N = 10000
        sigma = 10.0 * np.ones(N)
        xn = np.arange(N, dtype=np.float)
        # yn = np.zeros_like(xn)
        np.random.seed(10)
        yn = np.random.normal(size=len(xn), scale=sigma)

        a = Parameter()
        y = Variable()
        model = {y: a}

        fit = Fit(model, y=yn, sigma_y=sigma)
        fit_result = fit.execute()

        popt, pcov = curve_fit(lambda x, a: a * np.ones_like(x),
                               xn,
                               yn,
                               sigma=sigma,
                               absolute_sigma=True)
        self.assertAlmostEqual(fit_result.value(a), popt[0], 5)
        self.assertAlmostEqual(fit_result.stdev(a),
                               np.sqrt(np.diag(pcov))[0], 2)

        fit_no_sigma = Fit(model, yn)
        fit_result_no_sigma = fit_no_sigma.execute()

        popt, pcov = curve_fit(
            lambda x, a: a * np.ones_like(x),
            xn,
            yn,
        )
        # With or without sigma, the bestfit params should be in agreement in case of equal weights
        self.assertAlmostEqual(fit_result.value(a),
                               fit_result_no_sigma.value(a), 5)
        # Since symfit is all about absolute errors, the sigma will not be in agreement
        self.assertNotEqual(fit_result.stdev(a), fit_result_no_sigma.stdev(a),
                            5)
        self.assertAlmostEqual(fit_result_no_sigma.value(a), popt[0], 5)
        self.assertAlmostEqual(fit_result_no_sigma.stdev(a), pcov[0][0]**0.5,
                               5)

        # Analytical answer for mean of N(0,1):
        mu = 0.0
        sigma_mu = sigma[0] / N**0.5

        self.assertAlmostEqual(fit_result.stdev(a), sigma_mu, 5)
コード例 #19
0
ファイル: test_general.py プロジェクト: Pitje06/symfit
    def test_simple_sigma(self):
        """
        Make sure we produce the same results as scipy's curve_fit, with and
        without sigmas, and compare the results of both to a known value.
        """
        t_data = np.array([1.4, 2.1, 2.6, 3.0, 3.3])
        y_data = np.array([10, 20, 30, 40, 50])

        sigma = 0.2
        n = np.array([5, 3, 8, 15, 30])
        sigma_t = sigma / np.sqrt(n)

        # We now define our model
        y = Variable()
        g = Parameter()
        t_model = (2 * y / g)**0.5

        fit = Fit(t_model, y_data, t_data)  # , sigma=sigma_t)
        fit_result = fit.execute()

        # h_smooth = np.linspace(0,60,100)
        # t_smooth = t_model(y=h_smooth, **fit_result.params)

        # Lets with the results from curve_fit, no weights
        popt_noweights, pcov_noweights = curve_fit(lambda y, p: (2 * y / p)**0.5, y_data, t_data)

        self.assertAlmostEqual(fit_result.value(g), popt_noweights[0])
        self.assertAlmostEqual(fit_result.stdev(g), np.sqrt(pcov_noweights[0, 0]))

        # Same sigma everywere
        fit = Fit(t_model, y_data, t_data, 0.0031, absolute_sigma=False)
        fit_result = fit.execute()
        popt_sameweights, pcov_sameweights = curve_fit(lambda y, p: (2 * y / p)**0.5, y_data, t_data, sigma=0.0031, absolute_sigma=False)
        self.assertAlmostEqual(fit_result.value(g), popt_sameweights[0], 4)
        self.assertAlmostEqual(fit_result.stdev(g), np.sqrt(pcov_sameweights[0, 0]), 4)
        # Same weight everywere should be the same as no weight when absolute_sigma=False
        self.assertAlmostEqual(fit_result.value(g), popt_noweights[0], 4)
        self.assertAlmostEqual(fit_result.stdev(g), np.sqrt(pcov_noweights[0, 0]), 4)

        # Different sigma for every point
        fit = Fit(t_model, y_data, t_data, 0.1*sigma_t, absolute_sigma=False)
        fit_result = fit.execute()
        popt, pcov = curve_fit(lambda y, p: (2 * y / p)**0.5, y_data, t_data, sigma=.1*sigma_t)

        self.assertAlmostEqual(fit_result.value(g), popt[0])
        self.assertAlmostEqual(fit_result.stdev(g), np.sqrt(pcov[0, 0]))

        # according to Mathematica
        self.assertAlmostEqual(fit_result.value(g), 9.095, 3)
        self.assertAlmostEqual(fit_result.stdev(g), 0.102, 3)
コード例 #20
0
ファイル: test_constrained.py プロジェクト: tBuLi/symfit
    def test_gaussian_2d_fitting(self):
        """
        Tests fitting to a scalar gaussian function with 2 independent
        variables. Very sensitive to initial guesses, and if they are chosen too
        restrictive Fit actually throws a tantrum.
        It therefore appears to be more sensitive than NumericalLeastSquares.
        """
        mean = (0.6, 0.4)  # x, y mean 0.6, 0.4
        cov = [[0.2**2, 0], [0, 0.1**2]]

        np.random.seed(0)
        data = np.random.multivariate_normal(mean, cov, 100000)

        # Insert them as y,x here as np f***s up cartesian conventions.
        ydata, xedges, yedges = np.histogram2d(data[:, 0], data[:, 1], bins=100,
                                               range=[[0.0, 1.0], [0.0, 1.0]])
        xcentres = (xedges[:-1] + xedges[1:]) / 2
        ycentres = (yedges[:-1] + yedges[1:]) / 2

        # Make a valid grid to match ydata
        xx, yy = np.meshgrid(xcentres, ycentres, sparse=False, indexing='ij')

        x0 = Parameter(value=mean[0], min=0.0, max=1.0)
        sig_x = Parameter(value=0.2, min=0.0, max=0.3)
        y0 = Parameter(value=mean[1], min=0.0, max=1.0)
        sig_y = Parameter(value=0.1, min=0.0, max=0.3)
        A = Parameter(value=np.mean(ydata), min=0.0)
        x = Variable('x')
        y = Variable('y')
        g = Variable('g')
        model = Model({g: A * Gaussian(x, x0, sig_x) * Gaussian(y, y0, sig_y)})
        fit = Fit(model, x=xx, y=yy, g=ydata)
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(x0), np.mean(data[:, 0]), 3)
        self.assertAlmostEqual(fit_result.value(y0), np.mean(data[:, 1]), 3)
        self.assertAlmostEqual(np.abs(fit_result.value(sig_x)), np.std(data[:, 0]), 2)
        self.assertAlmostEqual(np.abs(fit_result.value(sig_y)), np.std(data[:, 1]), 2)
        self.assertGreaterEqual(fit_result.r_squared, 0.96)

