def test_shear(): from orphics import lensing, io, cosmology, maps deg = 20. px = 2.0 tellmin = 30 tellmax = 3500 kellmin = 10 kellmax = 3000 bin_width = 20 beam_arcmin = 1.4 noise_uk_arcmin = 7.0 theory = cosmology.default_theory(lpad=30000) shape, wcs = s.rect_geometry(width_deg=deg, px_res_arcmin=px) flsims = lensing.FlatLensingSims(shape, wcs, theory, beam_arcmin, noise_uk_arcmin) kbeam = flsims.kbeam modlmap = enmap.modlmap(shape, wcs) fc = maps.FourierCalc(shape, wcs) n2d = (noise_uk_arcmin * np.pi / 180. / 60.)**2. / flsims.kbeam**2. tmask = s.mask_kspace(shape, wcs, lmin=tellmin, lmax=tellmax) kmask = s.mask_kspace(shape, wcs, lmin=kellmin, lmax=kellmax) bin_edges = np.arange(kellmin, kellmax, bin_width) binner = s.bin2D(modlmap, bin_edges) i = 0 unlensed, kappa, lensed, beamed, noise_map, observed = flsims.get_sim( seed_cmb=(i, 1), seed_kappa=(i, 2), seed_noise=(i, 3), lens_order=5, return_intermediate=True) _, kmap, _ = fc.power2d(observed) pii2d, kinput, _ = fc.power2d(kappa) feed_dict = {} cltt = theory.lCl('TT', modlmap) feed_dict['uC_T_T'] = theory.lCl('TT', modlmap) feed_dict['tC_T_T'] = (cltt + n2d) feed_dict['X'] = kmap / kbeam feed_dict['Y'] = kmap / kbeam ells = np.arange(0, 10000, 1) ucltt = theory.lCl('TT', ells) feed_dict['duC_T_T'] = s.interp(ells, np.gradient(np.log(ucltt), np.log(ells)))(modlmap) sAl = s.A_l(shape, wcs, feed_dict, "shear", "TT", xmask=tmask, ymask=tmask) sNl = s.N_l(shape, wcs, feed_dict, "shear", "TT", xmask=tmask, ymask=tmask, Al=sAl) sukappa = s.unnormalized_quadratic_estimator(shape, wcs, feed_dict, "shear", "TT", xmask=tmask, ymask=tmask) snkappa = sAl * sukappa pir2d3 = fc.f2power(snkappa, kinput) cents, pir1d3 = binner.bin(pir2d3) cents, pii1d = binner.bin(pii2d) cents, prr1d = binner.bin(fc.f2power(snkappa, snkappa)) cents, Nlkk3 = binner.bin(sNl) pl = io.Plotter(xyscale='loglog') pl.add(ells, theory.gCl('kk', ells)) pl.add(cents, pii1d, color='k', lw=3) pl.add(cents, pir1d3, label='shear') pl.add(cents, prr1d) pl.add(cents, Nlkk3, ls=":") pl._ax.set_xlim(10, 3500) pl.done("ncomp.png")
def test_pol(): from orphics import lensing, io, cosmology, maps est = "hu_ok" pols = ['TT', 'EE', 'TE', 'EB', 'TB'] # est = "hdv" # pols = ['TT','EE','TE','ET','EB','TB'] deg = 5. px = 2.0 tellmin = 30 tellmax = 3000 pellmin = 30 pellmax = 5000 kellmin = 10 kellmax = 5000 bin_width = 40 beam_arcmin = 1.5 noise_uk_arcmin = 10.0 theory = cosmology.default_theory(lpad=30000) shape, wcs = s.rect_geometry(width_deg=deg, px_res_arcmin=px) modlmap = enmap.modlmap(shape, wcs) kbeam = s.gauss_beam(modlmap, beam_arcmin) n2d = (noise_uk_arcmin * np.pi / 180. / 60.)