        # Compare with industry standard MINPACK
        fit_std = Fit(model, x=xx, y=yy, g=ydata, minimizer=MINPACK)
        fit_std_result = fit_std.execute()

        self.assertAlmostEqual(fit_std_result.value(x0), fit_result.value(x0), 4)
        self.assertAlmostEqual(fit_std_result.value(y0), fit_result.value(y0), 4)
        self.assertAlmostEqual(fit_std_result.value(sig_x), fit_result.value(sig_x), 4)
        self.assertAlmostEqual(fit_std_result.value(sig_y), fit_result.value(sig_y), 4)
        self.assertAlmostEqual(fit_std_result.r_squared, fit_result.r_squared, 4)
コード例 #21
0
ファイル: test_constrained.py プロジェクト: jason-neal/symfit
    def test_covariances(self):
        """
        Compare the equal and unequal length handeling of `HasCovarianceMatrix`.
        If it works properly, the unequal length method should reduce to the
        equal length one if called qith equal length data. Computing unequal
        dataset length covariances remains something to be careful with, but
        this backwards compatibility provides some validation.
        """
        N = 10000
        a, b, c = parameters('a, b, c')
        a_i, b_i, c_i = variables('a_i, b_i, c_i')

        model = {a_i: a, b_i: b, c_i: c}

        np.random.seed(1)
        # Sample from a multivariate normal with correlation.
        pcov = 1e-1 * np.array([[0.4, 0.3, 0.5], [0.3, 0.8, 0.4], [0.5, 0.4, 1.2]])
        xdata = np.random.multivariate_normal([10, 100, 70], pcov, N).T

        fit = Fit(
            model=model,
            a_i=xdata[0],
            b_i=xdata[1],
            c_i=xdata[2],
            absolute_sigma=False
        )
        fit_result = fit.execute()

        cov_equal = fit._cov_mat_equal_lenghts(fit_result.params)
        cov_unequal = fit._cov_mat_unequal_lenghts(fit_result.params)
        np.testing.assert_array_almost_equal(cov_equal, cov_unequal)

        # Try with absolute_sigma=True
        fit = Fit(
            model=model,
            a_i=xdata[0],
            b_i=xdata[1],
            c_i=xdata[2],
            sigma_a_i=np.sqrt(pcov[0, 0]),
            sigma_b_i=np.sqrt(pcov[1, 1]),
            sigma_c_i=np.sqrt(pcov[2, 2]),
            absolute_sigma=True
        )
        fit_result = fit.execute()

        cov_equal = fit._cov_mat_equal_lenghts(fit_result.params)
        cov_unequal = fit._cov_mat_unequal_lenghts(fit_result.params)
        np.testing.assert_array_almost_equal(cov_equal, cov_unequal)
コード例 #22
0
ファイル: test_auto_fit.py プロジェクト: Pitje06/symfit
    def test_vector_fitting_bounds(self):
        """
        Tests fitting to a 3 component vector valued function, with bounds.
        """
        a, b, c = parameters('a, b, c')
        a.min = 0
        a.max = 25
        b.min = 0
        b.max = 500
        a_i, b_i, c_i = variables('a_i, b_i, c_i')

        model = {a_i: a, b_i: b, c_i: c}

        xdata = np.array([
            [10.1, 9., 10.5, 11.2, 9.5, 9.6, 10.],
            [102.1, 101., 100.4, 100.8, 99.2, 100., 100.8],
            [71.6, 73.2, 69.5, 70.2, 70.8, 70.6, 70.1],
        ])

        fit = Fit(
            model=model,
            a_i=xdata[0],
            b_i=xdata[1],
            c_i=xdata[2],
        )
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(a), np.mean(xdata[0]), 4)
        self.assertAlmostEqual(fit_result.value(b), np.mean(xdata[1]), 4)
        self.assertAlmostEqual(fit_result.value(c), np.mean(xdata[2]), 4)
コード例 #23
0
ファイル: test_fit_result.py プロジェクト: tBuLi/symfit
    def test_fitting(self):
        xdata = np.linspace(1,10,10)
        ydata = 3*xdata**2

        a = Parameter() #3.1, min=2.5, max=3.5
        b = Parameter()
        x = Variable()
        new = a*x**b

        fit = Fit(new, xdata, ydata, minimizer=MINPACK)
        fit_result = fit.execute()
        self.assertIsInstance(fit_result, FitResults)
        self.assertAlmostEqual(fit_result.value(a), 3.0)
        self.assertAlmostEqual(fit_result.value(b), 2.0)

        self.assertIsInstance(fit_result.stdev(a), float)
        self.assertIsInstance(fit_result.stdev(b), float)

        self.assertIsInstance(fit_result.r_squared, float)
        self.assertEqual(fit_result.r_squared, 1.0)  # by definition since there's no fuzzyness

        # Test several illegal ways to access the data.
        self.assertRaises(AttributeError, getattr, *[fit_result.params, 'a_fdska'])
        self.assertRaises(AttributeError, getattr, *[fit_result.params, 'c'])
        self.assertRaises(AttributeError, getattr, *[fit_result.params, 'a_stdev_stdev'])
        self.assertRaises(AttributeError, getattr, *[fit_result.params, 'a_stdev_'])
        self.assertRaises(AttributeError, getattr, *[fit_result.params, 'a__stdev'])
コード例 #24
0
ファイル: test_ode.py プロジェクト: elgalu/symfit
def test_initial_parameters():
    """
    Identical to test_polgar, but with a0 as free Parameter.
    """
    a, b, c, d, t = variables('a, b, c, d, t')
    k, p, l, m = parameters('k, p, l, m')

    a0 = Parameter('a0', min=0, value=10, fixed=True)
    c0 = Parameter('c0', min=0, value=0.1)
    b = a0 - d + a
    model_dict = {
        D(d, t): l * c * b - m * d,
        D(c, t): k * a * b - p * c - l * c * b + m * d,
        D(a, t): - k * a * b + p * c,
    }

    ode_model = ODEModel(model_dict, initial={t: 0.0, a: a0, c: c0, d: 0.0})

    # Generate some data
    tdata = np.linspace(0, 3, 1000)
    # Eval
    AA, AAB, BAAB = ode_model(t=tdata, k=0.1, l=0.2, m=.3, p=0.3, a0=10, c0=0)
    fit = Fit(ode_model, t=tdata, a=AA, c=AAB, d=BAAB)
    results = fit.execute()
    print(results)
    assert results.value(a0) == pytest.approx(10, abs=1e-8)
    assert results.value(c0) == pytest.approx(0, abs=1e-8)

    assert ode_model.params == [a0, c0, k, l, m, p]
    assert ode_model.initial_params == [a0, c0]
    assert ode_model.model_params == [a0, k, l, m, p]
コード例 #25
0
ファイル: test_general.py プロジェクト: tBuLi/symfit
    def test_vector_fitting(self):
        """
        Tests fitting to a 3 component vector valued function, without bounds
        or guesses.
        """
        a, b, c = parameters('a, b, c')
        a_i, b_i, c_i = variables('a_i, b_i, c_i')

        model = {a_i: a, b_i: b, c_i: c}

        xdata = np.array([
            [10.1, 9., 10.5, 11.2, 9.5, 9.6, 10.],
            [102.1, 101., 100.4, 100.8, 99.2, 100., 100.8],
            [71.6, 73.2, 69.5, 70.2, 70.8, 70.6, 70.1],
        ])

        fit = Fit(
            model=model,
            a_i=xdata[0],
            b_i=xdata[1],
            c_i=xdata[2],
            minimizer = MINPACK
        )
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(a) / 9.985691, 1.0, 5)
        self.assertAlmostEqual(fit_result.value(b) / 1.006143e+02, 1.0, 4)
        self.assertAlmostEqual(fit_result.value(c) / 7.085713e+01, 1.0, 5)
コード例 #26
0
ファイル: test_general.py プロジェクト: Pitje06/symfit
    def test_gaussian_fitting(self):
        """
        Tests fitting to a gaussian function and fit_result.params unpacking.
        """
        xdata = 2*np.random.rand(10000) - 1  # random betwen [-1, 1]
        ydata = 5.0 * scipy.stats.norm.pdf(xdata, loc=0.0, scale=1.0)

        x0 = Parameter()
        sig = Parameter()
        A = Parameter()
        x = Variable()
        g = A * Gaussian(x, x0, sig)

        fit = Fit(g, xdata, ydata)
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(A), 5.0)
        self.assertAlmostEqual(np.abs(fit_result.value(sig)), 1.0)
        self.assertAlmostEqual(fit_result.value(x0), 0.0)
        # raise Exception([i for i in fit_result.params])
        sexy = g(x=2.0, **fit_result.params)
        ugly = g(
            x=2.0,
            x0=fit_result.value(x0),
            A=fit_result.value(A),
            sig=fit_result.value(sig),
        )
        self.assertEqual(sexy, ugly)
コード例 #27
0
ファイル: test_general.py プロジェクト: tBuLi/symfit
    def test_fitting(self):
        """
        Tests fitting with NumericalLeastSquares. Makes sure that the resulting
        objects and values are of the right type, and that the fit_result does
        not have unexpected members.
        """
        xdata = np.linspace(1, 10, 10)
        ydata = 3*xdata**2

        a = Parameter()  # 3.1, min=2.5, max=3.5
        b = Parameter()
        x = Variable()
        new = a*x**b

        fit = Fit(new, xdata, ydata, minimizer=MINPACK)

        fit_result = fit.execute()
        self.assertIsInstance(fit_result, FitResults)
        self.assertAlmostEqual(fit_result.value(a), 3.0)
        self.assertAlmostEqual(fit_result.value(b), 2.0)

        self.assertIsInstance(fit_result.stdev(a), float)
        self.assertIsInstance(fit_result.stdev(b), float)

        self.assertIsInstance(fit_result.r_squared, float)
        self.assertEqual(fit_result.r_squared, 1.0)  # by definition since there's no fuzzyness
コード例 #28
0
ファイル: test_general.py プロジェクト: tBuLi/symfit
    def test_likelihood_fitting_gaussian(self):
        """
        Fit using the likelihood method.
        """
        mu, sig = parameters('mu, sig')
        sig.min = 0.01
        sig.value = 3.0
        mu.value = 50.
        x = Variable()
        pdf = Gaussian(x, mu, sig)

        np.random.seed(10)
        xdata = np.random.normal(51., 3.5, 10000)

        # Expected parameter values
        mean = np.mean(xdata)
        stdev = np.std(xdata)
        mean_stdev = stdev/np.sqrt(len(xdata))

        fit = Fit(pdf, xdata, objective=LogLikelihood)
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(mu) / mean, 1, 6)
        self.assertAlmostEqual(fit_result.stdev(mu) / mean_stdev, 1, 3)
        self.assertAlmostEqual(fit_result.value(sig) / np.std(xdata), 1, 6)
コード例 #29
0
ファイル: test_general.py プロジェクト: tBuLi/symfit
    def test_likelihood_fitting_exponential(self):
        """
        Fit using the likelihood method.
        """
        b = Parameter(value=4, min=3.0)
        x, y = variables('x, y')
        pdf = {y: Exp(x, 1/b)}

        # Draw points from an Exp(5) exponential distribution.
        np.random.seed(100)
        xdata = np.random.exponential(5, 1000000)

        # Expected parameter values
        mean = np.mean(xdata)
        stdev = np.std(xdata)
        mean_stdev = stdev / np.sqrt(len(xdata))

        with self.assertRaises(NotImplementedError):
            fit = Fit(pdf, x=xdata, sigma_y=2.0, objective=LogLikelihood)
        fit = Fit(pdf, xdata, objective=LogLikelihood)
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(b) / mean, 1, 3)
        self.assertAlmostEqual(fit_result.value(b) / stdev, 1, 3)
        self.assertAlmostEqual(fit_result.stdev(b) / mean_stdev, 1, 3)
コード例 #30
0
    def test_fitting(self):
        """
        Tests fitting with NumericalLeastSquares. Makes sure that the resulting
        objects and values are of the right type, and that the fit_result does
        not have unexpected members.
        """
        xdata = np.linspace(1, 10, 10)
        ydata = 3*xdata**2

        a = Parameter()  # 3.1, min=2.5, max=3.5
        b = Parameter()
        x = Variable()
        new = a*x**b

        fit = Fit(new, xdata, ydata, minimizer=MINPACK)

        fit_result = fit.execute()
        self.assertIsInstance(fit_result, FitResults)
        self.assertAlmostEqual(fit_result.value(a), 3.0)
        self.assertAlmostEqual(fit_result.value(b), 2.0)

        self.assertIsInstance(fit_result.stdev(a), float)
        self.assertIsInstance(fit_result.stdev(b), float)

        self.assertIsInstance(fit_result.r_squared, float)
        self.assertEqual(fit_result.r_squared, 1.0)  # by definition since there's no fuzzyness
コード例 #31
0
ファイル: test_general.py プロジェクト: passion4energy/symfit
def test_2D_fitting():
    """
    Makes sure that a scalar model with 2 independent variables has the
    proper signature, and that the fit result is of the correct type.
    """
    xdata = np.random.randint(-10, 11, size=(2, 400))
    zdata = 2.5 * xdata[0]**2 + 7.0 * xdata[1]**2

    a = Parameter('a')
    b = Parameter('b')
    x = Variable('x')
    y = Variable('y')
    new = a * x**2 + b * y**2

    fit = Fit(new, xdata[0], xdata[1], zdata)

    result = fit.model(xdata[0], xdata[1], 2, 3)
    assert isinstance(result, tuple)

    for arg_name, name in zip(('x', 'y', 'a', 'b'),
                              inspect_sig.signature(fit.model).parameters):
        assert arg_name == name

    fit_result = fit.execute()
    assert isinstance(fit_result, FitResults)
コード例 #32
0
ファイル: test_general.py プロジェクト: passion4energy/symfit
def test_fixed_parameters():
    """
    Make sure fixed parameters don't change on fitting
    """
    a, b, c, d = parameters('a, b, c, d')
    x, y = variables('x, y')

    c.value = 4.0
    a.min, a.max = 1.0, 5.0  # Bounds are needed for DifferentialEvolution
    b.min, b.max = 1.0, 5.0
    c.min, c.max = 1.0, 5.0
    d.min, d.max = 1.0, 5.0
    c.fixed = True