**2. / kbeam**2. tmask = s.mask_kspace(shape, wcs, lmin=tellmin, lmax=tellmax) pmask = s.mask_kspace(shape, wcs, lmin=pellmin, lmax=pellmax) kmask = s.mask_kspace(shape, wcs, lmin=kellmin, lmax=kellmax) bin_edges = np.arange(kellmin, kellmax, bin_width) binner = s.bin2D(modlmap, bin_edges) feed_dict = {} cltt = theory.lCl('TT', modlmap) clee = theory.lCl('EE', modlmap) clbb = theory.lCl('BB', modlmap) clte = theory.lCl('TE', modlmap) feed_dict['uC_T_T'] = cltt feed_dict['tC_T_T'] = (cltt + n2d) feed_dict['uC_E_E'] = clee feed_dict['tC_E_E'] = (clee + n2d * 2.) feed_dict['uC_B_B'] = clbb feed_dict['tC_B_B'] = (clbb + n2d * 2.) feed_dict['uC_T_E'] = clte feed_dict['tC_T_E'] = clte ells = np.arange(0, 10000, 1) pl = io.Plotter(xyscale='loglog') pl.add(ells, theory.gCl('kk', ells)) imask = {'T': tmask, 'E': pmask, 'B': pmask} for pol in pols: print(pol) X, Y = pol cents, Nl = binner.bin( s.N_l(shape, wcs, feed_dict, est, pol, xmask=imask[X], ymask=imask[Y])) pl.add(cents, Nl, label=pol) pl._ax.set_xlim(10, kellmax) pl.done("nls.png")
def test_hdv_huok_planck(): from orphics import lensing, io, cosmology, maps shape, wcs = enmap.geometry(shape=(512, 512), res=2.0 * putils.arcmin, pos=(0, 0)) modlmap = enmap.modlmap(shape, wcs) theory = cosmology.default_theory() ells = np.arange(0, 3000, 1) ctt = theory.lCl('TT', ells) # ps,_ = powspec.read_camb_scalar("tests/Aug6_highAcc_CDM_scalCls.dat") # ells = range(ps.shape[-1]) ## Build HuOk TT estimator f = s.Ldl1 * s.e('uC_T_T_l1') + s.Ldl2 * s.e('uC_T_T_l2') F = f / 2 / s.e('tC_T_T_l1') / s.e('tC_T_T_l2') expr1 = f * F feed_dict = {} feed_dict['uC_T_T'] = s.interp(ells, ctt)(modlmap) feed_dict['tC_T_T'] = s.interp(ells, ctt)(modlmap) + ( 33. * np.pi / 180. / 60.)**2. / s.gauss_beam(modlmap, 7.0)**2. tellmin = 10 tellmax = 3000 xmask = s.mask_kspace(shape, wcs, lmin=tellmin, lmax=tellmax) integral = s.integrate(shape, wcs, feed_dict, expr1, xmask=xmask, ymask=xmask).real Nl = modlmap**4. / integral / 4. bin_edges = np.arange(10, 3000, 40) binner = s.bin2D(modlmap, bin_edges) cents, nl1d = binner.bin(Nl) ## Build HDV TT estimator F = s.Ldl1 * s.e('uC_T_T_l1') / s.e('tC_T_T_l1') / s.e('tC_T_T_l2') expr1 = f * F integral = s.integrate(shape, wcs, feed_dict, expr1, xmask=xmask, ymask=xmask).real Nl = modlmap**4. / integral / 4. cents, nl1d2 = binner.bin(Nl) cents, nl1d3 = binner.bin( s.N_l_cross(shape, wcs, feed_dict, "hu_ok", "TT", "hu_ok", "TT", xmask=xmask, ymask=xmask)) cents, nl1d4 = binner.bin( s.N_l_cross(shape, wcs, feed_dict, "hdv", "TT", "hdv", "TT", xmask=xmask, ymask=xmask)) cents, nl1d5 = binner.bin( s.N_l(shape, wcs, feed_dict, "hu_ok", "TT", xmask=xmask, ymask=xmask)) cents, nl1d6 = binner.bin( s.N_l(shape, wcs, feed_dict, "hdv", "TT", xmask=xmask, ymask=xmask)) clkk = theory.gCl('kk', ells) pl = io.Plotter(xyscale='linlog') pl.add(cents, nl1d) pl.add(cents, nl1d2) # pl.add(cents,nl1d3) pl.add(cents, nl1d4) pl.add(cents, nl1d5) pl.add(cents, nl1d6) pl.add(ells, clkk) pl.done("plcomp.png")