    model = Model({y: a * exp(-(x - b)**2 / (2 * c**2)) + d})
    # Generate data
    xdata = np.linspace(0, 100)
    ydata = model(xdata, a=2, b=3, c=2, d=2).y

    for minimizer in subclasses(BaseMinimizer):
        if minimizer is ChainedMinimizer:
            continue
        else:
            fit = Fit(model, x=xdata, y=ydata, minimizer=minimizer)
            fit_result = fit.execute()
            # Should still be 4.0, not 2.0!
            assert 4.0 == fit_result.params['c']
コード例 #33
0
ファイル: test_general.py プロジェクト: passion4energy/symfit
def test_gaussian_fitting():
    """
    Tests fitting to a gaussian function and fit_result.params unpacking.
    """
    xdata = 2 * np.random.rand(10000) - 1  # random betwen [-1, 1]
    ydata = 5.0 * scipy.stats.norm.pdf(xdata, loc=0.0, scale=1.0)

    x0 = Parameter('x0')
    sig = Parameter('sig')
    A = Parameter('A')
    x = Variable('x')
    g = GradientModel(A * Gaussian(x, x0, sig))

    fit = Fit(g, xdata, ydata)
    assert isinstance(fit.objective, LeastSquares)
    fit_result = fit.execute()

    assert fit_result.value(A) == pytest.approx(5.0)
    assert np.abs(fit_result.value(sig)) == pytest.approx(1.0)
    assert fit_result.value(x0) == pytest.approx(0.0)
    # raise Exception([i for i in fit_result.params])
    sexy = g(x=2.0, **fit_result.params)
    ugly = g(
        x=2.0,
        x0=fit_result.value(x0),
        A=fit_result.value(A),
        sig=fit_result.value(sig),
    )
    assert sexy == ugly
コード例 #34
0
ファイル: test_general.py プロジェクト: passion4energy/symfit
def test_likelihood_fitting_gaussian():
    """
    Fit using the likelihood method.
    """
    mu, sig = parameters('mu, sig')
    sig.min = 0.01
    sig.value = 3.0
    mu.value = 50.
    x = Variable('x')
    pdf = GradientModel(Gaussian(x, mu, sig))

    np.random.seed(10)
    # TODO: Do we really need 1k points?
    xdata = np.random.normal(51., 3.5, 10000)

    # Expected parameter values
    mean = np.mean(xdata)
    stdev = np.std(xdata)
    mean_stdev = stdev / np.sqrt(len(xdata))

    fit = Fit(pdf, xdata, objective=LogLikelihood)
    fit_result = fit.execute()

    assert fit_result.value(mu) == pytest.approx(mean, 1e-6)
    assert fit_result.stdev(mu) == pytest.approx(mean_stdev, 1e-3)
    assert fit_result.value(sig) == pytest.approx(np.std(xdata), 1e-6)
コード例 #35
0
ファイル: test_general.py プロジェクト: passion4energy/symfit
def test_vector_fitting():
    """
    Tests fitting to a 3 component vector valued function, without bounds
    or guesses.
    """
    a, b, c = parameters('a, b, c')
    a_i, b_i, c_i = variables('a_i, b_i, c_i')

    model = {a_i: a, b_i: b, c_i: c}

    xdata = np.array([
        [10.1, 9., 10.5, 11.2, 9.5, 9.6, 10.],
        [102.1, 101., 100.4, 100.8, 99.2, 100., 100.8],
        [71.6, 73.2, 69.5, 70.2, 70.8, 70.6, 70.1],
    ])

    fit = Fit(model=model,
              a_i=xdata[0],
              b_i=xdata[1],
              c_i=xdata[2],
              minimizer=MINPACK)
    fit_result = fit.execute()

    assert fit_result.value(a) == pytest.approx(np.mean(xdata[0]), 1e-5)
    assert fit_result.value(b) == pytest.approx(np.mean(xdata[1]), 1e-4)
    assert fit_result.value(c) == pytest.approx(np.mean(xdata[2]), 1e-5)
コード例 #36
0
ファイル: utils.py プロジェクト: Jhsmit/SmitSuite
def fit_gauss2d(arr):
    Y, X = np.indices(arr.shape)

    total = arr.sum()
    x = (X * arr).sum() / total
    y = (Y * arr).sum() / total
    col = arr[:, int(y)]
    width_x = np.sqrt(
        np.abs((np.arange(col.size) - y)**2 * col).sum() / col.sum())
    row = arr[int(x), :]
    width_y = np.sqrt(
        np.abs((np.arange(row.size) - x)**2 * row).sum() / row.sum())
    base = 0

    idx = np.argmax(arr)
    y_mu, x_mu = np.unravel_index(idx, arr.shape)

    print(arr.max(), x_mu, y_mu, width_x, width_y, base)
    model = model_gauss2d(arr.max(),
                          x_mu,
                          y_mu,
                          width_x,
                          width_y,
                          base,
                          has_base=False)

    fit = Fit(model, z_var=arr, x_var=X, y_var=Y)
    return fit.execute(), fit.model
コード例 #37
0
    def test_vector_fitting_guess(self):
        """
        Tests fitting to a 3 component vector valued function, with guesses.
        """
        a, b, c = parameters('a, b, c')
        a.value = 10
        b.value = 100
        a_i, b_i, c_i = variables('a_i, b_i, c_i')

        model = {a_i: a, b_i: b, c_i: c}

        xdata = np.array([
            [10.1, 9., 10.5, 11.2, 9.5, 9.6, 10.],
            [102.1, 101., 100.4, 100.8, 99.2, 100., 100.8],
            [71.6, 73.2, 69.5, 70.2, 70.8, 70.6, 70.1],
        ])

        fit = Fit(
            model=model,
            a_i=xdata[0],
            b_i=xdata[1],
            c_i=xdata[2],
            minimizer = MINPACK
        )
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(a), np.mean(xdata[0]), 4)
        self.assertAlmostEqual(fit_result.value(b), np.mean(xdata[1]), 4)
        self.assertAlmostEqual(fit_result.value(c), np.mean(xdata[2]), 4)
コード例 #38
0
ファイル: test_general.py プロジェクト: passion4energy/symfit
def test_fitting():
    """
    Tests fitting with NumericalLeastSquares. Makes sure that the resulting
    objects and values are of the right type, and that the fit_result does
    not have unexpected members.
    """
    xdata = np.linspace(1, 10, 10)
    ydata = 3 * xdata**2

    a = Parameter('a')  # 3.1, min=2.5, max=3.5
    b = Parameter('b')
    x = Variable('x')
    new = a * x**b

    fit = Fit(new, xdata, ydata, minimizer=MINPACK)

    fit_result = fit.execute()
    assert isinstance(fit_result, FitResults)
    assert fit_result.value(a) == pytest.approx(3.0)
    assert fit_result.value(b) == pytest.approx(2.0)

    assert isinstance(fit_result.stdev(a), float)
    assert isinstance(fit_result.stdev(b), float)

    assert isinstance(fit_result.r_squared, float)
    assert fit_result.r_squared == 1.0  # by definition since there's no fuzzyness
コード例 #39
0
def modeling(pdata, xdata, sdata, tdata):
    X, S, P, t = variables('X, S, P, t')
    k = Parameter('k', 0.1)
    umax = Parameter('umax', min=0.06, max=0.25)
    Ki = Parameter('Ki', min=10, max=80)
    Ks = Parameter('Ks', min=0.5, max=8)
    Kip = Parameter('Kip', min=10, max=17)
    mx = Parameter('mx', min=0.001, max=0.1)
    alpha = Parameter('alpha', min=0.1, max=2.4)
    beta = Parameter('beta', min=0.001, max=1.2)
    X0 = 0.01
    S0 = 50
    P0 = 0.01

    model_dict = {
        D(X, t): umax * S / (Ks + S) * X,
        D(S, t): -umax * S / (Ks + S) * X,
        D(P, t): umax * S / (Ks + S)
    }

    ode_model_monod = ODEModel(model_dict,
                               initial={
                                   t: 0.0,
                                   X: X0,
                                   S: S0,
                                   P: P0
                               })

    fit = Fit(ode_model_monod, t=tdata, X=xdata, S=sdata, P=pdata)
    fit_result = fit.execute()
    return ode_model_monod, fit_result
コード例 #40
0
ファイル: test_minimize.py プロジェクト: tBuLi/symfit
    def test_constraint_types(self):
        x = Parameter(value=-1.0)
        y = Parameter(value=1.0)
        z = Variable()
        model = Model({z: 2*x*y + 2*x - x**2 - 2*y**2})

        # These types are not allowed constraints.
        for relation in [Lt, Gt, Ne]:
            with self.assertRaises(ModelError):
                Fit(model, constraints=[relation(x, y)])

        # Should execute without problems.
        for relation in [Eq, Ge, Le]:
            Fit(model, constraints=[relation(x, y)])

        fit = Fit(model, constraints=[Le(x, y)])
        # Le should be transformed to Ge
        self.assertIs(fit.constraints[0].constraint_type, Ge)

        # Redo the standard test as a Le
        constraints = [
            Le(- y + 1, 0),  # y - 1 >= 0,
            Eq(x**3 - y, 0),  # x**3 - y == 0,
        ]
        std_constraints = [
            Ge(y - 1, 0),  # y - 1 >= 0,
            Eq(x**3 - y, 0),  # x**3 - y == 0,
        ]

        fit = Fit(- model, constraints=constraints)
        std_fit = Fit(- model, constraints=std_constraints)
        self.assertEqual(fit.constraints[0].constraint_type, Ge)
        self.assertEqual(fit.constraints[1].constraint_type, Eq)
        self.assertEqual(fit.constraints[0].params, [x, y])
        self.assertEqual(fit.constraints[1].params, [x, y])
        self.assertEqual(fit.constraints[0].jacobian_model.params, [x, y])
        self.assertEqual(fit.constraints[1].jacobian_model.params, [x, y])
        self.assertEqual(fit.constraints[0].hessian_model.params, [x, y])
        self.assertEqual(fit.constraints[1].hessian_model.params, [x, y])
        self.assertEqual(fit.constraints[0].__signature__,
                         fit.constraints[1].__signature__)
        fit_result = fit.execute()
        std_result = std_fit.execute()
        self.assertAlmostEqual(fit_result.value(x), std_result.value(x))
        self.assertAlmostEqual(fit_result.value(y), std_result.value(y))
コード例 #41
0
ファイル: test_constrained.py プロジェクト: tBuLi/symfit
    def test_constrainedminimizers(self):
        """
        Compare the different constrained minimizers, to make sure all support
        constraints, and converge to the same answer.
        """
        minimizers = list(subclasses(ScipyConstrainedMinimize))
        x = Parameter('x', value=-1.0)
        y = Parameter('y', value=1.0)
        z = Variable('z')
        model = Model({z: 2 * x * y + 2 * x - x ** 2 - 2 * y ** 2})

        # First we try an unconstrained fit
        results = []
        for minimizer in minimizers:
            fit = Fit(- model, minimizer=minimizer)
            fit_result = fit.execute(tol=1e-15)
            results.append(fit_result)

        # Compare the parameter values.
        for r1, r2 in zip(results[:-1], results[1:]):
            self.assertAlmostEqual(r1.value(x), r2.value(x), 6)
            self.assertAlmostEqual(r1.value(y), r2.value(y), 6)
            np.testing.assert_almost_equal(r1.covariance_matrix,
                                           r2.covariance_matrix)

        constraints = [
            Ge(y - 1, 0),  # y - 1 >= 0,
            Eq(x ** 3 - y, 0),  # x**3 - y == 0,
        ]

        # Constrained fit.
        results = []
        for minimizer in minimizers:
            if minimizer is COBYLA:
                # COBYLA only supports inequility.
                continue
            fit = Fit(- model, constraints=constraints, minimizer=minimizer)
            fit_result = fit.execute(tol=1e-15)
            results.append(fit_result)

        for r1, r2 in zip(results[:-1], results[1:]):
            self.assertAlmostEqual(r1.value(x), r2.value(x), 6)
            self.assertAlmostEqual(r1.value(y), r2.value(y), 6)
            np.testing.assert_almost_equal(r1.covariance_matrix,
                                           r2.covariance_matrix)
コード例 #42
0
ファイル: test_constrained.py プロジェクト: tBuLi/symfit
    def test_interdependency_constrained(self):
        """
        Test a model with interdependent components, and with constraints which
        depend on the Model's output.
        This is done in the MatrixSymbol formalism, using a Tikhonov
        regularization as an example. In this, a matrix inverse has to be
        calculated and is used multiple times. Therefore we split that term of
        into a seperate component, so the inverse only has to be computed once
        per model call.

        See https://arxiv.org/abs/1901.05348 for a more detailed background.
        """
        N = Symbol('N', integer=True)
        M = MatrixSymbol('M', N, N)
        W = MatrixSymbol('W', N, N)
        I = MatrixSymbol('I', N, N)
        y = MatrixSymbol('y', N, 1)
        c = MatrixSymbol('c', N, 1)
        a, = parameters('a')
        z, = variables('z')
        i = Idx('i')

        model_dict = {
            W: Inverse(I + M / a ** 2),
            c: - W * y,
            z: sqrt(c.T * c)
        }
        # Sympy currently does not support derivatives of matrix expressions,
        # so we use CallableModel instead of Model.
        model = CallableModel(model_dict)

        # Generate data
        iden = np.eye(2)
        M_mat = np.array([[2, 1], [3, 4]])
        y_vec = np.array([[3], [5]])
        eval_model = model(I=iden, M=M_mat, y=y_vec, a=0.1)
        # Calculate the answers 'manually' so I know it was done properly
        W_manual = np.linalg.inv(iden + M_mat / 0.1 ** 2)
        c_manual = - np.atleast_2d(W_manual.dot(y_vec))
        z_manual = np.atleast_1d(np.sqrt(c_manual.T.dot(c_manual)))

        self.assertEqual(y_vec.shape, (2, 1))
        self.assertEqual(M_mat.shape, (2, 2))
        self.assertEqual(iden.shape, (2, 2))
        self.assertEqual(W_manual.shape, (2, 2))
        self.assertEqual(c_manual.shape, (2, 1))
        self.assertEqual(z_manual.shape, (1, 1))
        np.testing.assert_almost_equal(W_manual, eval_model.W)
        np.testing.assert_almost_equal(c_manual, eval_model.c)
        np.testing.assert_almost_equal(z_manual, eval_model.z)
        fit = Fit(model, z=z_manual, I=iden, M=M_mat, y=y_vec)
        fit_result = fit.execute()

        # See if a == 0.1 was reconstructed properly. Since only a**2 features
        # in the equations, we check for the absolute value. Setting a.min = 0.0
        # is not appreciated by the Minimizer, it seems.
        self.assertAlmostEqual(np.abs(fit_result.value(a)), 0.1)
コード例 #43
0
ファイル: test_general.py プロジェクト: Pitje06/symfit
    def test_2_gaussian_2d_fitting(self):
        """
        Tests fitting to a scalar gaussian with 2 independent variables with
        tight bounds.
        """
        mean = (0.3, 0.4)  # x, y mean 0.6, 0.4
        cov = [[0.01**2, 0], [0, 0.01**2]]
        data = np.random.multivariate_normal(mean, cov, 3000000)
        mean = (0.7, 0.8)  # x, y mean 0.6, 0.4
        cov = [[0.01**2, 0], [0, 0.01**2]]
        data_2 = np.random.multivariate_normal(mean, cov, 3000000)
        data = np.vstack((data, data_2))

        # Insert them as y,x here as np f***s up cartesian conventions.
        ydata, xedges, yedges = np.histogram2d(data[:, 1], data[:, 0], bins=100,
                                               range=[[0.0, 1.0], [0.0, 1.0]])
        xcentres = (xedges[:-1] + xedges[1:]) / 2
        ycentres = (yedges[:-1] + yedges[1:]) / 2

        # Make a valid grid to match ydata
        xx, yy = np.meshgrid(xcentres, ycentres, sparse=False)
        # xdata = np.dstack((xx, yy)).T

        x = Variable()
        y = Variable()

        x0_1 = Parameter(0.7, min=0.6, max=0.9)
        sig_x_1 = Parameter(0.1, min=0.0, max=0.2)
        y0_1 = Parameter(0.8, min=0.6, max=0.9)
        sig_y_1 = Parameter(0.1, min=0.0, max=0.2)
        A_1 = Parameter()
        g_1 = A_1 * Gaussian(x, x0_1, sig_x_1) * Gaussian(y, y0_1, sig_y_1)

        x0_2 = Parameter(0.3, min=0.2, max=0.5)
        sig_x_2 = Parameter(0.1, min=0.0, max=0.2)
        y0_2 = Parameter(0.4, min=0.2, max=0.5)
        sig_y_2 = Parameter(0.1, min=0.0, max=0.2)
        A_2 = Parameter()
        g_2 = A_2 * Gaussian(x, x0_2, sig_x_2) * Gaussian(y, y0_2, sig_y_2)

        model = g_1 + g_2
        fit = Fit(model, xx, yy, ydata)
        fit_result = fit.execute()

        self.assertIsInstance(fit.fit, ConstrainedNumericalLeastSquares)

        img = model(x=xx, y=yy, **fit_result.params)
        img_g_1 = g_1(x=xx, y=yy, **fit_result.params)
        img_g_2 = g_2(x=xx, y=yy, **fit_result.params)
        np.testing.assert_array_equal(img, img_g_1 + img_g_2)

        # Equal up to some precision. Not much obviously.
        self.assertAlmostEqual(fit_result.value(x0_1), 0.7, 3)
        self.assertAlmostEqual(fit_result.value(y0_1), 0.8, 3)
        self.assertAlmostEqual(fit_result.value(x0_2), 0.3, 3)
        self.assertAlmostEqual(fit_result.value(y0_2), 0.4, 3)
コード例 #44
0
ファイル: test_global_opt.py プロジェクト: tBuLi/symfit
    def test_mexican_hat(self):
        """
        Test that global minimisation finds the global minima, and doesn't
        affect the value of parameters.
        """
        x = Parameter('x')
        x.min, x.max = -100, 100
        x.value = -2.5
        y = Variable('y')

        model = Model({y: x**4 - 10 * x**2 - x})  # Skewed Mexican hat
        fit = Fit(model, minimizer=[DifferentialEvolution, BFGS])
        fit_result1 = fit.execute(DifferentialEvolution={'seed': 0})

        fit = Fit(model)
        fit_result2 = fit.execute()

        self.assertGreater(fit_result1.value(x), 0)
        self.assertLess(fit_result2.value(x), 0)
コード例 #45
0
ファイル: test_constrained.py プロジェクト: tBuLi/symfit
    def test_global_fitting(self):
        """
        Test a global fitting scenario with datasets of unequal length. In this
        scenario, a quartic equation is fitted where the constant term is shared
        between the datasets. (e.g. identical background noise)
        """
        x_1, x_2, y_1, y_2 = variables('x_1, x_2, y_1, y_2')
        y0, a_1, a_2, b_1, b_2 = parameters('y0, a_1, a_2, b_1, b_2')

        # The following vector valued function links all the equations together
        # as stated in the intro.
        model = Model({
            y_1: a_1 * x_1**2 + b_1 * x_1 + y0,
            y_2: a_2 * x_2**2 + b_2 * x_2 + y0,
        })

        # Generate data from this model
        # xdata = np.linspace(0, 10)
        xdata1 = np.linspace(0, 10)
        xdata2 = xdata1[::2]  # Make the sets of unequal size

        ydata1, ydata2 = model(x_1=xdata1, x_2=xdata2, a_1=101.3, b_1=0.5, a_2=56.3, b_2=1.1111, y0=10.8)
        # Add some noise to make it appear like real data
        np.random.seed(1)
        ydata1 += np.random.normal(0, 2, size=ydata1.shape)
        ydata2 += np.random.normal(0, 2, size=ydata2.shape)

        xdata = [xdata1, xdata2]
        ydata = [ydata1, ydata2]

        # Guesses
        a_1.value = 100
        a_2.value = 50
        b_1.value = 1
        b_2.value = 1
        y0.value = 10

        eval_jac = model.eval_jacobian(x_1=xdata1, x_2=xdata2, a_1=101.3,
                                       b_1=0.5, a_2=56.3, b_2=1.1111, y0=10.8)
        self.assertEqual(len(eval_jac), 2)
        for comp in eval_jac:
            self.assertEqual(len(comp), len(model.params))

        sigma_y = np.concatenate((np.ones(20), [2., 4., 5, 7, 3]))

        fit = Fit(model, x_1=xdata[0], x_2=xdata[1],
                  y_1=ydata[0], y_2=ydata[1], sigma_y_2=sigma_y)
        fit_result = fit.execute()

        # fit_curves = model(x_1=xdata[0], x_2=xdata[1], **fit_result.params)
        self.assertAlmostEqual(fit_result.value(y0), 1.061892e+01, 3)
        self.assertAlmostEqual(fit_result.value(a_1), 1.013269e+02, 3)
        self.assertAlmostEqual(fit_result.value(a_2), 5.625694e+01, 3)
        self.assertAlmostEqual(fit_result.value(b_1), 3.362240e-01, 3)
        self.assertAlmostEqual(fit_result.value(b_2), 1.565253e+00, 3)
コード例 #46
0
ファイル: test_general.py プロジェクト: Pitje06/symfit
    def test_error_analytical(self):
        """
        Test using a case where the analytical answer is known. Uses both
        symfit and scipy's curve_fit.
        Modeled after:
        http://nbviewer.ipython.org/urls/gist.github.com/taldcroft/5014170/raw/31e29e235407e4913dc0ec403af7ed524372b612/curve_fit.ipynb
        """
        N = 10000
        sigma = 10.0
        xn = np.arange(N, dtype=np.float)
        # yn = np.zeros_like(xn)
        np.random.seed(10)
        yn = np.random.normal(size=len(xn), scale=sigma)

        a = Parameter()
        y = Variable()
        model = {y: a}

        fit = Fit(model, y=yn, sigma_y=sigma)
        fit_result = fit.execute()


        popt, pcov = curve_fit(lambda x, a: a * np.ones_like(x), xn, yn, sigma=sigma, absolute_sigma=True)
        self.assertAlmostEqual(fit_result.value(a), popt[0], 5)
        self.assertAlmostEqual(fit_result.stdev(a), np.sqrt(np.diag(pcov))[0], 2)

        fit_no_sigma = Fit(model, yn)
        fit_result_no_sigma = fit_no_sigma.execute()

        popt, pcov = curve_fit(lambda x, a: a * np.ones_like(x), xn, yn,)
        # With or without sigma, the bestfit params should be in agreement in case of equal weights
        self.assertAlmostEqual(fit_result.value(a), fit_result_no_sigma.value(a), 5)
        # Since symfit is all about absolute errors, the sigma will not be in agreement
        self.assertNotEqual(fit_result.stdev(a), fit_result_no_sigma.stdev(a), 5)
        self.assertAlmostEqual(fit_result_no_sigma.value(a), popt[0], 5)
        self.assertAlmostEqual(fit_result_no_sigma.stdev(a), pcov[0][0]**0.5, 5)

        # Analytical answer for mean of N(0,1):
        mu = 0.0
        sigma_mu = sigma/N**0.5

        self.assertAlmostEqual(fit_result.stdev(a), sigma_mu, 5)
コード例 #47
0
ファイル: test_model.py プロジェクト: tBuLi/symfit
    def test_CallableNumericalModel2D(self):
        """
        Apply a CallableNumericalModel to 2D data, to see if it is
        agnostic to data shape.
        """
        shape = (30, 40)

        def function(a, b):
            out = np.ones(shape) * a
            out[15:, :] += b
            return out

        a, b = parameters('a, b')
        y, = variables('y')

        model = CallableNumericalModel({y: function}, [], [a, b])
        data = 15 * np.ones(shape)
        data[15:, :] += 20

        fit = Fit(model, y=data)
        fit_result = fit.execute()
        self.assertAlmostEqual(fit_result.value(a), 15)
        self.assertAlmostEqual(fit_result.value(b), 20)

        def flattened_function(a, b):
            out = np.ones(shape) * a
            out[15:, :] += b
            return out.flatten()

        model = CallableNumericalModel({y: flattened_function}, [], [a, b])
        data = 15 * np.ones(shape)
        data[15:, :] += 20
        data = data.flatten()

        fit = Fit(model, y=data)
        flat_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(a), flat_result.value(a))
        self.assertAlmostEqual(fit_result.value(b), flat_result.value(b))
        self.assertAlmostEqual(fit_result.stdev(a), flat_result.stdev(a))
        self.assertAlmostEqual(fit_result.stdev(b), flat_result.stdev(b))
        self.assertAlmostEqual(fit_result.r_squared, flat_result.r_squared)
コード例 #48
0
ファイル: test_global_opt.py プロジェクト: tBuLi/symfit
 def test_chained_min(self):
     """Test fitting with a chained minimizer"""
     curvals = [p.value for p in self.model.params]
     fit = Fit(self.model, self.xx, self.yy, self.ydata,
               minimizer=[DifferentialEvolution, BFGS])
     fit_result = fit.execute(
         DifferentialEvolution={'seed': 0, 'tol': 1e-4, 'maxiter': 10}
     )
     self.assertAlmostEqual(fit_result.value(self.x0_1), 0.4, 4)
     self.assertAlmostEqual(fit_result.value(self.y0_1), 0.4, 4)
     self.assertEqual(curvals, [p.value for p in self.model.params])
コード例 #49
0
ファイル: test_constrained.py プロジェクト: tBuLi/symfit
    def test_param_error_analytical(self):
        """
        Take an example in which the parameter errors are known and see if
        `Fit` reproduces them.

        It also needs to support the absolute_sigma argument.
        """
        N = 10000
        sigma = 25.0
        xn = np.arange(N, dtype=np.float)
        np.random.seed(110)
        yn = np.random.normal(size=xn.shape, scale=sigma)

        a = Parameter()
        y = Variable('y')
        model = {y: a}

        constr_fit = Fit(model, y=yn, sigma_y=sigma)
        constr_result = constr_fit.execute()

        fit = Fit(model, y=yn, sigma_y=sigma, minimizer=MINPACK)
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(a), constr_result.value(a), 5)
        self.assertAlmostEqual(fit_result.stdev(a), constr_result.stdev(a), 5)

        # Analytical answer for mean of N(0,sigma):
        sigma_mu = sigma/N**0.5

        self.assertAlmostEqual(fit_result.value(a), np.mean(yn), 5)
        self.assertAlmostEqual(fit_result.stdev(a), sigma_mu, 5)

        # Compare for absolute_sigma = False.
        constr_fit = Fit(model, y=yn, sigma_y=sigma, absolute_sigma=False)
        constr_result = constr_fit.execute()

        fit = Fit(model, y=yn, sigma_y=sigma, minimizer=MINPACK, absolute_sigma=False)
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(a), constr_result.value(a), 5)
        self.assertAlmostEqual(fit_result.stdev(a), constr_result.stdev(a), 5)
コード例 #50
0
ファイル: test_general.py プロジェクト: tBuLi/symfit
    def test_likelihood_fitting_bivariate_gaussian(self):
        """
        Fit using the likelihood method.
        """
        # Make variables and parameters
        x = Variable('x')
        y = Variable('y')
        x0 = Parameter('x0', value=0.6, min=0.5, max=0.7)
        sig_x = Parameter('sig_x', value=0.1, max=1.0)
        y0 = Parameter('y0', value=0.7, min=0.6, max=0.9)
        sig_y = Parameter('sig_y', value=0.05, max=1.0)
        rho = Parameter('rho', value=0.001, min=-1, max=1)

        pdf = BivariateGaussian(x=x, mu_x=x0, sig_x=sig_x, y=y, mu_y=y0,
                               sig_y=sig_y, rho=rho)

        # Draw 100000 samples from a bivariate distribution
        mean = [0.59, 0.8]
        r = 0.6
        cov = np.array([[0.11 ** 2, 0.11 * 0.23 * r],
                        [0.11 * 0.23 * r, 0.23 ** 2]])
        np.random.seed(42)
        xdata, ydata = np.random.multivariate_normal(mean, cov, 100000).T

        fit = Fit(pdf, x=xdata, y=ydata, objective=LogLikelihood)
        fit_result = fit.execute()

        self.assertAlmostEqual(fit_result.value(x0) / mean[0], 1, 2)
        self.assertAlmostEqual(fit_result.value(y0) / mean[1], 1, 2)
        self.assertAlmostEqual(fit_result.value(sig_x) / np.sqrt(cov[0, 0]), 1, 2)
        self.assertAlmostEqual(fit_result.value(sig_y) / np.sqrt(cov[1, 1]), 1, 2)
        self.assertAlmostEqual(fit_result.value(rho) / r, 1, 2)

        marginal = integrate(pdf, (y, -oo, oo), conds='none')
        fit = Fit(marginal, x=xdata, objective=LogLikelihood)
        with self.assertRaises(NameError):
            # Should raise a NameError, not a TypeError, see #219
            fit.execute()
コード例 #51
0
ファイル: test_constrained.py プロジェクト: tBuLi/symfit
    def test_named_fitting(self):
        xdata = np.linspace(1, 10, 10)
        ydata = 3*xdata**2

        a = Parameter('a', 1.0)
        b = Parameter('b', 2.5)
        x, y = variables('x, y')
        model = {y: a*x**b}

        fit = Fit(model, x=xdata, y=ydata)
        fit_result = fit.execute()
        self.assertIsInstance(fit_result, FitResults)
        self.assertAlmostEqual(fit_result.value(a), 3.0, 3)
        self.assertAlmostEqual(fit_result.value(b), 2.0, 4)
コード例 #52
0
ファイル: test_global_opt.py プロジェクト: tBuLi/symfit
    def test_diff_evo(self):
        """
        Tests fitting to a scalar gaussian with 2 independent variables with
        wide bounds.
        """
        
        fit = Fit(self.model, self.xx, self.yy, self.ydata, minimizer=BFGS)
        fit_result = fit.execute()

        self.assertIsInstance(fit.minimizer, BFGS)

        # Make sure a local optimizer doesn't find the answer.
        self.assertNotAlmostEqual(fit_result.value(self.x0_1), 0.4, 1)
        self.assertNotAlmostEqual(fit_result.value(self.y0_1), 0.4, 1)

        # On to the main event
        fit = Fit(self.model, self.xx, self.yy, self.ydata,
                  minimizer=DifferentialEvolution)
        fit_result = fit.execute(polish=True, seed=0, tol=1e-4, maxiter=100)
        # Global minimizers are really bad at finding local minima though, so
        # roughly equal is good enough.
        self.assertAlmostEqual(fit_result.value(self.x0_1), 0.4, 1)
        self.assertAlmostEqual(fit_result.value(self.y0_1), 0.4, 1)
コード例 #53
0
ファイル: test_general.py プロジェクト: tBuLi/symfit
    def test_boundaries(self):
        """
        Make sure parameter boundaries are respected
        """
        x = Parameter('x', min=1)
        y = Variable('y')
        model = Model({y: x**2})

        bounded_minimizers = list(subclasses(BoundedMinimizer))
        for minimizer in bounded_minimizers:
            fit = Fit(model, minimizer=minimizer)
            if minimizer is DifferentialEvolution:
                # Also needs a max
                x.max = 10
                fit_result = fit.execute()
                x.max = None
            elif minimizer is MINPACK:
                pass  # Not a MINPACKable problem because it only has a param
            else:
                fit_result = fit.execute()
                self.assertGreaterEqual(fit_result.value(x), 1.0)
                self.assertLessEqual(fit_result.value(x), 2.0)
            self.assertEqual(fit.minimizer.bounds, [(1, None)])
コード例 #54
0
ファイル: test_model.py プロジェクト: tBuLi/symfit
    def test_MatrixSymbolModel(self):
        """
        Test a model which is defined by ModelSymbols, see #194
        """
        N = Symbol('N', integer=True)
        M = MatrixSymbol('M', N, N)
        W = MatrixSymbol('W', N, N)
        I = MatrixSymbol('I', N, N)
        y = MatrixSymbol('y', N, 1)
        c = MatrixSymbol('c', N, 1)
        a, b = parameters('a, b')
        z, x = variables('z, x')

        model_dict = {
            W: Inverse(I + M / a ** 2),
            c: - W * y,
            z: sqrt(c.T * c)
        }
        # TODO: This should be a Model in the future, but sympy is not yet
        # capable of computing Matrix derivatives at the time of writing.
        model = CallableModel(model_dict)

        self.assertEqual(model.params, [a])
        self.assertEqual(model.independent_vars, [I, M, y])
        self.assertEqual(model.dependent_vars, [z])
        self.assertEqual(model.interdependent_vars, [W, c])
        self.assertEqual(model.connectivity_mapping,
                         {W: {I, M, a}, c: {W, y}, z: {c}})
        # Generate data
        iden = np.eye(2)
        M_mat = np.array([[2, 1], [3, 4]])
        y_vec = np.array([3, 5])

        eval_model = model(I=iden, M=M_mat, y=y_vec, a=0.1)
        W_manual = np.linalg.inv(iden + M_mat / 0.1 ** 2)
        c_manual = - W_manual.dot(y_vec)
        z_manual = np.atleast_1d(np.sqrt(c_manual.T.dot(c_manual)))
        np.testing.assert_allclose(eval_model.W, W_manual)
        np.testing.assert_allclose(eval_model.c, c_manual)
        np.testing.assert_allclose(eval_model.z, z_manual)

        # Now try to retrieve the value of `a` from a fit
        a.value = 0.2
        fit = Fit(model, z=z_manual, I=iden, M=M_mat, y=y_vec)
        fit_result = fit.execute()
        eval_model = model(I=iden, M=M_mat, y=y_vec, **fit_result.params)
        self.assertAlmostEqual(0.1, np.abs(fit_result.value(a)))
        np.testing.assert_allclose(eval_model.W, W_manual, rtol=1e-5)
        np.testing.assert_allclose(eval_model.c, c_manual, rtol=1e-5)
        np.testing.assert_allclose(eval_model.z, z_manual, rtol=1e-5)
コード例 #55
0
ファイル: test_fit_result.py プロジェクト: tBuLi/symfit
    def test_pickle(self):
        xdata = np.linspace(1, 10, 10)
        ydata = 3 * xdata ** 2

        a = Parameter('a')  # 3.1, min=2.5, max=3.5
        b = Parameter('b')
        x = Variable('x')
        y = Variable('y')
        new = {y: a * x ** b}

        fit = Fit(new, x=xdata, y=ydata)
        fit_result = fit.execute()
        new_result = pickle.loads(pickle.dumps(fit_result))
        self.assertEqual(fit_result.__dict__.keys(), new_result.__dict__.keys())